
DPLL-Style Program Analysis

Leopold Haller

POPL Student Blitz Session

Leopold Haller (OUCL) DPLL-Style Program Analysis POPL Student Blitz Session 1 / 10



Imprecision in Abstract Interpretation

Abstract interpretation sound but not complete.

Incompleteness manifests in imprecision during the analysis.

⊥

[1, 1] [2, 2] [3, 3]

[1, 2] [2, 3]

[1, 3]

>

Example: Domain of Intervals

Leopold Haller (OUCL) DPLL-Style Program Analysis POPL Student Blitz Session 2 / 10



Imprecisions in the Domain

Imprecision in join

x:=*;

if(x > 5)

y := -1;

else

y := 1;

assert(y != 0);

y ∈ [−1,−1], x ∈ [6,∞]

y ∈ [1, 1], x ∈ [−∞, 5]

y ∈ [−1, 1]

The disjunction y = 1 ∨ y = −1 cannot be expressed as an interval.

How can we introduce disjunctions just where we need them?

Leopold Haller (OUCL) DPLL-Style Program Analysis POPL Student Blitz Session 3 / 10



Imprecisions in the Domain

Imprecision in join

x:=*;

if(x > 5)

y := -1;

else

y := 1;

assert(y != 0);

y ∈ [−1,−1], x ∈ [6,∞]

y ∈ [1, 1], x ∈ [−∞, 5]

y ∈ [−1, 1]

The disjunction y = 1 ∨ y = −1 cannot be expressed as an interval.

How can we introduce disjunctions just where we need them?

Leopold Haller (OUCL) DPLL-Style Program Analysis POPL Student Blitz Session 3 / 10



Trace Partitioning

Consider separately different sets of traces through a program

Think: Case splits in a proof.

Control-flow based trace partitioning

x := *
[x > 5]

[x <= 5] y := 1

y := -1

assert(y != 0)

y = −1

y = 1

Leopold Haller (OUCL) DPLL-Style Program Analysis POPL Student Blitz Session 4 / 10



Trace Partitioning

Consider separately different sets of traces through a program

Think: Case splits in a proof.

Control-flow based trace partitioning

x := *
[x > 5]

[x <= 5] y := 1

y := -1

assert(y != 0) y = −1

y = 1

Leopold Haller (OUCL) DPLL-Style Program Analysis POPL Student Blitz Session 4 / 10



Trace Partitioning

Consider separately different sets of traces through a program

Think: Case splits in a proof.

Control-flow based trace partitioning

x := *
[x > 5]

[x <= 5] y := 1

y := -1

assert(y != 0) y = −1

y = 1

Leopold Haller (OUCL) DPLL-Style Program Analysis POPL Student Blitz Session 4 / 10



The main question is:

How can we find a good partitioning?

just precise enough
abstract enough to be efficient

Leopold Haller (OUCL) DPLL-Style Program Analysis POPL Student Blitz Session 5 / 10



The main question is:
How can we find a good partitioning?

just precise enough
abstract enough to be efficient

Leopold Haller (OUCL) DPLL-Style Program Analysis POPL Student Blitz Session 5 / 10



The main question is:
How can we find a good partitioning?

just precise enough
abstract enough to be efficient

Leopold Haller (OUCL) DPLL-Style Program Analysis POPL Student Blitz Session 5 / 10



Clipped fixpoints

Standard analysis

F̂P ≡ µX .I t F̂ (X )

This may be too imprecise for the reasons mentioned earlier.

Clippings

Find a set a1, . . . , ak of abstract elements and compute for each 1 ≤ i ≤ k

ˆFPi ≡ µX .I t (F̂ (X ) u ai )

such that each program behaviour is represented in some F̂P i .
Any checks can be performed on the FPi for increased precision.

Clippings are equivalent to a certain class of trace partionings

Leopold Haller (OUCL) DPLL-Style Program Analysis POPL Student Blitz Session 6 / 10



Clipped fixpoints

Standard analysis

F̂P ≡ µX .I t F̂ (X )

This may be too imprecise for the reasons mentioned earlier.

Clippings

Find a set a1, . . . , ak of abstract elements and compute for each 1 ≤ i ≤ k

ˆFPi ≡ µX .I t (F̂ (X ) u ai )

such that each program behaviour is represented in some F̂P i .
Any checks can be performed on the FPi for increased precision.

Clippings are equivalent to a certain class of trace partionings

Leopold Haller (OUCL) DPLL-Style Program Analysis POPL Student Blitz Session 6 / 10



Reframed question:

How do we find these elements a1, . . . , ak?

Let’s look at an architecture that’s good at dealing with disjunction

Leopold Haller (OUCL) DPLL-Style Program Analysis POPL Student Blitz Session 7 / 10



Reframed question:
How do we find these elements a1, . . . , ak?

Let’s look at an architecture that’s good at dealing with disjunction

Leopold Haller (OUCL) DPLL-Style Program Analysis POPL Student Blitz Session 7 / 10



DPLL architecture

DPLL procedure

decide propagate

Conflict

learn

backtrack

Main phases of the DPLL procedure:

Decision Assume a value for an undetermined variable
Propagation Deduce implied variable values

Learning Learn reason for conflict and backtrack

Use same architecture for program analysis. Current variable assignment
corresponds to clipping.

Leopold Haller (OUCL) DPLL-Style Program Analysis POPL Student Blitz Session 8 / 10



DPLL architecture

DPLL procedure

decide propagate

Conflict

learn

backtrack

Main phases of the DPLL procedure:

Decision Assume a value for an undetermined variable
Propagation Deduce implied variable values

Learning Learn reason for conflict and backtrack

Use same architecture for program analysis. Current variable assignment
corresponds to clipping.

Leopold Haller (OUCL) DPLL-Style Program Analysis POPL Student Blitz Session 8 / 10



DPLL architecture

DPLL procedure

decide propagate

Conflict

learn

backtrack

Main phases of the DPLL procedure:

Decision Assume a value for an undetermined variable

Propagation Deduce implied variable values
Learning Learn reason for conflict and backtrack

Use same architecture for program analysis. Current variable assignment
corresponds to clipping.

Leopold Haller (OUCL) DPLL-Style Program Analysis POPL Student Blitz Session 8 / 10



DPLL architecture

DPLL procedure

decide propagate

Conflict

learn

backtrack

Main phases of the DPLL procedure:

Decision Assume a value for an undetermined variable
Propagation Deduce implied variable values

Learning Learn reason for conflict and backtrack

Use same architecture for program analysis. Current variable assignment
corresponds to clipping.

Leopold Haller (OUCL) DPLL-Style Program Analysis POPL Student Blitz Session 8 / 10



DPLL architecture

DPLL procedure

decide propagate

Conflict

learn

backtrack

Main phases of the DPLL procedure:

Decision Assume a value for an undetermined variable
Propagation Deduce implied variable values

Learning Learn reason for conflict and backtrack

Use same architecture for program analysis. Current variable assignment
corresponds to clipping.

Leopold Haller (OUCL) DPLL-Style Program Analysis POPL Student Blitz Session 8 / 10



DPLL architecture

DPLL procedure

decide propagate

Conflict

learn

backtrack

Main phases of the DPLL procedure:

Decision Assume a value for an undetermined variable
Propagation Deduce implied variable values

Learning Learn reason for conflict and backtrack

Use same architecture for program analysis. Current variable assignment
corresponds to clipping.

Leopold Haller (OUCL) DPLL-Style Program Analysis POPL Student Blitz Session 8 / 10



SAT-Style Program Analysis

>

Learning
(use for propagation)

A1 A2 A3 A4

B1 B2 B3 B4 B5

C1 C2 C3 C4

⊥

Decision

Generalization

>Initially, a = >

µX .F̂ (X ) not safe

A1Decision: refine a µX .(F̂ (X ) u A1) not safe

B2Decision: refine a µX .(F̂ (X ) u B2) safe

A2

µX .F̂ (X ) u A2 safe

A2

B2 B3

C1 C2 C3

⊥

Backtrack
and continue

Leopold Haller (OUCL) DPLL-Style Program Analysis POPL Student Blitz Session 9 / 10



SAT-Style Program Analysis

>

Learning
(use for propagation)

A1 A2 A3 A4

B1 B2 B3 B4 B5

C1 C2 C3 C4

⊥

DecisionGeneralization

>Initially, a = > µX .F̂ (X ) not safe

A1Decision: refine a µX .(F̂ (X ) u A1) not safe

B2Decision: refine a µX .(F̂ (X ) u B2) safe

A2

µX .F̂ (X ) u A2 safe

A2

B2 B3

C1 C2 C3

⊥

Backtrack
and continue

Leopold Haller (OUCL) DPLL-Style Program Analysis POPL Student Blitz Session 9 / 10



SAT-Style Program Analysis

>

Learning
(use for propagation)

A1 A2 A3 A4

B1 B2 B3 B4 B5

C1 C2 C3 C4

⊥

Decision

Generalization

>

Initially, a = > µX .F̂ (X ) not safe

A1Decision: refine a

µX .(F̂ (X ) u A1) not safe

B2Decision: refine a µX .(F̂ (X ) u B2) safe

A2

µX .F̂ (X ) u A2 safe

A2

B2 B3

C1 C2 C3

⊥

Backtrack
and continue

Leopold Haller (OUCL) DPLL-Style Program Analysis POPL Student Blitz Session 9 / 10



SAT-Style Program Analysis

>

Learning
(use for propagation)

A1 A2 A3 A4

B1 B2 B3 B4 B5

C1 C2 C3 C4

⊥

DecisionGeneralization

>

Initially, a = > µX .F̂ (X ) not safe

A1Decision: refine a µX .(F̂ (X ) u A1) not safe

B2Decision: refine a µX .(F̂ (X ) u B2) safe

A2

µX .F̂ (X ) u A2 safe

A2

B2 B3

C1 C2 C3

⊥

Backtrack
and continue

Leopold Haller (OUCL) DPLL-Style Program Analysis POPL Student Blitz Session 9 / 10



SAT-Style Program Analysis

>

Learning
(use for propagation)

A1 A2 A3 A4

B1 B2 B3 B4 B5

C1 C2 C3 C4

⊥

Decision

Generalization

>

Initially, a = > µX .F̂ (X ) not safe

A1

Decision: refine a µX .(F̂ (X ) u A1) not safe

B2Decision: refine a

µX .(F̂ (X ) u B2) safe

A2

µX .F̂ (X ) u A2 safe

A2

B2 B3

C1 C2 C3

⊥

Backtrack
and continue

Leopold Haller (OUCL) DPLL-Style Program Analysis POPL Student Blitz Session 9 / 10



SAT-Style Program Analysis

>

Learning
(use for propagation)

A1 A2 A3 A4

B1 B2 B3 B4 B5

C1 C2 C3 C4

⊥

DecisionGeneralization

>

Initially, a = > µX .F̂ (X ) not safe

A1

Decision: refine a µX .(F̂ (X ) u A1) not safe

B2Decision: refine a µX .(F̂ (X ) u B2) safe

A2

µX .F̂ (X ) u A2 safe

A2

B2 B3

C1 C2 C3

⊥

Backtrack
and continue

Leopold Haller (OUCL) DPLL-Style Program Analysis POPL Student Blitz Session 9 / 10



SAT-Style Program Analysis

>

Learning
(use for propagation)

A1 A2 A3 A4

B1 B2 B3 B4 B5

C1 C2 C3 C4

⊥

Decision

Generalization

>Initially, a = > µX .F̂ (X ) not safe

A1

Decision: refine a µX .(F̂ (X ) u A1) not safe

B2

Decision: refine a µX .(F̂ (X ) u B2) safe

A2

µX .F̂ (X ) u A2 safe

A2

B2 B3

C1 C2 C3

⊥

Backtrack
and continue

Leopold Haller (OUCL) DPLL-Style Program Analysis POPL Student Blitz Session 9 / 10



SAT-Style Program Analysis

>

Learning
(use for propagation)

A1 A2 A3 A4

B1 B2 B3 B4 B5

C1 C2 C3 C4

⊥

Decision

Generalization

>Initially, a = > µX .F̂ (X ) not safe

A1

Decision: refine a µX .(F̂ (X ) u A1) not safe

B2

Decision: refine a µX .(F̂ (X ) u B2) safe

A2

µX .F̂ (X ) u A2 safe

A2

B2 B3

C1 C2 C3

⊥

Backtrack
and continue

Leopold Haller (OUCL) DPLL-Style Program Analysis POPL Student Blitz Session 9 / 10



SAT-Style Program Analysis

>

Learning
(use for propagation)

A1 A2 A3 A4

B1 B2 B3 B4 B5

C1 C2 C3 C4

⊥

Decision

Generalization

>Initially, a = > µX .F̂ (X ) not safe

A1

Decision: refine a µX .(F̂ (X ) u A1) not safe

B2

Decision: refine a µX .(F̂ (X ) u B2) safe

A2

µX .F̂ (X ) u A2 safe

A2

B2 B3

C1 C2 C3

⊥

Backtrack
and continue

Leopold Haller (OUCL) DPLL-Style Program Analysis POPL Student Blitz Session 9 / 10



SAT-Style Program Analysis

>

Learning
(use for propagation)

A1 A2 A3 A4

B1 B2 B3 B4 B5

C1 C2 C3 C4

⊥

Decision

Generalization

>Initially, a = > µX .F̂ (X ) not safe

A1

Decision: refine a µX .(F̂ (X ) u A1) not safe

B2Decision: refine a µX .(F̂ (X ) u B2) safe

A2

µX .F̂ (X ) u A2 safe

A2

B2 B3

C1 C2 C3

⊥

Backtrack
and continue

Leopold Haller (OUCL) DPLL-Style Program Analysis POPL Student Blitz Session 9 / 10



Summary & Application

Refine domain in a property dependent way by using a DPLL style analysis.

Application to verification of industrial floating-point programs using
value-based partitionings

Thanks for your attention.

Leopold Haller (OUCL) DPLL-Style Program Analysis POPL Student Blitz Session 10 / 10



Summary & Application

Refine domain in a property dependent way by using a DPLL style analysis.

Application to verification of industrial floating-point programs using
value-based partitionings

Thanks for your attention.

Leopold Haller (OUCL) DPLL-Style Program Analysis POPL Student Blitz Session 10 / 10


