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Imprecision in Abstract Interpretation

Abstract interpretation sound but not complete.

Incompleteness manifests in imprecision during the analysis.

⊥

[1, 1] [2, 2] [3, 3]

[1, 2] [2, 3]

[1, 3]

>

Example: Domain of Intervals
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Imprecisions in the Domain

Imprecision in join

x:=*;

if(x > 5)

y := -1;

else

y := 1;

assert(y != 0);

y ∈ [−1,−1], x ∈ [6,∞]

y ∈ [1, 1], x ∈ [−∞, 5]

y ∈ [−1, 1]

The disjunction y = 1 ∨ y = −1 cannot be expressed as an interval.

How can we introduce disjunctions just where we need them?

Leopold Haller (OUCL) DPLL-Style Program Analysis POPL Student Blitz Session 3 / 10



Imprecisions in the Domain

Imprecision in join

x:=*;

if(x > 5)

y := -1;

else

y := 1;

assert(y != 0);

y ∈ [−1,−1], x ∈ [6,∞]

y ∈ [1, 1], x ∈ [−∞, 5]

y ∈ [−1, 1]

The disjunction y = 1 ∨ y = −1 cannot be expressed as an interval.

How can we introduce disjunctions just where we need them?

Leopold Haller (OUCL) DPLL-Style Program Analysis POPL Student Blitz Session 3 / 10



Trace Partitioning

Consider separately different sets of traces through a program

Think: Case splits in a proof.

Control-flow based trace partitioning

x := *
[x > 5]

[x <= 5] y := 1

y := -1

assert(y != 0)

y = −1

y = 1
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The main question is:

How can we find a good partitioning?

just precise enough
abstract enough to be efficient
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Clipped fixpoints

Standard analysis

F̂P ≡ µX .I t F̂ (X )

This may be too imprecise for the reasons mentioned earlier.

Clippings

Find a set a1, . . . , ak of abstract elements and compute for each 1 ≤ i ≤ k

ˆFPi ≡ µX .I t (F̂ (X ) u ai )

such that each program behaviour is represented in some F̂P i .
Any checks can be performed on the FPi for increased precision.

Clippings are equivalent to a certain class of trace partionings
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Reframed question:

How do we find these elements a1, . . . , ak?

Let’s look at an architecture that’s good at dealing with disjunction
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DPLL architecture

DPLL procedure

decide propagate

Conflict

learn

backtrack

Main phases of the DPLL procedure:

Decision Assume a value for an undetermined variable
Propagation Deduce implied variable values

Learning Learn reason for conflict and backtrack

Use same architecture for program analysis. Current variable assignment
corresponds to clipping.
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SAT-Style Program Analysis

>

Learning
(use for propagation)

A1 A2 A3 A4

B1 B2 B3 B4 B5

C1 C2 C3 C4

⊥

Decision

Generalization

>Initially, a = >

µX .F̂ (X ) not safe

A1Decision: refine a µX .(F̂ (X ) u A1) not safe

B2Decision: refine a µX .(F̂ (X ) u B2) safe

A2

µX .F̂ (X ) u A2 safe

A2

B2 B3

C1 C2 C3

⊥

Backtrack
and continue
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Summary & Application

Refine domain in a property dependent way by using a DPLL style analysis.

Application to verification of industrial floating-point programs using
value-based partitionings

Thanks for your attention.
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