
The Complexity of Gene Placement

Leslie Ann Goldberg1 Paul W. Goldberg1 Mike Paterson1
Pavel Pevzner2 Süleyman Cenk S. ahinalp1;3 Elizabeth Sweedyk4

Abstract

We focus on algorithmic problems related to deriv-

ing gene locations on DNA sequences of closely re-

lated species by using comparative mapping data.

Conventional genetic mapping generates intervals

on the genetic sequence of given species for potential

gene positions. The simultaneous analysis of gene

intervals in related species, e.g., man and mouse,

may eliminate some of the ambiguities and lead to

better estimates of gene locations. We address the

problem of eliminating the ambiguities in gene or-

ders by means of minimizing the number of con-

served (synteny) regions among the species. We first

show that the gene ordering problem is hard: there

is no polynomial-time approximation scheme unlessP = NP, even under the restrictions that: (1) the

order of genes in one of the species is known, or

(2) at most two intervals overlap at any location on

the map of any of the species. Then we provide

two polynomial-time algorithms under restriction (1)

above; the first approximates the problem within a

factor of 3, and the second exactly solves the prob-

lem under the additional restriction that (3) no more

than O((logn)=(log logn)) intervals overlap at a loca-

tion on the map of any of the species. We also prove

the tractability of the general problem when there is

a single conserved region.

1 Introduction

Let G1; : : : ; Gn be a set of known genes, which oc-

cur in the DNA of two distinct species, e.g., man and

mouse. For each species, we are given partial infor-

mation about the sequence in which the genes occur

1Dept. of Computer Science, Univ. of Warwick, Coventry, CV4

7AL, UK; fleslie,pwg,msp,cenkg@dcs.warwick.ac.uk.
Partially supported by ESPRIT Projects ALCOM-IT (Project

20244) and RAND-II (Project 21726), by EPSRC grant

GR/L60982, and by NATO grant CRG-972175.
2Department of Computer Science, U.S.C., CA, USA.
3Center for BioInformatics, University of Pennsylvania,

PA 19104, USA.
4DIMACS, Rutgers University, NJ, USA.

along a strand of its DNA. The goal is to construct,

for each species, a sequence in which the genes occur

(i.e., a permutation of G1; : : : ; Gn) which is consis-

tent with the partial information and minimizes the

number of conserved (synteny) regions between the

permutations assigned to the two species. A “con-

served region” between two permutations �1 and �2
of G1; : : : ; Gn is defined to be a maximal substring of�1 which either occurs in �2, or occurs in reverse or-

der in �2.
For example, if �1 = G1G5G2G3G7G8G4G6 and�2 = G1G2G3G5G6G4G8G7 then the maximal con-

served regions between �1 and �2 are [G1], [G5],[G2G3], and [G7G8G4G6]. Thus, there are four con-

served regions between �1 and �2.
For each species, the partial information that is

available is essentially, for each gene Gi, an inter-

val along the DNA of the species in which Gi may

occur. The biological motivation for this assump-

tion is given in Section 1.1. Formally, the partial in-

formation consists of a partition of the set of genesfG1; : : : ; Gng into j “opening sets” O1; : : : ; Oj and an-

other partition of fG1; : : : ; Gng into j “closing sets”C1; : : : ; Cj . These partitions have the property that,

for every r 2 f1; : : : ; jg, Cr � O1 [� � � [Or. (The in-

terval for every gene is “opened” before it is “closed”.)

The partial information that the opening and closing

sets provide is as follows: If a gene Gh is in opening

set Oa and in closing set Cb (where, by definition,a � b) then gene Gh must be placed in the sequence

after all of the genes in C1 [� � � [Ca�1 and before all

of the genes in Ob+1 [� � � [Oj .
In another version of the gene placement prob-

lem, which we come back to later in the paper, the

partial information for each species assigns each

gene to an interval along the real line. The idea is

that each gene must be placed somewhere in its in-

terval. Once the genes are placed, the real line is for-

gotten, and only the sequence of genes remains. This

version of the problem is equivalent to our version

because the intervals on the real line can be coded

up as opening sets and closing sets.

2

Without loss of generality, we can assume that

every opening set Or and every closing set Cr is

non-empty. (If Cr is empty, then it can be deleted

and Or and Or+1 can be merged without changing

the set of sequences which the partial information

allows. Similarly, if Or is empty, then it can be

deleted and Cr�1 and Cr can be merged.) Therefore,

we can assume j � n. We define Xr = fO1 [� � � [Org \ fCr [� � � [Cjg. Thus, Xr is the set

of all genes which could possibly be placed in the

sequence after all of the genes in C1 [� � � [Cr�1
and before all of the genes in Or+1 [� � � [Oj . We

define the depth of the species (really, the depth of

the partial information provided for the species) to

be maxr jXrj and we define the depth of the problem

instance to be the minimum of the depths of the

two species. Thus, a depth-1 species is a species for

which the partial information completely specifies

the sequence of genes. (By definition, Xr contains

both Or and Cr, so since jXrj = 1, Or and Cr contain

the same single gene.)

The depth-d gene placement problem is the prob-

lem of minimizing the number of conserved regions,

given a depth-d problem instance. A polynomial-

time approximation scheme (PTAS) for the depth-d
gene placement problem is an algorithm that takes

the problem instance and a parameter � and outputs

a gene placement such that the ratio between the

number of conserved regions in the output and the

optimal number of conserved regions is at most 1+ �.
The running time of the algorithm may depend ar-

bitrarily on �, but must be bounded from above by

a polynomial in the size of the problem instance. In

this paper, we prove the following results about the

depth-1 gene placement problem.

THEOREM 1.1. There is no polynomial-time approx-

imation scheme for the depth-1 gene placement prob-

lem unless P = NP.

THEOREM 1.2. We give a polynomial-time algorithm

which approximates the depth-1 gene placement

problem within a factor of 3.

THEOREM 1.3. We give a polynomial-time algorithm

which exactly solves the special case of the depth-1
gene placement problem in which the depth of one

species is 1 and the depth of the other species isO((logn)=(log logn)).
Next, we show that the depth-2 gene placement

problem is much harder than the depth-1 gene place-

ment problem. (Compare the following theorem to

Theorem 1.3.)

THEOREM 1.4. There is no polynomial-time approx-

imation scheme for the gene placement problem with

the restriction that both species have depth at most 2
unless P = NP.

Finally, we show that some questions about

the arbitrary-depth gene placement problem are

tractable.

THEOREM 1.5. We give a polynomial-time algorithm

which determines whether the solution to the (arbi-

trary depth) gene placement problem is 1 (that is,

whether it is possible to have only one conserved re-

gion).

1.1 Biological Motivation

Waardenburg’s syndrome is an inherited genetic

disorder resulting in hearing loss and pigmentary

dysplasia. Ten years ago genetic mapping and some

luck narrowed the search for the Waardenburg’s syn-

drome gene to human chromosome 2 but exact local-

ization remained unclear. There was another clue

that directed attention to chromosome 2. For a long

time, breeders scrutinized mice for mutant charac-

teristics and one of these, designated splotch, with

patches of white spots has been considered a possi-

ble homolog to Waardenburg’s syndrome. Through

breeding (which is easier in mice than in humans)

the splotch gene was mapped to mouse chromosome

2. As gene mapping proceeded it became clear that

the position of the Waardenburg’s syndrome gene

on human chromosome 2 can be derived through

human-mouse comparative genetic maps. Compar-

ative genetic maps show the groups of genes that

are linked to one another in both species. Therefore,

mapping a gene in mice immediately gives a clue for

a location of the homologous human gene.

However, the difficulty is that the conventional

genetic mapping generates intervals for potential

gene positions rather than gene coordinates. These

intervals may differ in size, overlap and even be in

conflict with each other, thus leading to ambiguities

in assigning gene orders. The simultaneous analysis

of gene intervals in related species (e.g., men and

mice) may eliminate some of the ambiguities and

lead to better estimates of gene locations.

Although rearrangements of gene orders

have been extensively studied in the com-

puter science literature (see, for example,

[1], [2], [3], [4], [5], [7], [8], [12]) the problem of

generating gene orders from experimental data

remained largely unexplored. In particular, Han-

nenhalli and Pevzner [5] remarked that deriving

gene orders is a non-trivial task since the map

3

accuracy in human is significantly lower than in

mouse, and for many closely located genes in human

the relative ordering is still unknown. This problem

forced Hannenhalli and Pevzner [5] to make a

number of arbitrary decisions while deriving gene

orders in human and mouse.

Gene mapping usually estimates the distance

between two markers by a statistical procedure. The

confidence interval for this distance may vary, de-

pending on many factors like the amount of avail-

able genotyping data. Biologists attempt to merge

the distance constraints into the overall map and

to resolve the potential conflicts. Letovsky and

Berlin [9] developed CPROP, a program that inte-

grates mapping information from numerous sources.

Nadkarni [10] has developed Mapmerge, another

program that synthesises information about gene or-

ders from multiple sources. Biologists ideally would

like to assign a genomic coordinate to every marker.

However, in view of genetic mapping uncertainties,

this is frequently impossible and coordinate-based

representations have not been traditionally used by

the human mapping community. In particular, the

map information in the Genome Database uses a for-

malism that does not lend itself to direct translation

to coordinates. The absence of coordinate-based ge-

netic maps was the cause of difficulties Hannenhalli

and Pevzner had while deriving tentative gene or-

ders in men and mice in 1995 [5].

This paper addresses some algorithmic problems

related to deriving gene orders from comparative

mapping data. In the simplest case we assume that

the genetic map is already assembled and every gene

is assigned an interval of potential coordinates. We

use such genetic maps from two species to eliminate

the ambiguities in gene orders and to estimate the

number of conserved groups in the species.

2 Technical Details

The proofs of each of Theorems 1.1 to 1.5 are given

in each of the following subsections. We prove the

positive results first, followed by the negative results

(Theorems 1.1 and 1.4).

2.1 Proving Theorem 1.2

We give a polynomial-time algorithm which ap-

proximates the depth-1 gene placement problem

within a factor of 3. Let I be an instance of the depth-1 gene placement problem. Let � denote the place-

ment of the depth-1 species. We will use O1; : : : ; Om
and C1; : : : ; Cm to denote the (nonempty) opening

and closing sets of the other species (species S).

For any gene H 2 C1, let forwards(H) be the suf-

fix of � which starts at gene H and let prefix
+(H)

denote the longest prefix of forwards(H) which is

a prefix of a feasible gene placement for S. Let

backwards(H) be the substring formed by starting

at gene H in � and proceeding back to the begin-

ning of �. Let prefix
�(H) denote the longest prefix

of backwards(H) which is a prefix of a feasible gene

placement for S. We start with the following obser-

vation, which allows us to do useful preprocessing on

the problem instance I .

OBSERVATION 2.1. If G is in Oa \ Cb and G0 is a

gene in Oa0 \ Cb0 which is adjacent to G in � then,

without loss of generality, either a < a0 & b < b0 ora > a0 & b > b0.
Proof. Suppose that a � a0 and b0 � b and that �0 is

a gene placement for S. Note that there is a gene

placement �00 for S which is as good as �0 and has G
and G0 adjacent. (If G and G0 are not adjacent in �0
then G can be moved next to G0 without creating a

new conserved region.) Thus, the problem instance

can be replaced by one in which gene G is deleted

from both species. Once a placement for S�fGg has

been found it can be extended to a placement for S
by inserting G next to G0.

The 3-approximation algorithm is as follows. We

assume that before each (recursive) call to the algo-

rithm we pre-process the problem instance to ensure

that the opening and closing sets are non-empty (see

the Introduction) and that the instance is consistent

with Observation 2.1.

1. If the input is the trivial problem instance with

no genes then output the empty gene placement.

If S consists of a single opening set and a single

closing set then output �.

2. Otherwise, if jC1j � 2 then let P be a sequence

consisting of the genes in C1 (in any order). LetI 0 be the sub-instance formed by removing the

genes in P from both species. The output con-

sists of P followed by a (recursively generated)3-approximation for I 0.
3. Otherwise, let C1 = fHg and let O�1 be the

set O1 � fprefix
+(H) [prefix

�(H)g. If O�1 =; then let P consist of prefix
+(H) followed by

prefix
�(H) � fHg. Let I 0 be the sub-instance

formed by removing the genes in P from both

species. The output consists of P followed by a

(recursively generated) 3-approximation for I 0.
4. Otherwise, C1 = fHg and O�1 is nonempty. Letj be an integer which is as large as possible,

4

given that for all k < j, O�1 \ Ck = ;. Let G
be any element of O�1 \ Cj . Let P consist of G
followed by prefix

+(H) followed by prefix
�(H)�fHg. Let I 0 be the sub-instance formed by

removing the genes in P from both species. The

output consists of P followed by a (recursively

generated) 3-approximation for I 0.
It is easy to see that the algorithm terminates

after at most n iterations, since I 0 has fewer genes

than I . The theorem follows from the following

lemma, which implies that if the algorithm correctly

generates a 3-approximation for I 0 then it correctly

generates a 3-approximation for I . For any problem

instance I 00, the notation OPT(I 00) denotes the opti-

mum (minimum) number of conserved regions that

can be achieved for the problem instance.

LEMMA 2.1. In Cases 2–4, there is a feasible gene

placement for I which has P as a prefix. The number

of conserved regions in P (with respect to the depth-1
gene) is at most 3(OPT(I)�OPT(I 0)).
Proof.

Case 2: Clearly, C1 � O1. Thus, there is a feasi-

ble gene placement for I which has P as a prefix.

By Observation 2.1, no two genes in O1 are adjacent

in �. Thus, in any gene placement, at least jC1j�1 of

the genes in C1 are in singleton conserved regions.

Thus, the number of conserved regions in P is jC1j
and OPT(I)�OPT(I 0) is at least jC1j � 1.

Case 3: Since there is a feasible gene place-

ment with prefix prefix
+(H) and one with prefix

prefix
�(H), there is one with prefix P . P contains

at most 2 conserved regions. However, any feasible

solution has a conserved region contained in P (by

Observation 2.1, any gene placed before H is a sin-

gleton), so OPT(I)�OPT(I 0) is at least 1.

Case 4: As in Case 3, there is a feasible gene place-

ment with prefix P . Also, P contains at most 3 con-

served regions. We claim that OPT(I)�OPT(I 0) � 1,

since there exists an optimal gene placement for S
which has at least one of its conserved regions con-

tained in P . The claim is clearly true if there

exists an optimal gene placement for S in which

the conserved region containing H is a substring

of prefix
+(H) or a substring of prefix

�(H), so sup-

pose that every optimal gene placement for S has H
contained in a conserved region which is a proper

superstring of prefix
+(H) or prefix

�(H). Let �0 be

such a gene placement and let H be the conserved

region of �0 containing H . Without loss of general-

ity, suppose that H is a superstring of prefix
+(H).

Let j0 be the minimum integer such that Cj0 is

not contained in prefix
+(H) and every element in

prefix
+(H) is in O1 [� � � [Oj0 but some element inH is in Oj0+1 [� � � [Om. Since H is contained in

a feasible solution, Cj0 � O1. Furthermore, every

member of Cj0 must precede H in �0. By Observa-

tion 2.1, each of these is in a singleton conserved re-

gion in �0. We now have two cases. If Cj0 contains an

element of prefix
�(H) then this element (and there-

fore its conserved region) is in P . Otherwise, Cj0 con-

tains an element of O�1 . The minimality of j0 implies

that j � j0 (otherwise prefix
+(H) would be shorter).

Thus, j = j0, so G is a conserved region of �0 and

therefore P contains a conserved region of �0.
2.2 Proving Theorem 1.3

We give a polynomial-time exact algorithm for

the special case of the depth-1 gene placement prob-

lem in which the depth of one species is 1 and the

depth of the other species (which we call species S)

is b = O((logn)=(log logn)). Let O1; : : : ; Oj andC1; : : : ; Cj be the opening and closing sets of S. As

before, let Xr = fO1 [� � � [Org \ fCr [� � � [Cjg,
where jXrj � b. (Let Xj+1 = ;.) For r 2 f0; jg, for

any Yr+1 � Xr+1, and G 2 Cr [Yr+1, let Pr(Yr+1; G)
be an optimal gene placement for species S (one with

a minimum number of conserved regions between it

and the gene placement of the other species) given

that� we ignore all genes other than those in C1[� � �[Cr [Yr+1 (i.e., we remove all other genes from

both species) and� we only consider gene placements which end in

gene G.

We will show how to compute the placementsPr(Yr+1; G) in polynomial time by dynamic program-

ming.

First, observe that there are at most 2b choices

of Yr+1 and at most 2b choices of G. Second, ob-

serve that if Yr+1 � Xr then Cr [Yr+1 � Xr, soPr(Yr+1; G) = Pr�1(Cr[Yr+1; G). Third, suppose thatYr+1 6� Xr. Let H be a fixed gene in Yr+1\Or+1. Now

for every� Yr � Yr+1 \Xr � fGg,� G0 2 Cr�1 [Yr, and� permutation � of fCr [Yr+1g � Yr � fHg � fGg,
let P (Yr ; G0; �) be the gene placement formed by tak-

ing Pr�1(Yr; G0) followed by H followed by � followed

by G. Clearly, we can choose Pr(Yr+1; G) by taking an

5

optimal placement P (Yr; G0; �) (over all choices of Yr,G0 and �). Furthermore, there are at most 2b choices

for Yr, at most 2b choices for G0 and at most (2b)!
choices for �. Since (2b)! = nO(1), the algorithm runs

in polynomial time.

2.3 Proving Theorem 1.5

We give a simple polynomial-time algorithm

which determines whether the solution to the (arbi-

trary depth) gene placement problem is 1 (that is,

whether it is possible to have just one conserved

region). It suffices to give a polynomial-time algo-

rithm (such as the following algorithm) which de-

termines whether there exists a single gene place-

ment � which is consistent with the partial informa-

tion (O1; : : : ; Oj and C1; : : : ; Cj) provided for the first

species and the partial information (O01; : : : ; O0j0 andC 01; : : : ; C 0j0) provided for the second species. If the al-

gorithm determines that there is no such � then we

repeat the question, reversing the opening and clos-

ing sets for the first species.

1. If O1 \ O01 = ; then there is no such �.

2. Otherwise, pick any G 2 O1 \ O01 and let G be

the first gene in �. Recursively find the rest of �.

Before recursing in the second step of the algorithm,

we delete any empty opening and closing sets and

merge adjacent opening sets as described in Sec-

tion 1.

2.4 Proving Theorem 1.1

We show that there is no polynomial-time ap-

proximation scheme for the depth-1 gene placement

problem unless P = NP. We start by defining the3-Bounded Max-2SAT problem. An instance (or for-

mula) � of 3-Bounded Max-2SAT consists of a set of

clauses fC1; : : : ; Ckg where each Ci is the disjunction

of two literals over a set var(�) of boolean variables.

Each literal occurs in at most 3 clauses. The goal is

to find an assignment of values to the elements ofvar(�) which maximizes the number of clauses that

are satisfied. We will use the following fact from [11].

FACT 2.1. There is no polynomial-time approxima-

tion scheme for 3-Bounded Max-2SAT unless P = NP.

We will prove Theorem 1.1 by showing that

a polynomial-time approximation scheme for the

depth-1 gene placement problem could be turned

into a polynomial-time approximation scheme for 3-

Bounded Max-2SAT.

Given an instance � of 3-Bounded Max-2SAT, we

construct an instance � of the depth-1 placement

problem. For each variable x, � contains a set of

genes �(x) which has two distinct optimal place-

ments. For two boolean variables x; y 2 var (�), �(x)
and �(y) are designed to interact if and only if x andy appear in a clause C of �. Suppose this happens

in a feasible solution of � that has one of the optimal

arrangements for each of �(x);�(y). Then we will

find that a conserved region will be saved if and only

if the gene arrangements in �(x) and �(y) encode a

satisfying assignment of C. One conserved region is

saved for each clause satisfied. Given a feasible so-

lution S(�) for �, let S(�(x)) denote S(�) restricted

to �(x). We cannot generally assume that becauseS(�) is approximately optimal, each S(�(x)) is one of

the two optimal solutions to �(x). However, we show

how to construct an alternative solution S0(�) fromS(�) in polynomial time, such that� S0(�) has no more conserved regions than S(�),� S0(�(x)) (which denotes S0(�) restricted to �(x))
does encode one of the truth values (henceS0(�(x)) is optimal).

Given such a construction, it just remains to de-

rive an approximation ratio 1�� for 3-Bounded Max-2SAT which would be associated with a hypothetical

approximation ratio 1+� for gene arrangement, such

that �! 0 as � ! 0.

In this section we will work with the alternative

formulation of the gene placement problem which is

mentioned in the introduction. Each gene will be

described by an interval along the real line. Each

gene must be placed somewhere in its interval. Once

the genes are placed, the real line is forgotten,

and only the sequence of genes remains. In our

diagrams, we will denote gene intervals by vertical

lines. We will displace the vertical lines sideways for

readability (to allow intervals to be distinguished).

A sequence of consecutive (in the depth-1 ordering)

but non-overlapping gene intervals is depicted by

line segments that lie on a common line. Genes

are denoted by the symbols � or � (the two symbols

are used to show two alternative gene placements in

one diagram), and feasible solutions are depicted by

placing a gene symbol on each vertical line. A gene

symbol without a line depicts a gene whose position

is fixed, that is, a gene whose interval starts and

stops at the same point. Without loss of generality,

we assume that the order of placement of the depth-1
gene is G1; : : : ; Gn.

2.4.1 Representing a boolean variable

For x 2 var (�), �(x) uses 27 genes, plus an addi-

tional 13 separator genes as described later. First

6

there are two sequences of length 15 and 3. LetX1; : : : ; X15, H1; H2; H3 denote these sequences. The

13 separator genes will prevent conserved regions

from containing more than two genes. Observe that

when gaps between two different pairs of consecu-

tive gene intervals coincide, then only one of those

pairs may form a conserved region. The alignment

of the gaps is as shown in Figure 1. We will ob-

tain at most 8 pairings of adjacent genes from these

sequences, consisting of either (H1; H2) or (H2; H3),
and 7 alternating pairings in the Xi’s. Assuming

that one of these optimal placements has been made,

associate with “true” the one that joins H1 with H2,
and with “false” the one that joins H2 and H3.

We next introduce some genes to �(x) which

“reinforce” the optimality of joining alternate pairs

in the X-sequence. Introduce three sequences of

three consecutive genes, R1; R2; R3 and R01; R02; R03
and R001 ; R002 ; R003 , with gaps between consecutive genes

aligned as in Figure 1. Observe that provided al-

ternate pairings are made with genes in the rangeX2; : : : ; X6, then we can pair either fR1; R2g orfR2; R3g and similarly for the reinforcers R0 and R00.
The construction uses a number of sequences

of consecutive genes (X ’s, R’s, R0’s, R00’s, H ’s), con-

strained to lie in intervals that are separated by

gaps. In all intervals in these sequences, other than

the interval at each end, we will additionally place

a gene whose position is fixed, and which is cut off

from its neighbors. The effect of these extra genes

is to prevent any feasible solution from having con-

served regions of length more than 2. These extra

genes are omitted from the descriptions, for simplic-

ity. Note that these separators for the X ’s also have

the effect of separating the H ’s and the reinforcers

in the same way.

The total number of genes in the above descrip-

tion of �(x) (for x 2 var (�)) is 40. The extra 13 sep-

arators occur in the intervals for X2; : : : X14. A set�(x) is constructed for each x 2 var(�), and they are

placed consecutively on the real line. If x 6= y then

the genes in �(x) do not overlap the genes in �(y).
2.4.2 Representing a clause

We have observed that �(x), as described above,

has two optimal gene placements. Here we assume

that for each x 2 var(�) one or other of these gene

placements has been used, and we add some more

genes in such a way that a conserved region is saved

for each clause satisfied by the truth assignment rep-

resented by the S(�(x)) placements. In the next sub-

section we justify our assumption of local optimality

for the S(�(x)) placements (required for represent-

���

���

H1H2

H3

X1X2X3X4X5X6X7X8X9X10X11X12X13X14X15

R1R2
R3
R001R002
R003

R01R02
R03

���
����
����
����

����
����
����
���

���
���
���
���

���
���

CC
C 0C 0
C 00C 00

Figure 1: Representing a variable: Vertical lines

indicate intervals associated with individual genes.

The � and � symbols indicate the two optimal place-

ments of genes. C;C 0; C 00 indicate gaps between con-

secutive genes associated with a clause containing

the unnegated variable, C;C 0; C 00
gaps for clauses

containing the negated variable.

ing a truth assignment).

The two optimal placements do not use all

the gaps between consecutive genes in the X-

sequence, and consequently, if other gaps between

consecutive genes happen to coincide with them,

we may make further connections across these

gaps without cost. In particular, consider the

gaps (X3; X4); (X4; X5); (X7; X8); (X8; X9),(X11; X12);(X12; X13). (All the others have connections across

them, if not by the X ’s then by the H ’s, R’s, R0’s or

7R00’s.) Only an alternating subsequence of three of

these six have connections across them in an opti-

mal S(�(x)).
Recall that the placement connecting H1 andH2 is associated with true, and this placement does

not use the gaps (X3; X4); (X7; X8) and (X11; X12).
Likewise, the false assignment does not use(X4; X5); (X8; X9) and (X12; X13).

For x; y 2 var(�), suppose �(x) precedes �(y) on

the line. A clause containing x and y is represented

by three consecutive genes K1;K2;K3 where the

gap (K1;K2) coincides with a gap in �(x) which is

unused by the assignment to x satisfying the literal

containing x in the clause, and the gap (K2;K3)
coincides with a similarly chosen gap in �(y). Each

gap used by a clause is not used by any other clause,

but recall that there are at most three literals of each

kind in �, so we have enough clause gaps in each�(x).
Each clause uses 3 genes. It is not necessary

to include an explicit separator gene as there will

always be a fixed gene from some X-interval withinK2’s interval.

2.4.3 Conversion from S(�) to S0(�)
Given an approximately optimal gene placementS(�), we cannot of course assume that for all x 2var(�), S(�(x)) is locally optimal, hence represent-

ing a truth value. We need to prove the following

claim.

Claim: Given a feasible solution S(�), we can con-

vert it in polynomial time to an alternative feasible

solution S0(�) where� the number of conserved regions is not in-

creased, and� the genes for each variable encode one of the

truth values.

The conversion from S(�) to S0(�) works by per-

forming local optimization on �(x) for each x 2var(�). We do not rearrange any of the clause-

encoding genes. In the process, we may make con-

nections in a �(x) which breaks a connection be-

tween a pair of clause-encoding genes, however it is

argued that when this happens, the local optimiza-

tion gains at least as many “makes” as it loses in

“breaks”.

For each x 2 var(�), let C;C;C 0; C 0; C 00; C 00
de-

note the six clause gaps in �(x), in the order in

which they appear as we traverse � from one end

to the other. Consider the pairs (C;C), (C 0; C 0) and(C 00; C 00).

We perform the local optimization in stages.

Firstly, if there are three successive open gaps in theX-sequence, we make a connection across the middle

gap and, if necessary, break an existing connection

using the gap. Secondly, if the gaps corresponding toD and D are both open, where D 2 fC;C 0; C 00g, then

the neighboring gaps must both be being used by theX ’s, and therefore neither is used by the correspond-

ing reinforcer, R, R0, or R00. We exchange either one

of these two connections with its neighboring gap inC or C, and make the new connection in the corre-

sponding reinforcer. We have introduced one extra

make in �(x) at the possible cost of one break in a

clause.

The final stage to produce S0(�) is as follows. Ex-

actly one of each adjacent pair of gaps corresponding

to clauses is now used by the X-sequence. The effect

of any remaining gaps is just to change the “parity”

from one pair to the next, allowing perhaps a clause

in one pair to be “satisfied” by the positive literal

and a clause in another pair to be satisfied by the

negative literal. In such a case we select the parity

of the majority of the clause gap pairs and use the

corresponding alternation of open and closed gaps.

Since the alternating sequences are the only ways

to achieve 8 makes within the X- and H-sequences,

such a change gains at least one make at the expense

of at most one break in a clause.

The result of performing these local optimiza-

tions on each �(x) is S0(�).
2.4.4 Approximation ratios

Suppose � has k clauses and n variables. We

know that n � 2k, n � k=6. Let m be the maximum

number of clauses satisfiable. We know that k=2 �m � k. (It is easy to satisfy k=2 clauses by a simple

greedy algorithm.) In particular, n � 4m and k � 2m.� has 40n + 3k genes, 40 for each �(x) and 3 for

each clause. The number of conserved regions equals

the number of genes minus the number of pairings

that can be made. From the previous subsection, the

optimal (largest) number of pairings is the number

of pairings per (locally optimal) S0(�(x)) times the

number n of variables, plus the number of satisfied

clauses, which is 11n + m. The optimal (minimum)

number of conserved regions is40n+ 3k � (11n+m) = 29n+ 3k �m:
We know that a feasible solution with 29n+ 3k �m0
conserved regions (for m0 � m) can be used to derive

an assignment satisfying m0 clauses. Suppose we

can approximate the number of conserved regions

within 1 + �. So we can find a solution within

8(1+�)(29n+3k�m) conserved regions. This is equal

to 29n+ 3k �m+ �(29n+ 3k �m)� 29n+ 3k �m+ �(116m+ 6m�m)= 29n+ 3k � (1� 121�)m:
So we could then approximate 3-Bounded Max-2SAT

within 1 � 121�. Hence a PTAS for the minimum

number of conserved regions would give a PTAS for3-Bounded Max-2SAT.

2.5 Proving Theorem 1.4

We show that there is no polynomial-time ap-

proximation scheme for the gene placement problem

with the restriction that both species have depth at

most 2, unless P = NP.

As in Section 2.4, we proceed by reduction

from 3-Bounded Max-2SAT. We use some notation

from Section 2.4.

2.5.1 Representing a boolean variable

We begin by defining a cyclic structure as shown

in Figure 2.

Define a q-cycle (where q is a positive even inte-

ger) to be a sequence S of q 7-units, S = (U1; : : : ; Uq),
where for U = Ui, U 0 = U(i+1) mod q we have� the species of U is not the same species as the

species of U 0,� the 3rd and 4th genes in U are the 2nd and 1st

in U 0, and� the separate 7-units do not overlap each other.

Figure 2 depicts a 6-cycle. The non-fixed genes have

been placed so that, for each 7-unit, two of them form

a conserved region. (So (k; k00) are paired in Fig-

ure 2.) We may also allow alternate pairs from the

sequence (a; a0); (b; b0); (c; c0); : : : to form conserved re-

gions, for a total of 3q=2 conserved regions of size 2.

Define a 7-unit, U , to be an ordered set of 7 genes(a; a0; b0; b; k; k0; k00) which in one species (which we re-

fer to as U ’s species) has a; a0; b0; b at fixed consecutive

locations, with k constrained to be adjacent to a, k0
adjacent to b, and k00 adjacent to either or both of a0,b0. (See Figure 2.) In the other species, k; k00; k0 are

fixed and consecutive.

Observe that, regardless of the size of q, there

exist two optimal placements of the union of the last

three genes of each Ui, for 1 � i � q. We cannot

make more than 3q=2 pairings, and 3q=2 pairings can

only be made by alternating the orientations of the

7-units.

Species G2

����
����
����
���

aa0b0b
cc0d0d
ee0f 0f
ll00l0

kk00k
0��

���
���
�

Species G1

����
����
����
���

bb0c0c
dd0e0e
ff 0a0a
kk00k0

ll00l
0

��
��
���
��

Figure 2: Depth 2 gene arrangement: a cyclic struc-

ture with two optimal solutions. The alternative op-

timal solution is obtained by moving all the non-

fixed genes to the opposite ends of their intervals.

(Note that only two of the six 7-units are depicted

in full; the unlabelled genes whose positions are not

fixed correspond to sequences of three consecutive

fixed genes (not shown) on the other species.)

For each x 2 var (�), let c(x) denote the number

of clauses in � in which x or its negation appears.�(x) will be a 6c(x)-cycle. The total number of genes

in
Sx2var(�) �(x) is 6 � 7 � k=2 = 21k genes. We

associate the truth settings of x with the two optimal

arrangements of the genes in �(x).

9

2.5.2 Representing a clause

We next allow pairs of cycles to interact so that

additional pairings of genes may be effected when-

ever either cycle encodes a chosen truth value, cor-

responding to satisfaction of a clause in �. For a

clause Ci let x; y be the variables it contains. Choose

two consecutive 7-units in �(x) and �(y) and make

them adjacent on each species, but with a gene X
between them on each species, and on one species an

additional gene x which is constrained to be adjacent

to X (and on the other species x is isolated). This

will allow X to pair with one of the first four genes

in the 7-units, provided that it encodes the correct

truth value. See Figure 3. Let (a; a0; b; b0; k; k00; k0),(b; b0; c; c0; l; l00; l0) 2 �(x), (C;C 0; D;D0;K;K 00;K 0),(B;B0; C; C 0; L; L00; L0) 2 �(y) be the 7-units. In Fig-

ure 3, X may be paired with either C or b, provided

at least one of �(x) and �(y) has an appropriate truth

value.

It is important to note the following about this

method for representing a clause containing x, say.

The choice of which pair of consecutive 7-units from�(x) is not constrained by whether the literal con-

tains x or :x. If we decide to use Ui; Ui+1 from �(x),
then we can negate x in the clause being represented

by reversing their directions.

Next we want to reinforce the optimality of an al-

ternating sequence of orientations of 7-units, so that

we can perform local optimization on every �(x) and

obtain a S0(�) which has no more conserved regions

than S(�). Divide the clauses within which x ap-

pears into at most 3 sets S1, S2, S3, each of which is

either a singleton set or contains a clause with x and

a clause with :x. So we use up to 4 7-units for eachSi, and we make these 7-units consecutive in the

cycle representing �(x). Let Ui; Ui+1; Ui+2; Ui+3 be

these 7-units. For each Si we then add a tautologous

clause that represents x_:x, and uses Ui�2; Ui�1 forx and Ui+4; Ui+5 for :x. Hence �(x) needs at most 24

7-units (8 for each Si).
2.5.3 Conversion from S(�) to S0(�)

As in Section 2.4.3 we want to do the following in

polynomial time. Given a feasible solution �, convert

it to a feasible solution �0 in which� there are at least as many pairings, and� alternate 7-units have alternate orientations.

We do not rearrange the clause-representing

genes. The set of 7-units used for a set Si as defined

above is optimized by making the orientations of the

7-units satisfy one clause but not the other. For eachSi in a �(x), observe whether the clauses give it a

Species G2

����
���
��

aa0b0b
XCC
0D0D

x
��
��
��
�

Species G1

����
���
��

BB0C 0CX
bb0c0c

��
�
��
�

Figure 3: Depth 2 gene arrangement: a satisfied

clause allows an additional pairing to be made,

namely (X;C). If the �(x) containing a; a0; b0; b had

its other optimal arrangement, then we could choose

between (X;C) and (X; b). (Gene x prevents both

pairings simultaneously.)

bias towards representing true or false. Then take

the majority vote of all three, by analogy with sec-

tion 2.4.3. When one is overruled, we lose a con-

served region through failure to satisfy its clause,

but we gain one through recovery of the alternating

pattern of orientations of the 7-units.

10

2.5.4 Approximation Ratios

Suppose � has k clauses and n variables, of

which m are satisfiable. Each appearance of a literal

uses a tautological clause, so that 3k clause gadgets

in total are used in �. Therefore 6k 7-units are used,3k on each species, for a total of 27k genes in �. The

number of pairings that can be made is 1:5 for each

7-unit, plus 2k for the tautological clauses, plus m.

Hence the optimal number of conserved regions is27k � (9k + 2k +m) = 16k �m.

Suppose that we can find a feasible solution with(1 + �)(16k �m) conserved regions. This number is(16k �m) + �(16k �m) � (16k �m) + �(32m�m)= 16k � (1� 31�)m:
So we could then approximate 3-Bounded Max-2SAT

within 1�31�. Hence a PTAS for this gene placement

problem would give a PTAS for 3-Bounded Max-2SAT.

References

[1] V. Bafna and P. Pevzner. Genome rearrangements

and sorting by reversals. SIAM. J. Computing, 25

272-289, 1996.

[2] V. Bafna and P. Pevzner. Sorting by reversals:

Genome rearrangements in plant organelles and evo-

lutionary history of X chromosome. Mol. Biol. and

Evol., 12 239–246, 1995.

[3] S. Hannenhalli and P. Pevzner. Transforming cab-

bage into turnip (polynomial algorithm for sorting

signed permutations by reversals). In Proc. 27th An-

nual ACM Symposium on the Theory of Computing,

pages 178–189, 1995.

[4] S. Hannenhalli and P. Pevzner. Transforming men

into mice (polynomial algorithm for genomic distance

problem). In 36th Annual IEEE Symposium on

Foundations of Computer Science, pages 581–592,

1995.

[5] S. Hannenhalli and P. Pevzner. To cut ... or not to

cut (applications of comparative physical maps in

molecular evolution). In Seventh Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 304–313,

1996.

[6] J. Kececioglu and R. Ravi. Of mice and men: Evolu-

tionary distances between genomes under transloca-

tion. In Proc. 6th Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 604–613, 1995.

[7] J. Kececioglu and D. Sankoff. Exact and approxima-

tion algorithms for the inversion distance between

two permutations. Algorithmica, 13 180-210, 1995.

[8] J. Kececioglu and D. Sankoff. Efficient bounds for

oriented chromosome inversion distance. In Combi-

natorial Pattern Matching, Proc. 5th Annual Sympo-

sium (CPM’94), Lecture Notes in Computer Science

807, pages 307–325. Springer-Verlag, Berlin, 1994.

[9] S. Letovsky and M.B. Berlyn, CPROP: A Rule-Based

Program for Constructing Genetic Maps. Genomics

12 (1992) 435–446.

[10] P. Nadkarni, Mapmerge: merge genomic maps.

Bioinformatics, 14(4) (1998) 310–316.

[11] C.H. Papadimitriou and M. Yannakakis, Optimiza-

tion, approximation and complexity classes. J. Com-

put. System Sci. 43 (1991) 425–440.

[12] D. Sankoff, G. Leduc, N. Antoine, B. Paquin, B. F.

Lang, and R. Cedergren. Gene order comparisons for

phylogenetic inference: Evolution of the mitochon-

drial genome. Proc. Natl. Acad. Sci. USA, 89 6575–

6579, 1992.

