A Proportionate Fair Scheduling Rule
with Good Worst-case Performance -

Micah Adler
Dep’t of Computer Science
University of Massachusetts,
Amherst, USA

micah@cs.umass.edu

ABSTRACT

In this paper we consider the following scenario. A set of n
jobs with different threads is being run concurrently. Each
job has an associated weight, which gives the proportion of
processor time that it should be allocated. In a single time
quantum, p threads of (not necessarily distinct) jobs receive
one unit of service, and we require a rule that selects those
p threads, at each quantum. Proportionate fairness means
that over time, each job will have received an amount of
service that is proportional to its weight. That aim cannot
be achieved exactly due to the discretisation of service pro-
vision, but we can still hope to bound the extent to which
service allocation deviates from its target. It is important
that any scheduling rule be simple since the rule will be used
frequently.

We consider a variant of the Surplus Fair Scheduling (SFS)
algorithm of Chandra, Adler, Goyal, and Shenoy. Our vari-
ant, which is appropriate for scenarios where jobs consist of
multiple threads, retains the properties that make SFS em-
pirically attractive but allows the first proof of proportionate
fairness in a multiprocessor context. We show that when the
variant is run, no job lags more than pH(n) — p + 1 steps
below its target number of services, where H(n) is the Har-
monic function. Also, no job is over-supplied by more than
O(1) extra services. This analysis is tight and it also extends
to an adversarial setting, which models some situations in
which the relative weights of jobs change over time.

*Supported by NSF Research Infrastructure Award EIA-
0080119, NSF Faculty Early Career Development Award
CCR-0133664, and the Future and Emerging Technologies
Programme of the EU under contract number IST-1999-
14186 (ALCOM-FT).

SPAA 2003 San Diego, California USA

Petra Berenbrink
Tom Friedetzky
School of Computing Science
Simon Fraser University,
Burnaby, Canada

(petra,tkf)Qcs.sfu.ca

Leslie Ann Goldberg
Paul Goldberg

Mike Paterson
Dep’t of Computer Science
University of Warwick,
Coventry, UK

(leslie,pwg,msp)@dcs.warwick.ac.uk

1. INTRODUCTION

In this paper, we consider the problem of scheduling a set
of n jobs on p processors, where the objective is to schedule
the jobs so that, at every time step in the schedule, each job
has received as close to a proportionate share of scheduling
slots as possible. Assuming that time is discretised into time
steps (or quanta), a scheduler may, in each step, allocate
processors to p out of the n jobs. If job ¢ has a weight w;
associated with it, proportionate fairness requires that after
t steps, the number of times that job ¢ has been assigned a
processor should be close to ¢ - p-w;/ >, w;.

A very strict sense of this kind of fairness is called P-Fairness
[3], which requires that after ¢ steps, job ¢ has been as-
signed to a processor for either |(t-p-wi/), w;)] or [(t-p-
wi/ > ; w;)] time steps. In other words, every job receives
as close to its proportion of service as is possible given in-
tegral service constraints. P-Fairness was first introduced
in [3], and a number of papers have addressed the problem
of designing P-Fair scheduling algorithms that are efficient
and practical [4, 1, 2, 10, 6].

An important application of proportionate scheduling al-
gorithms is an operating system assigning jobs to quanta
on a multi-processor system. There are a number of prac-
tical reasons why existing P-Fair algorithms are not ideally
suited for this task. For example, these algorithms assume
fixed-length quanta (i.e., no job ever blocks in the middle of
a quantum), and they assume that there are no arrivals or
departures of jobs. Furthermore, in [6] it is shown that when
one of the existing P-Fair algorithms is applied to scenarios
with both variable-length quanta and arrivals and depar-
tures, the schedule becomes non-work-conserving: at some
time steps, a processor is left idle even when there are more
jobs in the system than processors. Also, existing P-Fair
algorithms are still somewhat complicated and, in fact, [1]
provides evidence that designing simpler P-Fair algorithms
may be quite difficult. However, for a task such as the as-
signment of jobs to quanta on a multi-processor system, it
is crucial that the scheduling algorithm be extremely fast,
since the scheduler will be called by the operating system
on the expiration of every quantum.

A simple proportionate fair scheduling algorithm is intro-
duced in [5]. This algorithm is called SFS (Surplus Fair

Scheduling), and can be viewed as a generalisation to mul-
tiprocessors of scheduling techniques based on generalised
processor sharing, which have been well studied for use in
uniprocessor systems [9, 7, 11]. In SFS, each job ¢ maintains
a quantity S;, the “start time”. For every round where job
i is run, S; is incremented by wi At the start of each
round, the p jobs are run that have the minimum values of
a; = w;i(S; — v), where v = min; S;. [5] provides empirical
evidence that SFS has good fairness properties. Further-
more, the algorithm is simple, and generalises quite easily
to scenarios with both variable-length quanta, as well as ar-
rivals and departures of jobs. Also, the algorithm is always
work-conserving. However, despite the experimental evid-
ence that SFS performs well, the task of proving that SFS
does in fact always schedule jobs so that each receives close
to a proportionate share of the available processing power
has remained an open problem. We note that a number
of simple schedulers have been introduced for the (easier)
uniprocessor case that have provable guarantees on fairness,
including [9, 12, 8, 13].

Note that SFS is not P-fair. Initially, all values of S; are
zero. Hence, any job ¢ has «; = 0 before it is run for the
first time by a processor. Hence, any job that has not yet
been run will have a higher priority than any job that has
been run, so in the first approximately n/p steps, all jobs
will be run for the first time. However, P-fairness could
require high-weight jobs to be run more than once before
the low-weight jobs are run. For a high-weight job ¢ at time
t = |n/p], its target service allocation ¢-p-w;/ 3", w; could

be more than 2 (if p|n this just requires w; > %Z] wj).

A version of the SFS algorithm has an intuitively appealing
interpretation, which we call the leaky-bucket problem; the
focus of this paper will be on studying this problem. We
think of each job as a bucket of water that leaks. During
each time step, k; units leak from bucket i, and the total
volume of leaked water is p. This is replaced by adding
p refills of unit size into each of the p emptiest buckets.
Initially, all the buckets have A units of water, for some
value of A.

For the correspondence between the leaky-bucket problem
and SF'S, we first redefine the value v of SF'S as the weighted

Cwi S
average of the start times (v = %) instead of the min-
J

imum start time. Note that this new value of v grows at
the same rate as with the original definition from [5], and
the algorithm maintains all of the properties that make it
attractive from a practical point of view. With the new ver-
sion of v, the value «; represents the water level in bucket
7. During a step of SFS, the value of v increases by ﬁ,

which corresponds to a decrease in each «; of k; = %
J Wi

and a total decrease of 3. k; = p. On the other hand, each
job ¢ that gets run has «; increased by 1, giving a total
increase of p.

The key observation that relates the leaky-bucket problem to
fairness guarantees is the following. After ¢ steps, the num-
ber of times that job i is assigned a processor is (tpwi/ > w;)
+ X;(t+1)— A, where X;(t+ 1) denotes the current load of
bucket ¢ and A denotes the average load. (This is formalized

as Observation 1.)

It turns out that the variant of the scheduling protocol de-
scribed above seems hard to analyze. Hence, we here study
a slight modification of the emptiest-bucket-first protocol
described above. Instead of refilling the p emptiest buckets,
at each step we refill the buckets sequentially, where, for
each of the p refills, we choose the current emptiest bucket
and add one unit of water. Thus, the same bucket can be
refilled multiple times. We refer to this process of refilling
buckets as scheduler Sp. We study Sp for two reasons: first,
understanding this variant will hopefully lead to insights
concerning the behaviour of the emptiest-bucket-first sched-
uler. Second, Sy also represents an important scenario from
a practical perspective. In particular, Sy corresponds to the
case where several processors can service (different threads
of) the same job simultaneously. Thus, it can be used when
jobs have multiple threads which must all be executed and
may be executed simultaneously. We here assume that each
job always has at least p available threads.

In this paper, we derive bounds on how much the buckets
deviate from the average load A. These bounds translate
directly to additive bounds on the deviation between the
number of times that a job is serviced in t steps, and the
number of times that it should be serviced.

We also prove analogous results for adversarial systems,
where the sequence k; is no longer fixed, but instead can
vary with time. This corresponds to the situation where the
weights of jobs can vary with time, which might occur as a
result of changes in the relative importance of the individual
jobs, or due to jobs arriving and departing. While this is an
important practical consideration, to the best of our know-
ledge there have not been any previous results proven for
proportionate fair scheduling of jobs with varying weights.

We define the system more formally in Section 1.1 and state
our results in Section 1.2.

1.1 Models, Terminology and Notation

Let B, ..., B, denote a sequence of n buckets, having as-
sociated variables Xi,...,X,, where X; € IR denotes the
amount of material being held in B;. X; will be called the
load of B;.

The system evolves over discrete time steps, so that X; =
Xi(t),t =1,2,3,... . In a single time step, each X; is first
reduced by some amount k; > 0. Assume that the total
depletion is p, i.e., p = Zj k;. We consider algorithms which
restore the total load zj X by adding the p units back, but
are constrained to do so by adding p refills of size 1 to some
of the X;’s. Given a rule for selecting which buckets are
replenished, we consider how much the X;’s may fluctuate
from their original levels.

A system is said to be stable whenever there are upper and
lower bounds on the values that any of the X; can take,
over time. We are interested in proving stability, and fur-
thermore in identifying bounds on the values of the X;. The
main technical challenge is in finding lower bounds. If at
step 1 we have X;(1) = A for ¢ = 1,...,n, we analyse
how large A must be to ensure that no bucket ever be-

comes empty. Let the intermediate state X;(t) denote the
level of the i-th bucket after the depletions in step ¢ but
before the refills. Define the outcome v of the system to be
infs=1,2,..; i=1,...n X;(t), i.e., the greatest lower bound (if it
exists) on any bucket load. Thus a stable system is one that
has a finite outcome, and we are looking for bounds on the
outcome.

FIXED SYSTEMS

In a fixed system, the values k; are constants, and are the
parameters of problem instances. FEach k; is the rate of
depletion for B;. In the t-th step of this basic system, we first
deplete each X;(t) by ki, giving a sequence of intermediate
values X (t) with X[(t) = X;(t) — k; for 1 <4 < n. Then
scheduler Sy selects some buckets in order to refill them
using the following rules. Iteratively for p rounds, Sp finds
an emptiest bucket and adds 1 to its load. This means that
one bucket can be refilled more than once in a time step.

ADVERSARIAL SYSTEMS

In adversarial systems, we no longer have a fixed sequence of
k; but assume the presence of an adversary. At each step the
adversary is free to choose a sequence k1(t),. .., kn(t) (where
t again denotes the time parameter), subject to k;(t) > 0,
and Y ki(t) = p. Hence the depletion rate of a bucket can
differ from round to round. These systems turn out to be
useful to establish bounds on worst-case behaviour.

1.2 Summary of Results

We start with an observation relating the leaky-bucket prob-
lem to the performance of the modified SFS algorithm.

OBSERVATION 1. Consider any fized system and sched-
uler. Aftert steps, the number of times that job i is assigned
a processor is (tpwi/ -, w;) + Xi(t +1) — A.

PROOF. X;(t) is equal to A plus the number of times
that bucket 7 is refilled minus tk;. The number of refills is
equal to the number of services for job i. Also, recall that

ki :pwi/zj wy. D

Theorem 1 of Section 2 shows that the outcome ¥ of a fixed
system with scheduler Sy is at least A—(H (n)+p—1), where
H(n) is the harmonic function, H(n) = 1+3+3+...+=. In
fact we prove something stronger. The theorem states that
(i) There is an adversary Ao which achieves an outcome of
at most A — (H(n) + p — 1) against any scheduler S that
refills buckets in p units of size 1 at each step. Also, (ii)
Scheduler Sy achieves an outcome of at least A—(H (n)+p—
1) against any adversary A. Thus, scheduler Sy is optimal
in the adversarial setting. Theorem 1 implies that in any
fixed system, the outcome 1) is at least A — (H(n) + p —
1). This implies that no job lags more than H(n) +p — 1
steps below the target number of services. In Section 3 we
show that Theorem 1 is tight. In particular, Theorem 2
states that for all 7 > 0 there are constant depletion rates
ki, k2, ..., ky, such that the minimum load of any bucket is
less than A —(1—7)(H (n)+p—1) when scheduler Sy is run.
The construction uses a sequence of k;’s that converges to 0
very quickly, suggesting that scheduler Sp may do better in

cases in which the relative values of the k;’s are constrained.
Theorem 3 identifies some cases in which this is true. In
particular, if each k; is a multiple of the smallest depletion
rate kmin then scheduler Sy achieves an outcome of at least
A — pkmax/kmin. Note that for scheduler Sy there is an easy
upper bound of A+ 1 on the maximum load of any bucket.
This means that no job gets more than 1 extra service at
any point.

2. ADVERSARIAL SYSTEMS

In this section we restrict our attention to adversarial sys-
tems, as introduced in Section 1.1. In contrast to fixed sys-
tems, we may assume without loss of generality that the
states (sequences of X; values) are sorted in non-decreasing
order, i.e., X (t) = (X1(t), -+, Xn(t)) with X, (¢) < Xa(t) <

- < Xn(t). This means that we “re-arrange” our buck-
ets at the end of every step. We omit the time-parameter ¢
wherever possible (in this case X = (X1,...,Xn)). We use
the following definitions. For 1 < ¢ < n, H(¢) = zle 1/iis
the harmonic function, and let

1 £
P(X) = ZZXi
VilX) = PuX)—H()
V(X) = minVy(X)
LX) = min{l: V(X)=V(X)}.

P;(X) is the average of the ¢ lowest buckets; V¢(X) meas-
ures the outcome achievable by an adversary restricted to
Bi,...,Bg; V(X) is the minimum value of the target func-
tion for all prefixes; finally £(X) is the length of the shortest
prefix that actually takes this minimum.

The following technical lemma is useful later on.

LEMMA 1. For any state X, j € {1,...,n — 1}, and any
a>0,

Pii(X)—a-H(j+1) > Pi(X) —a-H(j)
= X >Pi(X)+a

ProOF. Consider the following sequence of equivalent in-
equalities.

Pra(X) —a-H(j+1) > P(X)-a-H()

1 L . 1 J .
?ZX;C—OC-H(]—&—I) > —,ZXk—a-H(])
J k=1 J =1
Xj+1 « X1-|—-|—XJ
- — = > -
i+l j+1 JG+1)
X1+ X
Xjp1—a > 1+j+ - =Pi(X)
O

COROLLARY 1. For any state X, andVj € {1,...,n—1},

Vit (X) > V(X)) = Xjp1 > FB(X)+ 1

PROOF. In Lemma 1, let a = 1 (recall that V;(X) =
Pj(X) = H(j))- 0

THEOREM 1. Let S be an arbitrary scheduler that refills
buckets in p units of size 1 at each step. Let So be the sched-
uler defined in Section 1.1.

1. There is an adversary Ao which achieves an outcome
of at most A— (H(n)+p—1) against any scheduler S.

2. The scheduler So achieves an outcome of at least
A— (H(n)+p—1) against any adversary A.

REMARK 1. Regardless of what scheduler is used, adversary

Ao manages to get the minimum X;(t) at least as far as
(H(n) + p — 1) below the starting line, and irrespective of
any strategy used by an adversary, scheduler So will keep
the all-time minimum no lower than that level. Hence, in
the presence of a “worst-case” mechanism for depleting the
buckets, scheduler Sy is as good as any other scheduler that
must refill using p units of equal size.

ProOF. We put A = 0, allow bucket loads to become
negative, and establish —(H(n) + p — 1) as the bound on
how negatively large any X; need become. Hence, X (1) =
0,...,0).

PROOF OF (1)

To define Ag, we need to define a function that maps any
state to a sequence of depletions. Then we show that, if
Ao uses that function to choose depletions, then after fi-
nitely many steps the lowest bucket load becomes at most
—(H(n) +p—1). Note first that if the minimum load be-
comes less than or equal to —(H(n) — 1) after the sched-
uler has refilled, then the adversary’s choice of depletions is
simply to deplete the minimum bucket by p. Next we define
the function used by the adversary when the minimum load
is greater than —(H (n) — 1).

For a state X where the minimum load is no more than
—(H(n) —1) (so by the above, the adversary can attain the
desired outcome), we have V(X) < V1 (X) < —H(n).

Note that for all states X, V(X) < V,,(X) = —H(n). We
have defined Ao in the case that £(X) = 1; next we define
actions that cause £(X(t)) to decrease over time.

If £(X) > 1, Ag’s strategy proceeds in stages. At the start
of a stage, suppose £(X) = j > 1, so V(X) = P;j(X) —
H(j). At the end of the stage, some X is reached with
either V(X) < V(X) — 1/4, or with V(X) = V(X) and
£(X) < £(X). Tt is sufficient therefore to show that the end
of the stage can be reached and satisfies these conditions.
This is sufficient because either V(X (t)) decreases without
limit, or else we recover the case ¢(X(t)) = 1 for some ¢,

where V(X (t)) < V(X(1)), and we are done.

Ao’s strategy during the stage is to decrement only X; for
1 < i < j, reducing one or more to a value which differs
from P;j(X)—1/j by an integer.

If, at any time during this stage, S refills some Xy, k > j,
then P; is reduced by at least 1/, reaching a state X where
V(X) < Vi(X) < Pi(X) —1/j = H(j) < V(X) = 1/5.

Otherwise, since S can only refill in integer quantities, this
strategy must eventually succeed in reaching a state X where
P;(X) = Pj(X) and each of X1, ..., X; differs from P;(X)—
1/j by an integer. (To see this, note that the adversary
is trying to remove some fractional amount from each X;
and the scheduler may only replenish buckets in integer

amounts.) The largest of these quantities, X;, must satisfy

X; > Pj(X)+1—1/j. Hence
X+ +X)-Xj
j—1
3P (X) = Py(X) + (5 — 1)
=1
Pi(X) — H(j) = V(X),

V(X) < Vj,l()‘():(—H(-1)

—H@G-1)

and so £(X) < £(X).

PROOF OF (2)

Suppose for a contradiction that there exists an adversary
A which achieves an outcome of less than —(H(n) +p — 1)
against Sp. This means that after ¢ time steps for some
finite ¢, state X (t) satisfies X1(t) < —(H(n) — 1) (this is
because A would deplete the smallest bucket by p in order
to minimise the outcome), ie. Pi(X(t)) < —(H(n) — 1),
hence V1 (X (¢)) < —H(n). Observe that, by definition, for
all states X, V,(X) = —H(n) since the overall average is
always 0. Initially, V;(X(1)) > Vj41(X(1)) for all j < n
since we assume all buckets to start with load 0, i.e., the
harmonic numbers are all that count. Finally, V(X (t)) <
—H(n) = Vo (X(1)).

Consider the first state X at which V;(X) < —H(n) for
some j. From our observation above we have V,(X) =
—H(n), so we can choose the smallest j so that we also have
V;(X) < Vj41(X). Suppose XP*¥ is the previous state, and
we will show that V;(XP™") < —H(n), contradicting our as-
sumption that X was the first state with the given property
(which is not a property of X(1)). Since V;(X) < Vj+1(X)
we have by Corollary 1

XjJrl > PJ(X) +1= w + 1.

Now observe that Sy cannot have just refilled any X, for k >
4, just prior to reaching state X. Since those buckets have a
load more than 1 above the average of the lowest j buckets, it
follows that the lowest bucket has a load less than X, — 1 for
k > j. So would certainly have preferred one of X1,..., X,
which would be lower prior to a refill of size 1. If Y1,...,Y;
denote the loads of the buckets corresponding to Xi, ..., X;
in state XP'V (these are not necessarily X7, ... 7XJ‘.)re")7
thenY1+---4Y; < Xi+4-- ‘+Xj, since Sp added p to these
buckets and A previously subtracted at most p. Hence

Nt A Y gy
j

So V;(XP*v) < V;(X) < —H(n), contradicting the choice

of X. O

P] (Xprev)

3. FIXED SYSTEMS

In Section 2 we showed that scheduler Sy keeps the all-time
minimum to A — (H(n) + p — 1) against an adversary that
may select the depletion rates in every step. Of course, this
upper bound on the initial bucket load holds also in the case
of our fixed system. This gives the following corollary.

COROLLARY 2. If A > H(n)+p—1, then loads X;(t) will
always be non-negative, for any leakage rates ki,..., kn.

The next theorem presents a construction of leakage rates
that show that the above condition A > H(n)+p—1is neces-
sary as well as sufficient. However it uses a very large ratio
between highest and lowest depletion rates. This motivates
the restriction to rational depletion rates, where bounds are
obtained in terms of the above ratio.

In Theorem 3 we will show an alternative upper bound on
the initial bucket load A needed to maintain positive loads.
This gives better results in the case that the k;’s are all small
multiples of a common value.

3.1 Arbitrary Real-valued Depletion Rates

In the following we show that in the worst case (worst case
over all choices of k;’s summing to p) a bucket may be de-
pleted by up to H(n) + p — 1. An alternative statement is
that, assuming all buckets are initially set to the same level,
they must start with a level of A = H(n)+p — 1 in order to
avoid becoming empty.

The worst-case behaviour we obtain for constant depletion
rates essentially matches the upper bound on worst-case be-
haviour for the adversarial case. More precisely, we show
how to construct sets of depletion rates that lead to a min-
imum bucket value that is arbitrarily close to the A—(H (n)+
p — 1) obtained in the adversarial case.

THEOREM 2. For all T > 0 there exist constant depletion
rates k1, ka2, ..., kn such that the minimum load of any bucket
is less than A — (1 —7)(H(n)+p—1).

In the following we assume A = 0 and ask how negatively
large can the value of any bucket become. Thus we show
that some bucket may be depleted to a level arbitrarily close
to —(H(n) 4+ p — 1), for suitable choice of the k;.

The general idea of the proof is to have k1 > ka > ... > ky.
We use an inductive argument that for each 4, the first ¢
buckets B, ..., B; attain a lowest level of about —(H () +
p—1) (assuming all start at 0) in time inversely proportional
to k;. Moreover, there is a cyclic behaviour which guarantees
that the loads Xi,...,X; of the first ¢ buckets repeatedly
return to become approximately equal, after a number of
steps inversely proportional to k;.

DEFINITION 1. Define an n-bucket surplus system to be
a set of buckets Bi,..., By, with associated depletion rates
ki,...,kn which sum to a quantity at most p. Define the
surplus of an n-bucket surplus system with depletion rates
ki,....kn tobep— (k1 + ...+ kn).

Thus, over time the total load of an n-bucket surplus system
increases whenever the total depletion rate is strictly less
than p, and in particular, increases by the surplus at each
step.

Notation: Let ¢p(k1,...,k;) denote the lowest level attain-
able by any bucket in the i-bucket surplus system that has
those depletion rates. Let ¥, (i) be inf (g, .. k) Yp(k1, ..., ki).

Theorem 2 states that ¢,(n) = —(H(n) +p —1).

DEFINITION 2. Let S be an i-bucket surplus system. For
r=0,...,p—1, an r-th intermediate state is the sequence
of bucket loads obtained after the first r refills. Let p be the
smallest depletion rate of any bucket in S. We say that S
has tolerance 7 if the following holds. In every sequence of

4dp/u steps:

1. there is a step when all buckets are within T of their
average;

2. there is a step when buckets Bi,...,Bi—1 are within T
of their own average, and bucket B; (assumed to have
the smallest depletion rate) is at least 1 — 7 above the
average of the others;

8. there is a intermediate state in which the smallest
bucket load is at least (1 — 7)(H (i) +p — 1) below the
average value.

A system with small tolerance is one that is close to achiev-
ing the claimed worst-case behaviour (and also achieves it
repeatedly, over a cycle whose length is inversely propor-
tional to the smallest depletion rate in the system). Tol-
erance is a measure of how much a system may fall short
of being worst-case. We conjecture that there is no system
with zero tolerance; here we show how to construct systems
with arbitrarily small tolerance.

LEMMA 2. Suppose that § > &' > 0. Any i-bucket surplus
system S with surplus § can be converted into an i-bucket
surplus system S’ with surplus &', and ¥, (S') < ¥p(S). If S
has tolerance T then S’ has tolerance T.

PROOF. To obtain S’ from S, just increase the depletion
rates of buckets in S by (6§ — §’)/i. Then S’ behaves like
S (for all ¢, at step ¢t the same buckets are refilled by the
same amounts), the only difference being that X;(t) is lower
by t(§ — &) /i, for all buckets B; and all t. (In cases where
two or more buckets may be joint minimal, any sequence of
tie-breaks for S has a corresponding sequence of tie-breaks
for S’, and vice versa.)

The relative values of bucket loads are unchanged by the
operation (they are all shifted down by the same amount),
and tolerance is a measure of relative values of buckets (in
particular the differences between loads). O

LEMMA 3. For all positive integers © and T > 0, there is
an i-bucket surplus system S with some surplus § > 0 having
tolerance T (using scheduler So to refill buckets).

For our purposes the relevant fact that follows from the tol-
erance of S is the lower bound attained on the difference
between average and minimum levels. The additional in-
formation about the behaviour of the system is needed for
the inductive step. The positive surplus can be set to zero
by using Lemma 2 (with §' = 0) to obtain a standard zero-
surplus system where the average load is always 0, and hence
the minimum level reaches —(1 — 7)(H (i) + p — 1).

PrROOF. We proceed by induction on ¢, the number of
buckets in a system. Suppose we have some value 7 for which
we want to construct an i-bucket system with tolerance 7.
We may assume in the following that 7 is a small quant-
ity, since a successful construction with a small tolerance
constitutes a successful construction with larger tolerance.

We can assume inductively that we have an (i — 1)-bucket
surplus system S’ with tolerance 7/10p, and surplus 6’ > 0.
Let k1,...,ki—1 be the depletion rates of the buckets in S’,
with k1 > ko > ... > ki—1.

We construct an i-bucket system S as follows.

e The first i — 1 buckets are given depletion rates
ki,koy ... kio1.

e Put k; = min{d'/2, 7ki—1/20p}.

e Re-scale the surplus § of the resulting system to be
at most 7k;/9ip, by using the method of Lemma 2
applied to ki,...,ki—1 but not k;. (So ki,...,ki—1
increase slightly.)

We argue that S constructed in this way has tolerance
7 and positive surplus. Note that in the expression
min{é’/2, 7k;—1/20p}, the first argument &' /2 ensures that
we do not use up more than half the remaining surplus avail-
able, since the total depletion rate is supposed to be less than
p. The third step ensures that the surplus is small enough
that by the time we observe a large difference between the
average and smallest bucket values, we still have avg;(X;)
(the average of the X;’s) very small.

The initial state of S satisfies Condition 1 of the definition of
tolerance. We first show that if we start at any state where
the values satisfy Condition 1, then after about - L steps, we
fulfill Condition 2 of the claimed tolerance 7. Thus all X

are approximately equal at a (p — 1)-st intermediate state,
and then B; is refilled. After that, we verify that the system
satisfies Condition 3 after fewer than k% further steps. Then

we show that after about —_ steps the system returns to a

state satisfying Condition 1 ‘Where all X, are approximately
equal.

B; has the slowest depletion rate, and we consider the se-
quence of steps prior to B; being refilled for the first time.
In each step, X; decreases by k; and avg;(X;) increases by
d/i where § is the surplus. For system S with surplus d, at

an r-th intermediate state Y after ¢ steps,

_tki_w_i_T

Yi — avg;(Yj)

>
> _t,ﬁ_w_r

For B; to be refilled here we have as a necessary condition,
Y; — avg;(Yj) <0, and from the second of the above pair of
inequalities we can infer the necessary condition

02 (55 o)/ (et 3).

For r < p — 1, we would need

2 2
i T i 8

ki+ 2 >ki+% ” Bik:’

since we have chosen 0 < 7k;/9ip < ik;/9 and T sufficiently
small.

We now show that in fact B; is refilled when » = p — 1,
by using the inductive hypothesis to establish a sufficient
condition for B; to be refilled.

Put r = p—1 and thent > (ﬁ—l—%—l—r)/(ki—l—%) is a sufficient
condition to have Y; — avg;(Yj) < —7/10p, at the (p — 1)-st
intermediate step. By the inductive hypothesis, the elements
of 8’ (i.e., Bi,...,Bi_1) are within L of their average at

a (p — 1)-st intermediate state, durlng every 4/k;—1 steps.
Suppose X; becomes as low as T/lOp below avg;(X;). Within
the next 4/k;—1 steps we reach a (p—1)-st intermediate state
Y where

o Y, — anj:L“,i—l(Yj) < ﬁ’ and
e for all] < 1, Y is within T/lOp of avgi=1,..., I(Yk)
> ank_l,.“,l(Yk)'

Hence Y; is lowest so B; is refilled. If t = [(5; + 1+7)/ki+
— l then ¢ < 1011@

condltlon for B; to be reﬁlled at a (p — 1)-st intermediate
step before we encounter a necessary condition for B; to
be refilled at an r-th intermediate step, for any r < p — 1.
During the sequence of 4/k1 1 steps Xi — avgij=1...,i-1(Xj)
decreased by ki (ki+ S) < 10 using eXpress1ons we chose

+ k , and we encounter a sufficient

for 6 and k; in terms of szl ‘We conclude that when B; is
refilled for the first time,
1o 3T

10p°
Observe also that at this point we fulfill Condition 2 for S
to have tolerance 7, because all other buckets are within
7 of their own average and X; is more than 1 — 7 above.
We next argue that we do not have to wait much further
until Condition 3 is fulfilled (the large gap between smallest
bucket and the average).

X; —avgi=1..i-1(Xj) >

After B; is refilled for the first time, the inductive hypothesis

states that within an additional 4p/k;—1 steps,

X1}
> (1- ip><H<z'—1>+p—1>

anjzl,...,ifl(Xj) — min{Xl, e

- 10

The general idea now is to show a lower bound of approx-
imately + on avgj=1,...i(X;) —avgj=1,....i-1(Xj), and derive a
difference of at least (1 —7)(H (i) +p— 1) between min;(X;)
and avgj=1,...i(X;).

After the at most 4/k;_1 steps that it takes to observe the
difference of (1 — 13-)(H(i — 1) +p — 1) noted above, X; is
still too far above average for B; to be refilled again, and we
have

3r 4 ki
X —avg (X)) >1— —= — (i)
avei(Xy) 2 1= 50 = = (ki + g
T
- Xifavgj(Xj)Zlfg

using the expression we chose for k; in terms of k;—;. Fur-
thermore, at the point when one of the first ¢ — 1 buckets
falls short of their own average by (1— ;) (H(i—1)+p—1)
we have:

avgi—1..i(Xj) — avgj=1...i-1(Xj)

> %(lower bound on (X; — anj:I.“i—l(Xj))>
g

Hence some bucket falls short of the overall average by at
least

(kﬁ) (H(ifl)erfl) +% (17%) > (1—7)(H (i) +p—1)

as required.

We have shown how, starting from an initial state where
all values are approximately equal (such as the standard all-
zeros initial state), we find states satisfying Condition 2 then
Condition 3. The argument does not require the average to
be zero, it can be any real number (as needed in subsequent
cycles of the system, where the average will have increased
due to the surplus). Note however that we need to use a
surplus that is small in comparison with the depletion rates.

Finally, to see that the system also returns to a state
satisfying the first condition, the idea is to wait until
X; — avgj=1,...i(X;) is in the range [t — +,7/2 — 1]. When
X; — avgj=1,...,i(X;) is in this range, X; cannot be refilled,
but is less than 7 above average at a (p — 1)-st intermediate
step. While X; — avgj=1,...,i(Xj) is in this range, at least
(1/2)/k; steps elapse. Noting that (7/2)/k; > 4/ki—1, the
inductive hypothesis lets us claim that, during this time,
buckets Bi,...,B;—1 reach a (p — 1)-st intermediate state
that satisfies the condition with tolerance 7/10p, and, at
that point, all the buckets By, ..., B; are in an intermediate
state that satisfies the first condition with tolerance 7. [

Theorem 2 follows from Lemma 3, using the tolerance 7 in
Lemma 3 as the 7 in the statement of Theorem 2.

3.2 Rational Depletion Rates

In this section we will show that the system behaves much
more nicely if the depletion rates are “nice”, for example if
they are multiples of each other. To state the results we
will assume in the following that all the k;’s are positive
rationals. As before we have ki + ... + k, = p, but now
we assume, without loss of generality, that k; = pm;/M for
1 <35 < n, where M = Zj m; and the greatest common
divisor of all of the m;’s is 1. All the results so far stated in
this paper also hold in this setting.

For all t > 0 we have). X;(t) = nA and >, Xj(t) =
nA — p. Furthermore, note that no bucket before its refill
ever has a load larger than A — 1/n, hence A —1/n+ 1 is
an upper bound on the maximum bucket load.

In the following we will show that the system is periodic.
This result will be used below to give a lower bound for the
outcome achieved by scheduler Sp.

LEMMA 4. For rational values, k; = pm; /M, 1< j <mn,
the system returns to its initial state after M steps.

PROOF. During this period of M steps, any bucket B; is
refilled at most pm; times, because otherwise it would have a
load of at least A—k; M+ (pmi+1) = A+1. This contradicts
the observation above that no bucket will ever have a load
exceeding A —1/n+1 < A+1. Since 3, (pm;) = pM, each
bucket B; must be filled ezactly pm; = k; M times, and so
the system returns to its initial state. O

THEOREM 3. Let k1 > ko > ... > k, be the set of deple-
tion rates, where k; = pm; /M, for 1 < j < n, the gcd of the
(integer) m;’s is 1, and 37, m; = M.

1. Scheduler Sy achieves an outcome of at least A —pm;.

2. If each kj is a multiple of ky, then scheduler So achieves
an outcome of at least A — pk1/kn.

PROOF. According to Lemma 4, the system returns to its
initial state after M steps, and so also at any multiple of
M steps. Hence, the deviation of B;’s load from the initial
value is bounded above by k;M < k1M = pm;.

If each k; is a multiple of k;,, then we have m, = 1 and the
result follows, since m1/my = ki /kn. O

4. CONCLUSIONS AND FURTHER WORK

We think the major open question is to prove similar res-
ults for the non-threaded version of SFS where we simply
increase the p smallest buckets by one, without allowing one
bucket to be increased twice per step. Unfortunately, this
scheduling rule is much harder to analyze. The main prob-
lem seems to be that the nice property of Sp does not hold
any longer: no bucket that is refilled ever has a load larger
than A —1/n.

Our bounds on deviation from fairness do not depend on
t (the elapsed number of time quanta), and it may be that

the largest deviation possible grows very slowly as a function
of ¢, and that as a result better bounds could be found in
terms of £. Note that quanta are typically on the order of
milliseconds (sometimes even smaller), and jobs can run on
the order of days. Hence t might be somewhere around 10°,
for example. For this range of t we may actually be able to
get better worst-case behaviour; at least it is not ruled out
by our construction of Theorem 2. An alternative approach
is to obtain better bounds in terms of the ratio between
largest and smallest values of the depletion rates, which in
Theorem 2 is more than exponential in n.

We believe that the result for the adversarial model in which
the k;’s may be chosen by an adversary, should be adaptable
to a situation where the number of buckets is allowed to vary.
Given an upper bound N on the number of buckets that may
be present, then for a step with n < N buckets present, we
could have N — n buckets with k; = 0. It seems likely that
the results showing the buckets do not fall too far below
average could be made to apply to this case. Note that the
result is not immediate, since the buckets with k; = 0 could
be refilled.

5. REFERENCES

[1] J. Anderson and A. Srinivasan. A new look at pfair
priorities. Technical Report TR00-023, Dept of
Computer Science, Univ. of North Carolina, 2000.

[2] J. Anderson and A. Srinivasan. Early-release fair
scheduling. In Proceedings of the 12th Euromicro
Conference on Real-Time Systems, Stockholm,
Sweden, pages 35-43, 2000.

[3] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A.
Varvel. Proportionate progress: A notion of fairness in
resource allocation. Algorithmica, 15:600-625, 1996.

[4] S. Baruah, J. Gehrke, and C. G. Plaxton. Fast
scheduling of periodic tasks on multiple resources. In
Proceedings of the Ninth International Parallel
Processing Symposium, Santa Barbara, CA, pages
280288, 1996.

[5] A. Chandra, M. Adler, P. Goyal, and P. Shenoy.
Surplus fair scheduling: A proportional-share cpu
scheduling algorithm for symmetric multiprocessors.
In Proceedings of the Fourth Symposium on Operating
System Design and Implementation (OSDI 2000), San
Diego, CA, pages 45-58, 2000.

[6] A. Chandra, M. Adler, and P. Shenoy. Deadline fair
scheduling: Bridging the theory and practice of
proportionate-fair scheduling in multiprocessor
servers. In Proceedings of the Seventh IEEE Real-time
Technology and Applications Symposium (RTAS
2001), Taipei, Taiwan, pages 3—14, 2001.

[7] K. Duda and D. Cheriton. Borrowed virtual time
(bvt) scheduling: Supporting latency-sensitive threads
in a general-purpose scheduler. In Proceedings of the
17th ACM Symposium on Operating Systems
Principles (SOSP’99), Kiawah Island Resort, SC,
pages 261-276, 1999.

[8] S.J. Golestani. A self-clocked fair queueing scheme for
broadband applications. In Proceedings of IEEE
INFOCOM 1994, Toronto, Canada, pages 636—646,
1994.

[9] P. Goyal, X. Guo, and H.M. Vin. A hierarchical cpu
scheduler for multimedia operating systems. In
Proceedings of the Second Symposium on Operating
System Design and Implementation (OSDI’96),
Seattle, WA, pages 107-121, 1996.

[10] M. Moir and S Ramamurthy. Pfair scheduling of fixed
and migrating periodic tasks on multiple resources. In
Proceedings of the 20th Annual IEEE Real-Time
Systems Symposium, Phoeniz, AZ, pages 294-303,
1999.

[11] J. Nieh and M S. Lam. The design, implementation
and evaluation of smart: A scheduler for multimedia
applications. In Proceedings of the 16th ACM
Symposium on Operating Systems Principles
(SOSP’97), Saint-Malo, France, pages 184-197, 1997.

[12] A. K. Parekh and R. G. Gallager. A generalized
processor sharing approach to flow control in
integrated services networks - The single node case.
IEEE/ACM Transactions on Networking,
1(3):344-357, 1993.

[13] C. A. Waldspurger and W. E. Weihl Stride scheduling;:
Deterministic proportional-share resource
management. Technical report MIT/LCS/TM-528,
1995.

