Floating Point Verification
 Unifying Abstract Interpretation and Decision Procedures

Leopold Haller
(joint work with Vijay D'Silva, Michael Tautschnig, Daniel Kroening)

$2^{\text {nd }}$ November 2011

Presentation Outline

Part I

Existing approaches to FP - Verification

Manual,
Semi-automated

> Decision Procedures

Abstract
Interpretation

Part II

Part I

IEEE754 Floating Point Numbers

Example 1

Special values: $\quad-0,+0,-\infty, \infty, N a N$
REAL NUMBERS

The Pitfalls of FP

```
if(x < y)
```

if(x < y)
else'if(x > y)
else'if(x > y)
else assert(x == y);
else assert(x == y);
|| for(float sum $=0$; sum $<=N$; sum+=x) ...
//does the loop terminate? \}

```
float r1 = a+b;
```

float r1 = a+b;
float r2 = b+c;
float r2 = b+c;
r1+= c; r2 += a;
r1+= c; r2 += a;
assert(r1 == r2);

```
```

assert(r1 == r2);

```
```


III

```
if \((x>0)\)
```

if $(x>0)$
\{
\{
for(float sum = 0; sum <= N; sum+=x)
//does the loop terminate?
}
|V float r2 = a+b;
|V float r2 = a+b;
assert(r1 == r2);

```
    assert(r1 == r2);
```

```
bool b = false;
if(f< < )
    b = true;
if(!b)
        assert(f >= 1);
```

```
\ThetaOO
#define HALFPI 1.57079632679f
float sine_approx(float x)
{
    if(x <= -HALFPI || x >= HALFPI);
        return 0.0f;
    float result = x - (x*x*x)/6.0f;
    result += (x*x*x*x*x)/120.0f;
    result += (x*x*x*x*x*x*x)/5040.0f;
    assert(result <= 1.01 && result >= -1.01);
    return 0;
}
~
~/work/cprover/src/ai/sine.c [P0S=0016,0001][100%] [LEN=16]
```


Is this program correct?

What does correctness mean?

```
\ThetaOO [c] sine.c (~/work/cprover/src/ai) - vim
```



```
#define HALFPI 1.57079632679f
float sine_approx(float x)
{
    if(x <= -HALFPI || x >= HALFPI);
        return 0.0f;
    float result = x - (x*x*x)/6.0f;
    result += (x*x*x*x*x)/120.0f;
    result += (x*x*x*x*x**x*x)/5040.0f;
    assert(result <= 1.01 && result >= -1.01);
    return 0;
}
~
~/work/cprover/src/ai/sine.c [P0S=0016,0001][100%] [LEN=16]
```

Three possible meanings:

- Result is sufficiently close to the real number result
- Result is sufficiently close to the sine function
- The assertion cannot be violated

How can we check correctness?

Manual

Abstract Interpretation

Decision Procedures

Manual, semi-automated

- Use an interactive theorem prover
- Experts write proof scripts with machine assistance
- Potentially powerful, but expensive
- Proof scripts require expert understanding, may be much harder to write than programs

Manual, semi-automated

User enters proof

Computer keeps track of what is left to prove

Ele Edit Navigation Iry Tactics Templates Queries Display Comple Windows Help

rewrite $1 H n$.
reflexivity.
Qed.
Lemma nat_eq_dec : forall (n m : nat), $\{\mathrm{n}=\mathrm{m}\}+$
induction n.
destruct m as [|m].
left.
reflexivity.
right.
discriminate.
destruct mas [|m]
right; discriminate.
destruct (IHnm) as $[\mathrm{Hm} \mid \mathrm{Hm}]$.
left.
rewrite Hm .
reflexivity.
right.
intros Hnm
apply Hm .
injection Hnm.
tauto.
Defined.
Eval compute in (nat eq dec 22).
Eval compute in (nat_eq_dec 21).
Definition pred (n : nat) : option nat :=
match n with
| 0 => None

Manual, semi-automated

This proof file has been written by Sylvie Boldo(1), following a proof presented by Pr William Kahan (2), and adapted to Coq proof checker with the help of Guillaume Melquiond(1) and Marc Daumas(1). This work has been partially supported by the CNRS grant PICS 2533.

(1) LIP Computer science laboratory UMR 5668 CNRS - ENS de Lyon INRIA Lyon, France

(2) University of California at Berkeley Berkeley, California

Section Discriminantl.
Variable bo : Fbound.
Variable precision : nat.
Let radix $:=28 z$.

Let FtoRradix := FtoR radix
Coercion FtoRradix : float >-> R.
Theorem TwoMoreThanOne : (1 < radix) \& 2 .

Let radixMoreThanZERO := Zlt 1_0 (Zlt le weak _ TwoMoreThanOne)
Hypothesis precisionGreaterThanOne : 1 < precision.
Hypothesis pGivesBound : Zpos (vNum bo) = Zpower_nat radix precision.

Variables a b b' c p q d:float.

Let delta $:=\left(\operatorname{Rabs}\left(d-\left(b * b^{\prime}-a * c\right)\right)\right) \& R$.
Hypothesis Fa : (Fbounded bo a).
Hypothesis Fb : (Fbounded bo b).
Hypothesis Fb': (Fbounded bo b').
Hypothesis Fc : (Fbounded bo c).
Hypothesis Fp : (Fbounded bo p).
Hypothesis Fq : (Fbounded bo q).
Hypothesis Fd : (Fbounded bo d).

There is no underflow

Hypothesis Ul:(- dExp bo <= Fexp d - 1)\&z.
Hypothesis Nd: (Fnormal radix bo d).
Hypothesis Nq : (Fnormal radix bo q).
Hypothesis Np: (Fnormal radix bo p).

Hypothesis Roundp : (Evenclosest bo radix precision (b*b')sR p). Hypothesis Roundq : (EvenClosest bo radix precision (a*c)sR q).

Hypothesis Firstcase : $(p+q<=3 *(\operatorname{Rabs}(p-q))) 8 R$.
Hypothesis Roundd : (EvenClosest bo radix precision (p-q)\&R d).
Theorem delta inf: (delta $<=(/ 2) *($ Fulp bo radix precision $d)+$
$((/ 2) *(F u l \bar{p}$ bo radix precision $p)+(/ 2) *(F u l p$ bo radix precision q))) \&R.

Theorem P_positive: (Rle 0 p) sR.
Theorem Fulp_le_twice_l: forall x y:float, ($0<=x$) \&R \rightarrow
(Fnormal radix bo x) \rightarrow (Fbounded bo y) $\rightarrow>(2 * x<=y) \& R ~ \rightarrow>$
($2 *$ (Fulp bo radix precision x) $<=$ (Fulp bo radix precision y)) $8 R$.

Theorem Fulp_le_twice_r: forall x y:float, ($0<=x$) \&R \rightarrow
(Fnormal radix bo y) \rightarrow (Fbounded bo x) \rightarrow ($x<=2 * y$) \&R \rightarrow
((Fulp bo radix precision x) $<=2 *$ (Fulp bo radix precision y)) \&R.

Theorem Half Closest Round: forall (x:float) ($r: R$),
(- dExp bō $<=$ zpred (Fexp x)) $\& z \rightarrow$ (Closest bo radix $r x$)
\rightarrow (Closest bo radix (r/2)sR (Float (Fnum x) (Zpred (Fexp x)))).
Theorem Twice_Evenclosest_Round: forall (x:float) ($r: R$),
$(-(\mathrm{dExp}$ bo) $<=$ (Fexp x$)-1) \& 2 \rightarrow$ (Fnormal radix bo x)
-> (EvenClosest bo radix precision $r x$)
\rightarrow (EvenClosest bo radix precision (2*r)sR (Float (Fnum x) (Zsucc ($\operatorname{Fexp} x$)))).

Theorem EvenclosestMonotone2: forall ($p q: R$) ($p^{\prime} q^{\prime}$: float),
($p<=q$) \&R \rightarrow (EvenClosest bo radix precision $p p^{\prime}$) ->
(EvenClosest bo radix precision $q q^{\prime}$) $\rightarrow\left(p^{\prime}<=q^{\prime}\right)$ gR.
Theorem Fulp_le_twice_r_round: forall (x y:float) (r:R), ($0<=x$) \&R ->
(Fbounded bo x) $->$ (Fnormal radix bo y) \rightarrow (- dExp bo $<=$ Fexp y - 1) 22

$$
\rightarrow(x<=2 \star r) \& R \rightarrow
$$

(EvenClosest bo radix precision $r y)->$
((Fulp bo radix precision x) $<=2 *$ (Fulp bo radix precision y)) \&R.

Theorem discril: (delta $<=2 *($ Fulp bo radix precision $d))$ RR.
etc

Monday, 23 July 12

Manual, semi-automated

Selection of notable work:

- John Harrison (Intel) -Verification of FP hardware and firmware using HOL
- Various formalizations of IEEE754 FP arithmetic for different theorem provers
- Boldot, Filliâtre, Melquiond et. al. - Theorem prover combined with incomplete FP prover.

Manual, semi-automated

Conclusion:

- Manual or semi-automated techniques can be very powerful, but require experts and large time investments
- Results have limited reusability
- Typically feasible for small system components of critical importance (e.g., Intel's verification of processor components)

References

Axiomatisations of FP

M. Daumas, L. Rideau and L.Théry.A Generic Library for Floating-Point Numbers and Its Application to Exact Computing. TPHOLs 2001
G. Melquiond. Floating-point arithmetic in the Coq system. RNC 2008.
P. Miner and S. Boldo. Float PVS library. http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html
P. Miner. Defining the IEEE-854 Floating-Point Standard in PVS. PVS. Technical Memorandum NASA, Langley Research, 1995
(intel) J. Harrison.A machine-checked theory of floating-point arithmetic.TPHOLs 1999

Specification of FP properties

A.Ayad and C. Marché. Behavioral properties of floating-point programs. Hisseo publications, 2009.
A. Ayad and C. Marché. Multi-prover verification of floating-point programs. www.Iri.fr/~marche/ayad IOijcar-submission.pdf, 2010
S. Boldo and J.C. Filliâtre. Formal verification of floating-point programs.ARITH 2007

References

Applications

(intel) J. Harrison. Floating point verification in HOL light: The exponential function. FMSD, I6(3), 2000
(intel) J. Harrison. Floating-point verification. FM 2005
(intel) J. Harrison. Formal verification of square root algorithms. FMSD, 22(2), 2003
B.Akbarpour,A.T.Abdel-Hamid, S. Tahar, and J. Harrison.Verifying a synthesized implementation of IEEE-754 floating-point exponential function using HOL. CJ 53(4), 2010
(intel) J. O'Leary, X. Zhao, R. Gerth, C.H. Seger. Formally Verifying IEEE Compliance of Floating-Point Hardware
R, Kaivola and M. D.Aagaard. Divider circuit verification with model checking and theorem proving.TPHOLs 2000
M. Cornea-Hasegan. Proving the IEEE correctness of iterative floating-point square root, divide and remainder algorithms. Intel Technology Journal, Q2, 1998

AMD』 T. L.J. Strother Moore and M. Kaufmann. A mechanically checked proof of the correctness of the kernel of the AMD5K86 floating-point division algorithm. IEEE Transactions on Computers, 47(9), 1998.
D. Rusinoff. A mechanically checked proof of IEEE compliance of a register-transfer-level specification of the AMD-K7 floatingpoint multiplication, division, and square root instructions. LMS Journal of Computation and Mathematics, I, I998.

S. Boldo, J.-C. Filliâtre and G. Melquiond. Combining Coq and Gappa for Certifying Floating-Point Programs. Calculemus 2009.

Requires experts, expensive, powerful

Manual

Abstract Interpretation
Decision Procedures

Abstract Interpretation

- Instead of exploring all executions, explore a single abstract execution
- Abstract execution contains all concrete executions!
- Highly efficient and scalable, but imprecise

Abstract Interpretation

An abstract interpreter modularly uses operations provided by an abstract domain. Changing the domain changes the analysis.

Interpreter

Abstract Domain

Example

Signs domain
$\{+,-\} \cup\{?\}$

Constants domain
$\{c \mid c \in F P\} \cup\{?\}$

$$
\begin{array}{lcc}
\text { float } \mathrm{y}=5 ; & y=+ & y=5 \\
\text { if }(\mathrm{x}>0) & x=+ & x=? \\
\left\{\begin{array}{lll}
\text { float } \mathrm{z}=\mathrm{x} * \mathrm{y} ; & z=+ & z=? \\
\text { assert }(\mathrm{z}>0) ; & \text { safe! } & \text { Possibly unsafe }
\end{array}\right.
\end{array}
$$

Abstract Interpretation

An abstract interpreter modularly uses operations provided by an abstract domain. Changing the domain changes the analysis.

Interpreter

Abstract Domain

Example
int x, y;
if($y<0)$
$x=y ;$
\}
else
\{
$y++;$
$\mathrm{x}=5$;
f \quad assert $(x<6)$;
\} \quad assert $(x<6)$;
$\{[l, u] \mid l, u \in \operatorname{Int}\}$
$x, y \in[\min (\operatorname{Int}), \max (\operatorname{Int})]$
$x, y \in[\min (I n t),-1]$
$x \in[5,5], y \in[\min ($ Int $), \max ($ Int $)]$
$x \in[\min ($ Int $), 5], y \in[\min ($ Int $), \max ($ Int $)]$

Abstract Interpretation

Floating Point Intervals

$$
\{[l, u] \mid l, u \in F P\} \cup\{?\}
$$

```
OOO
#define HALFPI 1.57079632679f
float sine_approx(float x)
{
```



```
    float result = x - (x*x*x)/6.0f; — result }\in[-2.216760, 2.216760]
    result += (x*x*x*x*x)/120.0f; }\longrightarrow\mathrm{ result }\in[-2.296453, 2.296453]
    result += (x*x*x*x*x*x*x)/5040.0f;\longrightarrow result }\in[-2.301135,2.301135
    assert(result <= 1.01 && result >= -1.01);
                        Potentially unsafe
    return 0;
}
~
~
~/work/cprover/src/ai/sine.c [P0S=0016,0001][100%] [LEN=16]
```


Astrée Abstract Interpreter

- Mature abstract interpreter by Cousot et. al
- Large number of domains
- Sold and supported by Absint GmbH
- Successful in proving correct large avionics control software: 100k lines of code in Ih -> highly scalable
- Various domains for floating point analysis:

Original traces

Ellipses

Octagons

Intervals

Abstract Domains for Floating Point

- Abstract domains are typically formulated over the real or rational numbers
- Numeric domains rely on mathematical properties such as associativity which do not hold over floating point numbers

$$
(a+b)+c=a+(b+c)
$$

- Solution (Minet 2004): Interpret operations over floating point numbers as real number operations + error terms

```
double d;
float f1,f2;
f1 = (float) d;
f2 = f1*f2;
```



```
real d;
real f1, f2;
f1 = d + round_error(FLOAT_CAST,d);
f2 = f1*f2 + round_error(FLOAT_MULT, f1,f2);
```


Fluctuat: Errors as First Class Citizens

- Static analyser built for FP precision analysis
- Idea: Keep track separately of three distinct values for each variable

$$
\begin{aligned}
& \quad\left(f^{x}, r^{x}, e^{x}\right) \\
& \text { FP value Real value } \quad \underline{\text { FP error }}
\end{aligned}
$$

- Abstract these values separately

$$
\begin{aligned}
& \text { float } \mathbf{x} \text {; } \\
& \text { if(*) } \mathbf{x = 1 f ; ~}([1,1],[1,1],[0,0]) \\
& \text { else } \mathbf{x}=0 f ;([0,0],[0,0],[0,0]) \\
& \longrightarrow([0,1],[0,1],[0,0]) \text { FP and real value are imprecise, } \\
& 23 \text { but there is no rounding error }
\end{aligned}
$$

Fluctuat:Tracking errors with Zonotopes

- Fluctuat uses zonotope abstractions which combines intervals with noise symbols

```
void foo(float x, bool b)
{
    if(!(x <= 1 && x >= 0))
        return;
            Noise variables take values in [0,1]
    float y = 1.0f + 2*x;
}
y=2*\mp@subsup{\varepsilon}{1}{}+c*\mp@subsup{\varepsilon}{2}{}+1.0f
```



```
Relation to x is preserved new error symbol models rounding error
```

- The source of imprecisions can be precisely tracekd

Imprecision in Abstract Interpretation

- The efficiency of abstract interpreters comes at the cost of precision. Imprecision is accumulated from three sources:
- Statements

$$
\begin{array}{lll}
x \in[-5,5] & \mathrm{y}=\mathrm{x} * \mathrm{x} ; & y \in[-25,25] \\
x \in[0,1] & \mathrm{y}=\mathrm{x} ; & x, y \in[0,1]
\end{array}
$$

- Control-flow

$$
\begin{aligned}
& \text { if }(\mathrm{y}<0) \\
& \mathrm{x}=1 \text {; } \\
& \text { else } \\
& \quad \mathrm{x}=-1 \text {; }
\end{aligned}
$$

- Loops

$$
x, y \in[1,1] \begin{array}{ll}
\text { while }(\mathrm{x}<100000) & x \in[100001, \max (\text { Int })] \\
\{\mathrm{x}++\mathbf{y} \mathbf{y + +}\} & \\
& y \in[\min (\text { Int }), \max (\text { Int })]
\end{array}
$$

Imprecision in Abstract Interpretation

- For efficiency reasons, most numeric abstract domains are convex

Original traces

Convex polyhedra

Octagons

Zonotope

Imprecision in Abstract Interpretation

What if convex abstractions are too weak?

Handling Imprecision

What happens if the analysis is imprecise?
manually creates new abstract domain

Researcher

Abstract Interpretation

Conclusion:

- Very scalable
- Imprecise
- Precise results require experts and research effort
- Expert created domains are moderately reusable
- Feasible for programs with homogenous structure and behaviour (success in avionics)

References

Floating point abstract domains

A. Chapoutot. Interval slopes as a numerical abstract domain for floating-point variables. SAS 2010
L. Chen, A. Miné and P. Cousot. A sound floating-point polyhedra abstract domain. APLAS 2008
A. Miné. Relational abstract domains for the detection of floating-point run-time errors. ESOP 2004
L. Chen,A. Miné, J.Wang and P. Cousot.An abstract domain to discover interval Linear Equalities.VMCAI 2010
L. Chen, A. Miné, J.Wang and P. Cousot. Interval polyhedra:An Abstract Domain to Infer Interval Linear Relationships. SAS 2009
K. Ghorbal, E. Goubault and S. Putot.The zonotope abstract domain Taylor I. CAV 2009
B. Jeannet, and A. Miné. Apron:A library of numerical abstract domains for static analysis. CAV 2009
D. Monniaux. Compositional analysis of floating-point linear numerical filters. CAV 2005
J. Feret. Static analysis of digital filters. ESOP 2004
F.Alegre, E. Feron and S. Pande. Using ellipsoidal domains to analyze control systems software. CoRR 2009
E. Goubault and S. Putot.Weakly relational domains for floating-point computation analysis. NSAD 2005
E. Goubault. Static analyses of the precision of floating-point operations. SAS 2001

References

Industrial Case Studies

E. Goubault, S. Putot, P. Baufreton, J. Gassino. Static analysis of the accuracy in control systems: principles and experiments. FMICS 2007
D. Delmas, E. Goubault, S. Putot, J. Souyris, K.Tekkal, F. Védrine.Towards an industrial use of FLUCTUAT on safety-critical avionics software. FMICS 2009
J. Souyris and D. Delmas. Experimental assessment of Astrée on safety-critical avionics software. SAFECOMP 2007
J. Souyris. Industrial experience of abstract interpretation-based static analyzers. IFIP 2004
P. Cousot. Proving the absence of run-time errors in safety-critical avionics code. EMSOFT 2007

FP Static Analysers

B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne,A. Miné, D. Monniaux and X. Rival. A static analyzer for large safetycritical software. SIGPLAN 38(5), 2003
P. Cousot, R. Cousot, J. Feret, L. Mauborgne,A. Miné, D. Monniaux and Xavier Rival.The ASTREÉ analyzer. ESOP 2005
E. Goubault, M. Martel and S. Putot.Asserting the precision of floating-point computations: a simple abstract interpreter. ESOP 2002

Requires experts, expensive, powerful

Manual

Abstract Interpretation

Decision Procedures

Scalable and efficient.
Precise analysis requires experts

Decision Procedures

- Precisely explore a large set of program traces
- For efficiency, represent problem symbolically as satisfiability of a logical formula

Program is safe exactly if $i s \operatorname{Trace}(t) \wedge \operatorname{error}(t)$ is satisfied by some t

Propositional SAT

Propositional formula: $\varphi=(a \vee \neg b) \wedge(\neg a \vee b) \wedge \neg b$
Is there an assignment to a, b that makes the formula true?

Why are SAT solvers so efficient

failure

- SAT solvers learn from failure
- SAT solvers spot relevance

Decision Procedures

Example

```
int foo(int a, int b, bool c)
{
    int result;
    if(c)
        result = a/b;
    else
        result = a*b;
```



```
\[
\begin{aligned}
& c \rightarrow(r=a / 32 b) \\
& \wedge \quad \neg c \rightarrow\left(r=a *_{32} b\right) \\
& \wedge \quad a>0 \wedge b>0 \wedge r<0
\end{aligned}
\]
if(a>0 \&\& b>0) assert(result >= 0);
\}
Can be translated to propositional logic using divider and multiplier circuits
```

The formula evaluates to true under the following assignment:

$$
\begin{aligned}
a, b & \mapsto 123456789 \\
r & \mapsto-1757895751 \\
c & \mapsto \text { false }
\end{aligned}
$$

Bounded Model Checking

Loops require unrolling before translation
int foo(int *a)
\{
int sum;
for(int i = 0; i $<N$; i++) sum+=a[i];
assert(sum > 0); return sum;
\}

If the loop does not have a known fixed bound, the result is unrolled up to a chosen depth.

```
```

int foo(int *a)

```
```

int foo(int *a)
{
{
int sum;
int sum;
int i = 0;
int i = 0;
if(i < N)
if(i < N)
{
{
sum += a[i];
sum += a[i];
if(++i < N)
if(++i < N)
{
{
sum += a[i];
sum += a[i];
sum += a[i];
sum += a[i];
{
{
}
}
}
}
}
}
assert(sum > 0);
assert(sum > 0);
return sum;
return sum;
}

```
}
```

```
            *:
```

```
            *:
```


Bounded Model Checking

FP support in CBMC (2008)

- CBMC implements bit-precise reasoning over floating-point numbers using a propositional encoding
- Uses IEEE-754 semantics with support various rounding-modes
- Allows proofs of complex, bit-level properties

Scalability of Propositional Encoding

- Floating-point arithmetic is flattened to propositional logic
- Requires instantiation of large floating point arithmetic circuits

N	Nr.Variables	Memory use
5	~ 130000	~90MB
10	~ 260000	~180MB

- Resulting formulas are hard for SAT solvers and take up large amounts of memory

Mixed Abstractions for Floating Point Arithmetic (2009)

- Use propositional abstraction to increase efficiency and ease memory requirements
- Novel mixed abstraction framework
- Over-approximations allow more behaviours: Reduce the initial number of variables. Eases memory requirements and improves efficiency.
- Under-approximations restrict behaviours:Allows us to quickly identify solutions.
- Integrated with CBMC and the Boolector SMT solver

Mixed Abstractions for Floating Point Arithmetic (2009)

Benchmark	Lines of Code	Satis- fiable?	No Abstr.	Mixed	
	time (s)	time (s)	\#iter.		
qurt.c, claim 1	109	no	25	2	15
qurt.c, claim 2	109	no	25	0.6	7
qurt.c, claim 3	109	no	25	1	13
qurt.c, claim 4	109	no	OM	478	103
qurt.c, claim 5	109	no	25	1.2	15
qurt.c, claim 6	109	no	25	0.6	7
qurt.c, claim 7	109	no	6716	84	86
sqrt.c, claim 1	51	no	24	13589	44
sqrt.c, claim 2	51	yes	9	TO	107
minver.c, claim 1	156	no	1	0.1	1
minver.c, claim 2	156	yes	2	0.1	1
sin.c, claim 1	46	no	13864	281	47
sin.c, claim 2	46	no	13831	281	47
sin.c, claim 3	46	no	TO	1074	63
gaussian.c, claim 1	108	no	TO	14437	137

Fig. 4. The Framework of Mixed Abstraction

Related work

Constraint satisfaction

C. Michel, M. Rueher and Y. Lebbah: Solving constraints over floating-point numbers. CP2001
B. Botella, A. Gotlieb and C. Michel: Symbolic execution of floating-point computations. STVR2006

SMT

P. Ruemmer and T.Wahl.An SMT-LIB theory of binary floating-point arithmetic. SMT 2010
A. Brillout, D. Kroening and T.Wahl. Mixed abstractions for floating point arithmetic. FMCAD 2009
R. Brummayer and A. Biere. Boolector:An Efficient SMT Solver for Bit-Vectors and Arrays.TACAS 2009

Incomplete Solvers

S. Boldo, J.-C. Filliâtre and G. Melquiond. Combining Coq and Gappa for Certifying Floating-Point Programs. Calculemus 2009.

Requires experts, scalable, precise

Manual

Abstract Interpretation

Scalable.
Precision requires experts

Decision Procedures

Precise.
Scalability requires experts

Conclusion Part I

Automatic

Scalable
 Theorem proving
 Precise

Questions so far?

Part II

Automatic

Scalable

Precise

We are interested in techniques that are

- scalable
- sufficiently precise to prove safety
- fully automatic

Central insight:

Modern decision procedure are abstract interpreters!

Manually adjusting analysis precision by abstract partitioning

void foo(int x)
\{
int y;
if($x<0$)
$\mathrm{y}=1$;
else
$\frac{\mathrm{y}=-1 ; \quad y \in[-1,1]}{\operatorname{assert}(\mathrm{y}!=0) ;}$
\}
Potentially unsafe!

$$
\begin{aligned}
& \text { void foo_precise(int x) } \\
& \text { \{ } \\
& \text { if }(x<0) \\
& \text { foo(x) } \\
& \text { else } \\
& \text { foo(x); } \\
& \text { \} } \\
& \text { void foo(int } x \text {) } \\
& \text { \} }
\end{aligned}
$$

How do we find the partition automatically?

SAT solving by example

SAT solvers accept formulas in conjunctive normal form

Their main data structure is a partial variable assignment which represents a solution candidate

$$
V \rightarrow\{\mathrm{t}, \mathrm{f}\}
$$

SAT solving: Deduction

$$
\varphi=p \wedge(\neg p \vee \neg q) \wedge(q \vee r \vee \neg w) \wedge(q \vee r \vee w)
$$

SAT deduces new facts from clauses:

At this point, clauses yield no further information

SAT is Abstract Analysis: Deduction

$$
\begin{aligned}
& \varphi=p \wedge(\neg p \vee \neg q) \wedge(q \vee r \vee \neg w) \wedge(q \vee r \vee w) \\
& \longmapsto p \mapsto \mathrm{t} \rightleftarrows p \mapsto \mathrm{t} \\
& q \mapsto \mathrm{f}
\end{aligned}
$$


```
void foo(void)
    {
        bool p, q, r, w;
```

The result of deduction is identical to applying interval analysis to the program:

Deduction in a SAT solver is abstract analysis

SAT solving: Decisions

$$
\varphi=p \wedge(\neg p \vee \neg q) \wedge(q \vee r \vee \neg w) \wedge(q \vee r \vee w)
$$

SAT solver makes a "guess"
Pick an unassigned variable and assign a truth value

Now new deductions are possible

SAT solving: Learning

$$
\begin{aligned}
\varphi=p & \wedge(\neg p \vee \neg q) \wedge(q \vee r \vee \neg w) \wedge(q \vee r \vee w) \\
p & \mapsto \mathrm{t} \\
q & \mapsto \mathrm{f} \\
r & \mapsto \mathrm{f}
\end{aligned}
$$

The variable w would have to be both true and false.
The contradiction is the result of r being assigned to false as part of a decision. The SAT solver therefore learns that r must be true:

$$
\varphi \leftarrow \varphi_{55} \wedge r
$$

SAT solving: Learning

$$
\begin{aligned}
& \varphi=p \wedge(\neg p \vee \neg q) \wedge(q \vee r \vee \neg w) \wedge(q \vee r \vee w) \\
& p \mapsto \mathrm{t} \quad p \mapsto \mathrm{t} \\
& q \mapsto \mathrm{f} \quad q \mapsto \mathrm{f} \longleftrightarrow \text { conflict } \\
& r \mapsto \mathrm{f} \quad r \mapsto \mathrm{f} \\
& w \mapsto f
\end{aligned}
$$

The variable w would have to be both true and false.
The contradiction is the result of r being assigned to false as part of a decision. The SAT solver therefore learns that r must be true:

$$
\varphi \leftarrow \varphi_{55} \wedge r
$$

SAT is Abstract Analysis: Decisions \& Learning


```
void foo(void)
{
    bool p, q, r, w;
    if(p)
    if(!p || !q)
        if(q || r || !w)
                if(q||r|| |
                assert(0);
}
```


Decisions and learning in a SAT solver are abstract partitioning

SAT is Abstract Analysis

- Deduction in SAT is abstract interpretation
- Decisions and learning are abstract partitioning
- The SAT algorithm is really an automatic partition refinement algorithm.

Domain A

Expanding the scope of SAT

SAT is Abstract Analysis

- Deduction in SAT is abstract interpretation
- Decisions and learning are abstract partitioning
- The SAT algorithm is really an automatic partition refinement algorithm.

SAT for programs

DL1

Prototype: Abstract Conflict Driven Learning (ACDL)

- Implementation over floating-point intervals
- Automatically refines an analysis in a way that is
- Property dependent
- Program dependent
- Uses learning to intelligently explore partitions
- Significantly more precise than mature abstract interpreters
- Significantly more efficient than floating-point decision procedures on short non-linear programs

Demo

More results

Average speedup over CBMC ~270x

Implementation

Number of partitions vs. tightness of bound

```
result \(\leq 2.0\)
```


[^0]Number of partitions vs. tightness of bound

Number of partitions vs. tightness of bound

Number of partitions vs. tightness of bound

$$
-\frac{\pi}{2} \quad \frac{\pi}{2}
$$

Number of partitions vs. tightness of bound

Number of partitions vs. tightness of bound

Current and Future Work

- Develop an SMT solver for floating point logic
- Model on the success of propositional SAT:
- Simple abstract domain
- Highly efficient data structures

Current and Future Work

- Develop an SMT solver for floating point logic
- Model on the success of propositional SAT:
- Simple abstract domain
- Highly efficient data structures

Current and Future Work

- Reengineer prototype into a tool for floating point verification
- Significantly improved efficiency
- Generic interface for integrating abstract domains
- Development and generalisation of heuristics and learning strategies

Current and Future Work

- Reengineer prototype into a tool for floating point verification
- Significantly improved efficiency
- Generic interface for integrating abstract domains
- Development and generalisation of heuristics and learning strategies

Rich logic, e.g. FP	Programs
Prop. Logic	Boolean programs
	70

Refining loops with ACDL

- Currently, loops cause imprecision in our analysis
- Analysis may fail to prove safety

```
void foo()
{
    int i = -1;
    while(*)
        i *= -1;
    assert(i != 0);
}
```


Refining loops with ACDL

- Solution:Apply the SAT algorithm to control flow itself
- Make decisions over control-flow (e.g., assume odd number of loop iterations)
- Learning permanently alters control flow
- Resulting analysis can dynamically vary precision from full abstraction to precise case exploration

Maximal efficiency

Conclusion - Part II

Automatic

Scalable
 Theorem proving
 Precise

Fully automatic
Scalability
ACDL
Precision

Additional slides

Lazy and eager SMT

Two approaches to lift SAT to a richer logic \mathcal{L}

Eager approach

Lazy approach

Limits of lazy SMT for FP

Lazy SMT works if the logic can be decomposed into an efficiently solvable theory component and a propositional component.

The approach breaks down if significant communication is necessary between the two.

Due to the non-numeric behaviour in floating-point arithmetic such as rounding, special values, etc., there is no clear decomposition. Therefore, analysis is often performed over the real numbers instead, which may lead to unsound results.

Collected references

References

Axiomatisations of FP

M. Daumas, L. Rideau and L.Théry.A Generic Library for Floating-Point Numbers and Its Application to Exact Computing. TPHOLs 2001
G. Melquiond. Floating-point arithmetic in the Coq system. RNC 2008.
P. Miner and S. Boldo. Float PVS library. http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html
P. Miner. Defining the IEEE-854 Floating-Point Standard in PVS. PVS. Technical Memorandum NASA, Langley Research, 1995
(intel) J. Harrison.A machine-checked theory of floating-point arithmetic.TPHOLs 1999

Specification of FP properties

A.Ayad and C. Marché. Behavioral properties of floating-point programs. Hisseo publications, 2009.
A.Ayad and C. Marché. Multi-prover verification of floating-point programs. www.lri.frr/~marche/ayad I Oijcar-submission.pdf, 2010
S. Boldo and J.C. Filliâtre. Formal verification of floating-point programs.ARITH 2007

References

Applications

(intel) J. Harrison. Floating point verification in HOL light: The exponential function. FMSD, I6(3), 2000
(intel) J. Harrison. Floating-point verification. FM 2005
(intel) J. Harrison. Formal verification of square root algorithms. FMSD, 22(2), 2003
B.Akbarpour,A.T.Abdel-Hamid, S. Tahar, and J. Harrison.Verifying a synthesized implementation of IEEE-754 floating-point exponential function using HOL. CJ 53(4), 2010
(intel) J. O'Leary, X. Zhao, R. Gerth, C.H. Seger. Formally Verifying IEEE Compliance of Floating-Point Hardware
R, Kaivola and M. D.Aagaard. Divider circuit verification with model checking and theorem proving.TPHOLs 2000
M. Cornea-Hasegan. Proving the IEEE correctness of iterative floating-point square root, divide and remainder algorithms. Intel Technology Journal, Q2, 1998

AMD』 T. L.J. Strother Moore and M. Kaufmann. A mechanically checked proof of the correctness of the kernel of the AMD5K86 floating-point division algorithm. IEEE Transactions on Computers, 47(9), 1998.
D. Rusinoff. A mechanically checked proof of IEEE compliance of a register-transfer-level specification of the AMD-K7 floating-

AMD point multiplication, division, and square root instructions. LMS Journal of Computation and Mathematics, I, I998.

S. Boldo, J.-C. Filliâtre and G. Melquiond. Combining Coq and Gappa for Certifying Floating-Point Programs. Calculemus 2009.

References

Floating point abstract domains

A. Chapoutot. Interval slopes as a numerical abstract domain for floating-point variables. SAS 2010
L. Chen, A. Miné and P. Cousot. A sound floating-point polyhedra abstract domain. APLAS 2008
A. Miné. Relational abstract domains for the detection of floating-point run-time errors. ESOP 2004
L. Chen,A. Miné, J.Wang and P. Cousot.An abstract domain to discover interval Linear Equalities.VMCAI 2010
L. Chen, A. Miné, J.Wang and P. Cousot. Interval polyhedra:An Abstract Domain to Infer Interval Linear Relationships. SAS 2009
K. Ghorbal, E. Goubault and S. Putot.The zonotope abstract domain Taylor I. CAV 2009
B. Jeannet, and A. Miné. Apron:A library of numerical abstract domains for static analysis. CAV 2009
D. Monniaux. Compositional analysis of floating-point linear numerical filters. CAV 2005
J. Feret. Static analysis of digital filters. ESOP 2004
F.Alegre, E. Feron and S. Pande. Using ellipsoidal domains to analyze control systems software. CoRR 2009
E. Goubault and S. Putot. Weakly relational domains for floating-point computation analysis. NSAD 2005
E. Goubault. Static analyses of the precision of floating-point operations. SAS 2001

References

Industrial Case Studies

E. Goubault, S. Putot, P. Baufreton, J. Gassino. Static analysis of the accuracy in control systems: principles and experiments. FMICS 2007
D. Delmas, E. Goubault, S. Putot, J. Souyris, K.Tekkal, F. Védrine.Towards an industrial use of FLUCTUAT on safety-critical avionics software. FMICS 2009
J. Souyris and D. Delmas. Experimental assessment of Astrée on safety-critical avionics software. SAFECOMP 2007
J. Souyris. Industrial experience of abstract interpretation-based static analyzers. IFIP 2004
P. Cousot. Proving the absence of run-time errors in safety-critical avionics code. EMSOFT 2007

FP Static Analysers

B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne,A. Miné, D. Monniaux and X. Rival. A static analyzer for large safetycritical software. SIGPLAN 38(5), 2003
P. Cousot, R. Cousot, J. Feret, L. Mauborgne,A. Miné, D. Monniaux and Xavier Rival.The ASTREÉ analyzer. ESOP 2005
E. Goubault, M. Martel and S. Putot.Asserting the precision of floating-point computations: a simple abstract interpreter. ESOP 2002

Related work

Constraint satisfaction

C. Michel, M. Rueher and Y. Lebbah: Solving constraints over floating-point numbers. CP2001
B. Botella, A. Gotlieb and C. Michel: Symbolic execution of floating-point computations. STVR2006

SMT

P. Ruemmer and T.Wahl.An SMT-LIB theory of binary floating-point arithmetic. SMT 2010
A. Brillout, D. Kroening and T.Wahl. Mixed abstractions for floating point arithmetic. FMCAD 2009
R. Brummayer and A. Biere. Boolector:An Efficient SMT Solver for Bit-Vectors and Arrays.TACAS 2009

Incomplete Solvers

S. Boldo, J.-C. Filliâtre and G. Melquiond. Combining Coq and Gappa for Certifying Floating-Point Programs. Calculemus 2009.

[^0]: result ≥-2.0

