APPROXIMATION ALGORITHMS FOR THE FIXED-TOPOLOGY
PHYLOGENETIC NUMBER PROBLEM*

MARY CRYAN! LESLIE ANN GOLDBERG *, AND CYNTHIA A. PHILLIPS®

Abstract. In the {-phylogeny problem, one wishes to construct an evolutionary tree for a set
of species represented by characters, in which each state of each character induces no more than £
connected components. We consider the fixed-topology version of this problem for fixed-topologies of
arbitrary degree. This version of the problem is known to be A/P-complete for £ > 3 even for degree-3
trees in which no state labels more than £+ 1 leaves (and therefore there is a trivial £+ 1 phylogeny).
We give a 2-approximation algorithm for all £ > 3 for arbitrary input topologies and we give an
optimal approximation algorithm that constructs a 4-phylogeny when a 3-phylogeny exists. Dynamic
programming techniques, which are typically used in fixed-topology problems, cannot be applied to
{-phylogeny problems. Our 2-approximation algorithm is the first application of linear programming
to approximation algorithms for phylogeny problems. We extend our results to a related problem in
which characters are polymorphic.

* Research Report CS-RR-327, Department of Computer Science, University of Warwick, Coven-
try CV4 TAL, United Kingdom.

! maryc@dcs.warwick.ac.uk. Department of Computer Science, University of Warwick, Coven-
try CV4 TAL, United Kingdom. This work was partly supported by ESPRIT LTR Project no. 20244
— ALCOM-IT.

! leslie@dcs.warwick.ac.uk. Department of Computer Science, University of Warwick, Coven-
try CV4 TAL, United Kingdom. Part of this work took place during a visit to Sandia National
Laboratories which was supported by University of Warwick Research and Teaching Innovations
Grant 0951CSA and by the U.S. Department of Energy under contract DE-AC04-76 AL.85000. Part
of this work was supported by ESPRIT LTR Project no. 20244 — ALCOM-IT.

§ caphill@cs.sandia.gov. Sandia National Laboratories, Albuquerque, NM. This work was
performed under U.S. Department of Energy contract number DE-AC04-94A1.85000.

(o1)
D) 9@
OO bm) ())

Fia. 1. An example of a 2-phylogeny. States h and f in the first character and state t in the
second character are each in two components.

1. Introduction. The evolutionary biologist collects information on extant species
(and fossil evidence) and attempts to infer the evolutionary history of a set of species.
Most mathematical models of this process assume divergent evolution, meaning that
once two species diverge, they never share genetic material again. Therefore, evo-
lution is modelled as a tree (phylogeny), with extant species as leaves and (extant,
extinct, or hypothesized) ancestors as internal nodes. Species have been modelled in
several ways, depending upon the nature of available information and the mechanism
for gathering that information. Based upon these representations, differing measures
of evolutionary distance and objective function are used to evaluate the goodness of a
proposed evolutionary tree.

In this paper we assume that input data is character-based. Let S be an input set
of n species. A character ¢ is a function from the species set S to a set R. of states. The
set of species in figure 1 has two characters. The first character represents skin covering
and has three states: h for hair, s for scales, and f for feathers. The second character
represents size, where ¢ (tiny) means at most one foot long, m (medium) means one to
three feet long and [(large) means greater than three feet long. If we are given a set of
characters cq,..., ¢ for S, each species is a vector from R, X ...X R, and any such
vector can represent a hypothesized ancestor. For example, an anaconda (the largest
known species of snake) would be represented on these simple characters as (s,!) and
a hummingbird would be (f,). Characters can be used to model biomolecular data,
such as a column in a multiple sequence alignment, but in this paper, we think of
characters as morphological properties such as coloration or the ability to fly.

Character-based phylogenies are typically evaluated by some parsimony-like mea-
sure, meaning that the total evolutionary change is somehow minimized. In this paper,
we consider the (-phylogeny metric introduced in [9]. Given a phylogenetic tree, a chaz-
acter ¢; and a state j € R, let {;; be the number of connected components in ¢;”*(4)
(the subtree induced by the species with state j in character ¢). A phylogeny is an
{-phylogeny if each state of each character induces no more than ¢ connected com-
ponents. That is, max., jer,, (ij < {. The (-phylogeny problem is to determine if an
input consisting of a species set S and a set of characters ¢y, ..., ¢k has an {-phylogeny.
The phylogenetic number problem is to determine the minimum ¢ such that the input
has an f-phylogeny.

The classic parsimony problem is to find a tree that minimizes the total number

1

of evolutionary changes: ECMGR% {;;. The compatibility problem is to maximize
the number of characters that are perfect, meaning that all states of that character
induce only one connected component. Thus the compatibility problem is to maximize
|{ci : l;; = 1for all j € R, }|. A 1-phylogeny is called a perfect phylogeny. All three
problems ({-phylogeny for ¢ > 1, parsimony, compatibility) are A'P-complete [1, 9, 4,
5, 6, 8, 14]. Papers [4, 5, 8] prove that different restrictions of the classic parsimony
problem are A“P-complete!. Parsimony, (-phylogeny, and compatibility all allow states
of a character to evolve multiple times. However, both parsimony and compatibility
allow some characters to evolve many times. The {-phylogeny metric requires balanced
evolution, in that no one character can pay for most of the evolutionary changes.
Thus, {-phylogeny is a better measure than parsimony or compatibility in biological
situations in which all characters are believed to evolve slowly.

In this paper we consider the fized-topology variant of the {-phylogeny problem,
where in addition to the species set and characters, we are also given a tree T in which
internal nodes are unlabelled, each leaf is labelled with a species s € S and each species
s € 5 is the label of exactly one leaf of T'. The fized-topology {-phylogeny problem is the
problem of determining labels for the internal nodes so that the resulting phylogeny
is an f-phylogeny, or determining that such a labelling does not exist. In figure 1, the
hypothesized ancestor (s,m) labels one node. This example is a 2-phylogeny.

Fixed-topology algorithms can be used as filters. Current phylogeny-producing
software can generate thousands of trees which are (approximately) equally good under
some metric such as maximum likelihood or parsimony. We can think of these outputs
as proposed topologies. Omne way to differentiate these hypotheses is to see which
topologies also have low phylogenetic number. For example, the original trees can
be generated by biomolecular sequence data, and they can then be filtered using
morphological data with slowly-evolving traits.

It will be convenient to allow a node to remain unlabelled in one or more characters
in a fixed topology. In this case, the node disagrees with all of its neighbors on all
unlabelled characters. We can easily extend such a labelling to one in which every
node is labelled without increasing {;; for any ¢ or j: for any character j, for each
connected component of nodes which are not labelled, choose any neighbouring node
v which is labelled ¢, and label the entire component with the state 7,,. This does not
introduce any extra component for 7, nor does it break components of any other state
that weren’t already broken.

In the fixed-topology setting, optimal trees for the parsimony and compatibility
metrics can be found in polynomial time [7]. The fixed-topology (-phylogeny problem
can be solved in polynomial time for ¢ < 2, but is ANP-complete for { > 3 even
for degree-3 trees in which no state labels more than ¢ 4+ 1 leaves (and therefore
there is a trivial £ 4+ 1 phylogeny) [9]. Fitch’s algorithm for parsimony uses dynamic
programming. Dynamic programming also gives good algorithms in some cases for
finding phylogenies when characters are polymorphic [2].

Jiang, Lawler, and Wang [11] consider the fixed-topology tree-alignment problem,
where species are represented as biomolecular sequences, the cost of an edge in the tree
is the edit distance between the labels at its endpoints, and the goal is to minimize
the sum of the costs over all edges. They give a 2-approximation for bounded-degree

! Wareham[17] describes and corrects a minor error in the reduction used by Day in [4] to show
the A/P-completeness of the problem for Wagner characters.

2

input topologies and extend this to obtain a polynomial-time approximation scheme
(PTAS). In Lemma 3 of [11], they prove that the best lifted tree (in which the label
of each internal node is equal to the label of one of its children) is within a factor of
2 of the best tree with arbitrary labels. The proof only uses the triangle inequality
(it does not use any other facts about the cost measure). Therefore, the result holds
for several other cost measures, including ¢-phylogeny, parsimony, and the minimum-
load cost measure for phylogenies with polymorphic characters which was introduced
in [2]. It also holds for the variant of (-phylogeny in which ¢; is specified for each
character ¢;. This variant was introduced in [9]. We refer to it as the generalized
(-phylogeny problem. In fact, Lemma 3 of [11] holds for the fixed-topology problem
with arbitrary input topologies, though the authors do not state this fact since they
do not use it. Despite the applicability of Lemma 3, the algorithmic method of Jiang,
Lawler and Wang does not seem to be useful in developing approximation algorithms
for the fixed-topology (-phylogeny problem (or for related problems). Jiang et al. use
dynamic programming to find the minimum-cost lifted tree. Dynamic programming
is not efficient for the more global metric of {-phylogeny. The dynamic programming
proceeds by computing an optimal labelling for a subtree for each possible labelling
of the root of the subtree. For metrics where cost is summed over edges (such as
parsimony or tree alignment), one only needs to find the lowest-cost labelling for a
given root label. For the {-phylogeny problem, the cost of a tree depends upon how
many times each state is broken for a given character. One cannot tell a priori which
state will be the limiting one. Therefore, instead of maintaining a single optimal tree
for each root label, we must maintain all trees whose cost (represented as a vector
of components for each state) is undominated. This number can be exponential in r,
the number of states, even for bounded-degree input trees. This is a common theme
in combinatorial optimization: the more global nature of minimax makes it harder to
compute than summation objectives, but also more useful.

Gusfield and Wang [15] take the approach of [11] a step further by proving that
the best uniform lifted tree (ULT) is within a factor of 2 of the best arbitrarily-labelled
tree. In a uniform lifted tree on each level, all internal nodes are labeled by the same
child (e.g. all nodes at level one take the label of their leftmost child). This proof also
extends to the {-phylogeny metric. If the input tree is a complete binary tree, then
there are only n ULTs, and exhaustive search is efficient, giving an algorithm which is
faster than ours and has an equivalent performance bound. However, when the input
tree isn’t complete (even if it is binary), Gusfield and Wang use dynamic programming
to find the minimum-cost ULT, and so their method fails when it is applied to the
{-phylogeny problem. Wang, Jiang, and Gusfield recently improved the efficiency of
their PTAS for tree alignment [16], but still use dynamic programming.

We give a simple 2-approximation for the fixed-topology f-phylogeny problem that
works for arbitrary input topologies. It is based on rounding the linear-programming
relaxation of an integer programming formulation for the fixed-topology {-phylogeny
problem. To our knowledge, this is the first application of linear-programming tech-
nology to phylogeny problems.

As we described earlier, {-phylogeny is most appropriate for slowly-evolving char-
acters. It is most restrictive (and hence most different from parsimony) when (is
small. Therefore, we look more closely at the first IV P-hard case: { = 3. For this case,
we give an algorithm based upon the structure of a 3-phylogeny that will construct a
4-phylogeny if the input instance has a 3-phylogeny.

3

The remainder of our paper is organized as follows: in section 2, we give the 2-
approximation algorithm for the ¢-phylogeny problem. In section 3 we give the optimal
approximation algorithm for inputs with 3-phylogenies. In section 4, we extend the
linear-programming-based techniques to develop an approximation algorithm for the
problem of finding parsimonious low-load labellings for phylogenies with polymorphic
characters.

2. A 2-approximation algorithm for the fixed-topology phylogenetic
number problem. The interaction between characters in phylogeny problems af-
fects the choice of the topology, but it does not affect the labelling of the internal
nodes omnce the topology is chosen. Thus, for this problem, we can consider each
character separately.

Let ¢: S — {1,...,r} be a character and let T be a tree with root ¢ and leaves
labelled by character states 1,...,r. For each state ¢, let 7T; be the subtree of T
consisting of all the leaves labelled ¢ and the minimum set of edges connecting these
leaves. Let L(T;) be the set of leaves of T;, and let r¢;, the root of T;, be the node
of T; closest to the root of T. The important nodes of T; are the leaf nodes and the
nodes of degree greater than 2. An i-path p of T; is a sequence of edges of T; that
connects two important nodes of T;, but does not pass through any other important
nodes. The two important nodes are referred to as the endpoints of p, and the other
nodes along the i-path are said to be on p (an i-path need not have any nodes on it).
Although the edges of the tree T are undirected, we will sometimes use the notation
(v — w) for an edge or i-path with endpoints v and w, to indicate that v is nearer to
the root of T' than w (v is the higher endpoint and w is the lower endpoint); otherwise
we will write edges and ¢-paths as (v, w). If the lower endpoint w is labelled ¢ and the
label of the upper endpoint v or some node on the i-path p = (v — w) is not 4, then
we say that p breaks state ¢. If an ¢-path goes through the (degree-2) root of T, then
both endpoints are considered lower endpoints.

Given a tree T with each node labeled from the set {1,...,7}, we need a way to
count the number of components induced by the nodes labeled . Since the tree is
rooted, we can assign each connected component a root, namely the node closest to
the root of T'. We then count the number of roots for components labelled <. A node is
the root of its component if its label differs from that of its parent. The root ¢, which
has no parent, is also the root of its component. Therefore we have the following:

OBSERVATION 2.1. Let T be a tree with its leaves and internal nodes labelled by
elements of {1,...,7}. For each i, let T; be defined as above, and let q be the root
of tree T'. Then the number of connected components induced by the nodes labelled 1
is [{e = (v = w) : c(v) # ¢, c(w) =1} +Y;, whereY; = 1 if ¢ is labelled i and 0
otherwise.

We now define an integer linear program (ILP) which solves the fixed-topology
{-phylogeny problem. The linear-programming relaxation of this ILP is the key to
our 2-approximation algorithm. The integer linear program 7 uses the variables X, ;,
for each state ¢ € {1,...,7}, and each node v in the tree T, the variables X, ; for
each state ¢, and each i-path p of T; and the variables cost, ,; for each state ¢, ¢-
path p in 7; and each lower endpoint v of path p. Recall that each path has one
lower endpoint except when there is an ¢-path through a degree-2 root, in which case
both endpoints are lower endpoints. These variables have the following interpretation:

Y. B 1 if node v is labelled ¢
vt N 0 otherwise
Y. B 1 if all nodes on p are labelled ¢
b N 0 otherwise
1 if lower endpoint v of p is the root of a component of state 7
coSty p; = 0

otherwise

ILP 7 is defined as follows:

minimize ¢

subject to
(1) Xoi = 1 foreachleafv e T;, i =1,...,r
(2) Xvi = 0 fodgT,, i=1,....r
(3) d X, < 1 VoeT

=1
(4) Xpi = Xoi t=1,...,r,VpeT;,, Yvep
5} X, < Xos 1=1,...,r, Vp € T;,endpoint v €

p, s 9 y Ty VP ’ P p

(6) costppi > Xyi— X, v=1,....7r, ¥p € T;,lower endpoint v € p
(7)2 costppi+ Xr;i < i i1=1,...,7

p7v

(8) XUJ” Xp7i7 COStp7U7i € {07 1}

Constraint (8) assures that the cost (costy, ;), t-path (X,;), and vertex (X, ;)
variables serve as indicator variables in accordance with their interpretation. Con-
straint (1) labels the leaves in accordance with the input. Constraint (2) prohibits
labelling a node v with a state 7 when » is not in T; (the number of components la-
belled ¢ could not possibly be reduced by this labelling). Constraint (3) ensures that
each internal node will have no more than one label. Constraints (4) and (5) ensure
that for each tree T;, nodes on paths are taken all-or-nomne; if any node on an ¢-path p
(including endpoints) is lost to a state ¢, then it does no good to have any of the other
nodes on the path (though it may be beneficial to maintain one or both endpoints).
Constraint (6) computes the path costs (counts roots) and constraint (7) ensures that
each state has no more than £ connected components. This is an implementation of
Observation 2.1. Since there is no ¢-path in T; with rt; as its lower endpoint, we
must explicitly check the root of each tree T}, just as we checked the global root in
Observation 2.1.

Integer program 7 solves the fixed-topology {-phylogeny problem. We will now
show that the optimal value of { given by Z is a lower bound on the phylogenetic
number of tree T with the given leaf labelling.

ProrosiTioN 2.2, If there exists an {-phylogeny for tree T with a given leaf
labelling, then there is a feasible solution for the integer linear program for this value
of L.

Proof. Suppose there exists an {-phylogeny on the tree T" with leaves and inter-
nal nodes labelled from {1,...,r}. Consider one particular (-phylogeny, and assume
without loss of generality that all node labels are useful for connectivity (i.e. changing

5

the label of node » from ¢ to something else will increase the number of components
labelled ¢). This may require some nodes to be unlabelled. We obtain a feasible so-
lution to Z as follows. Set variable X, ; to 1 if node v is labelled 7 in this phylogeny
and 0 otherwise. Set X,,; to 1 if both endpoints and all internal nodes of ¢-path p are
labelled ¢ and 0 otherwise. Set costy,; = 1 if lower endpoint v of p is labelled 7 and
the i-path is not, and set costp,,; = 0 otherwise. We now show this assignment is a
solution to Z.

The X, ;, X,;, and cost, ,; variables are binary by construction, thus satisfying
Constraint (8). By construction, Constraint (1) will be satisfied by our assignment.
Constraint (2) will also be satisfied, because it is never useful to label nodes outside
T; with 7, and we have assumed all the labels on nodes are useful for connectivity.
Constraint (3) is also satisfied because each node of the phylogeny will be labelled
with at most one state. Constraints (4) and (5) are satisfied because the condition
that all labelled nodes are necessary for connectivity ensures that a node on an ¢-
path will only be labelled 2 if all the nodes and endpoints of the ¢-path are labelled +.
Constraint (6) is satisfied by construction.

To show that constraint (7) is satisfied, consider the connected components for i;
by our assumption, these all lie in T;. Let v = {e = (v — w) : ¢(v) # 1, c¢(w) = i}.
By Observation 2.1 we have |y| + X,; < {, where ¢ is the root of T'. To calculate
(Xpw €Ostp i) + Xy, i, note that costy,,,; = 1 if and only if X,,; = 1 for the lower
endpoint w and X, ; = 0 and otherwise cost,, ., ; is 0. By our definitions above, X,,; = 0
and X,,; = 1if and only if the edge (v, w) € T from w’s parent (on the i-path p or its
upper endpoint) into w has ¢(v) # ¢ and ¢(w) = ¢. Furthermore, this is the only edge
on the i-path with this property (the cost of each other edge is 0) unless path p passes
through a degree-2 root and both its endpoints have breaks. In the latter case there is
a second endpoint w’ such that cost, s ; = 1. Since the i-paths part ion T}, each i-path
p and lower endpoint v with cost,,; = 1 contains one element of v which is unique to
that i-path and lower endpoint. Thus (Epm costy ;) < |v| < L. If rt; is the node g,
then Xy, ; = Xgi and (3, , costy i) + Xpp, i < ||+ Xgi < L. Otherwise, if r¢; is not
the global root ¢, by our assumption that only useful nodes of T' are labelled with 2,
the ancestor node a; of rt; is not labelled ¢. Then, if X, ; = 1 the edge e = (a; — ;)
contributes 1 to |v|, and therefore (Epm costy i) + Xt i < |v]+ Xgi < €. Hence
constraints (7) are satisfied and we have a solution for the integer program 7. O

Integer linear programming in AN"P-hard in general [3, 10, 12], so we cannot solve
it directly in polynomial time. (In fact, doing so would solve the fixed-topology (-
phylogeny problem, which we know to be A/P-hard for ¢ > 3 from [9].) However, we
can solve the linear-programming relaxation £ of 7, which consists of all the constraints
of T except that Constraint (8) is replaced by the constraint 0 < X, ;, X, ;, costp,,; <1
(8'). Note that the right-hand side of constraint (6) could be negative, but the relaxed
version of the constraint (8) is still sufficient to prevent the path cost variables from
being negative.

THEOREM 2.3. If there is a solution for the linear program L for a fized topology
T with leaves labelled with states from {1,...,r}, then we can assign states to the
internal nodes of T such that no state i € {1,...,r} has more than 2{ components.

Proof. The 2(phylogeny for the character ¢: S — {1,...,r} on T is constructed
by assigning states to the nodes of each tree T; based on the X, ; values. For each
state ¢ € {1,...,r}, consider each internal node v of 7;. A node v is labelled i if and
only if X, ; > 1/2, and there is a path v, wq, wy,. .., wg, v* through tree T; to a leaf

6

v* of T; where X,,; > 1/2 for all j = 1,..., k. If X,; > 1/2, but there is no such
path, then node v is #solated, and by our procedure remains unlabelled. A node v also
remains unlabelled if X, ; < 1/2 for all states ¢.

To show that the labelling is a 2¢-phylogeny, we show that each component of
state i adds at least 1/2 to the sum (3, , costp ;) + X4, ;. From Observation 2.1,
the number of connected components for the state i is [{e = (v — w) : c(v) #
i, o(w)=1}|+Y;, where Y; is 1 if ¢ has state ¢ (and therefore ¢ = r¢;) and 0 otherwise.
Constraints (5) and (4) ensure that if the edge e = (v — w) has ¢(v) # ¢ and ¢(w) = ¢
then either w is the root of T}, or w must be an endpoint node with X,,; > 1/2, and
that either X,; < 1/2 or v is isolated. However, since w is labelled 7, w must not
be isolated, and therefore v would not be isolated if X, ; was greater than 1/2. So
X, <1/2,and X,; < 1/2 for the ¢-path p with lower endpoint w. Therefore we need
only calculate the number of lower endpoints w from ¢-paths p such that X,; < 1/2,
Xy, > 1/2, and w is not isolated.

Suppose w is a lower endpoint of i-path p. Since w is not isolated and the node
above w is not labelled 7, there is a sequence p; = (w — v1), pa = (v1 = v2),...,p; =
(vj—1 — vj) of i-paths of T; such that X,; > 1/2 for every p € {p1,...,p;} and
Xy, > 1/2 for every v € {v1,...,v;}, and v; is a leaf of T;. Calculating cost, ,,; +
coSty, v it ..o+ COStpjwjﬂ' = (Xwﬂ' — Xpﬂ') + (le,i — Xphi) + ...+ (ijﬂ' — ij) =
—Xpﬂ' + (Xwﬂ' — Xphi) + (le,i — Xp2) + ...+ (ij_h,' — ijﬂ') + ijﬂ', we know by
constraints (5) that X, ; — X i > 0, Xy — Xppy i 20, .0, Xy i — Xp i > 0. So
oSty i+ €osty v it b costy i > Xyi — Xpi=1— X, >1/2.

Note that for any two breaks that appear at lower endpoints w and w’ of -paths
p and p’ respectively, the i-labelled paths to leaves are disjoint (because they are in
separate components of 7). Therefore each break of ¢ at a lower endpoint w contributes
at least 1/2 to the sum (3}, , cost,, ;). If rt; is labelled i (and hence the root of a
component of), then X, ; > 1/2 (corresponding to an edge (v — rt;) in T or to the
case Y; = 1). So 2 X (X, ,c08tpui) + X)) > {e = (v — w) 1 e(v) £ 4, c(w) =
i}| +Y;, and therefore 20 > |{e = (v — w) : ¢(v) £ i, c¢(w) =i} + Y.

0

Theorem 2.3 is tight as shown by the following example: let the input topology be
a star graph with 2z leaves: 2z leaves labelled ¢ and x labelled j. The LP solution has
the root labelled half ¢ and half j, so that { = (# + 1)/2 by constraint 6. The optimal
solution has £ = x, arbitrarily close to twice the LP bound. In this example, however,
it is the LP bound which is loose, and therefore our analysis of the approximation
quality of the algorithm may not be tight.

Recall that we have considered each character separately in our 2-approximation
algorithm. Thus, our work applies to the generalized (-phylogeny problem (and not
just to the ordinary (-phylogeny problem). In particular, we have the following theo-
rem.

THEOREM 2.4. There is a Z2-approrimation algorithm for the generalized (-
phylogeny problem.

3. 4-phylogeny algorithm. In this section we give an algorithm which takes
a fixed-topology phylogeny instance with arbitrary topology and, as long as it has a
3-phylogeny, finds a 4-phylogeny for the instance.

We use the following definitions, in addition to those that we used for the 2-
approximation. We will maintain a forest F; for every state i, which corresponds to

7

the set of nodes that state ¢ is contending for. A branch point of F; is a node in F;
with degree 3. We say that a node v € F; is claimed by state ¢ if it is not in F; for
any j # 1.

The algorithm generalizes the fixed-topology 2-phylogeny algorithm of [9]. It
consists of a forced phase and then an approrimation phase. The forced phase produces
a partial labelling (resolution of labels on some subset of the nodes) which can still be
extended to a 3-phylogeny; it makes no labelling decisions that are not forced if one
is to have a 3-phylogeny. The approximation phase removes all remaining contention
for labels, but it can break some states into four pieces. Because finding a fixed-
topology 3-phylogeny is N"P-complete [9], this is an optimal approximation algorithm
for phylogeny instances with 3-phylogenies.

3.1. The Forced Phase of the Algorithm. Initially, for every state i we will
have F; = T;. During the forced phase of the algorithm, nodes will be removed from
the forests F;. The invariant during the forced phase of the algorithm is that there
is a 3-phylogeny in which every node v is assigned a state j such that v € F;. The
forced phase applies the following rules in any order until none can be applied. If any
forest F; is broken into more than three components by the application of these rules,
then the instance has no 3-phylogeny and the algorithm terminates.

1. For any ¢-path (v, w), let S be the set containing v and w and the nodes on
the ¢-path. If § contains two or more branch points of F; (for 7 # j) then
every node on the i-path is removed from F;. Note that in the updated copy
of F; (after the rule is applied), v and w will have lower degree than in the
original F;. Furthermore, if v has degree 2 in the updated F; then the i-path
containing it will consist of nodes from two different i-paths in the original F;.
Similarly, i-paths can be merged as a result of the following rules.

2. If F; has C(F;) connected components and F; contains a node v of degree at
least 5 — C(F;) then in every forest F; with j # 7, v and all nodes on j-paths
adjacent to v are removed from F; (i.e., ¢ claims node v).

3. Suppose v is a branch point of F; but not a branchpoint of F}, and suppose
two i-paths (v, wq) and (v, wy) adjacent to v each contain a branch point of F.
Then in every forest Fy with & # ¢, every branch point w & {v, wy, w3} of F;
and every node on every k-path adjacent to w is removed from Fy (i.e., F;
claims all branchpoints except v, wq, and ws).

Rule 1 is justified by observing that in any 3-phylogeny, each forest F; gives up
at most two disjoint ¢-paths, or a single branchpoint with the ¢-paths adjacent to it.
In the setting in which rule 1 is applied, if F; were to claim the path in question,
then F; would lose two branchpoints and necessarily be in at least four components.
Therefore, in any 3-phylogeny for the input, F; cannot have that :-path. Note that
once any node on an i-path is lost to F;, then F; has no reason to claim any other
nodes on the i-path.

Rule 2 is justified by the following observations. If there is a node of degree at
least 4 in tree Tj, then it must be labelled ¢ in any 3-phylogeny (losing it will break
state 7 into at least 4 pieces). Once F; has been forced to give up an ¢-path, it cannot
give up another branchpoint. Finally, once F; has been forced into three pieces, then
it must claim all remaining nodes in Fj.

Rule 3 is applied when we isolate a region where a break in F; must occur, but do
not yet know exactly where the break will occur. If two paths adjacent to a branchpoint

8

of F; contain branchpoints of F}, then by the previous argument for rule 1, F; cannot
keep both of those paths. Therefore, outside of the affected region (those two i-paths),
F; can act as though the forest has been cut into at least two pieces, and can claim
all branchpoints.

3.2. The Approximation Phase of the Algorithm. In the following, releas-
ing a degree-2 node v € F; removes all nodes on its i-path from F;. Releasing a
higher-degree node v € F; removes v and all nodes on i-paths adjacent to v from Fj.
The approximation phase consists of the following steps.

1. For each connected component C' of F;, if the root of C' is unclaimed then
F; releases the root of C. Also, if this root has degree 2, F; releases any
unclaimed branch points at the ends of the ¢-path through this root.

2. If, after the forced phase, F; is in a single component with exactly one un-
claimed branch point, w, then it releases w.

3. If, after the forced phase, F; is in a single component with exactly two un-
claimed branch points, wy and wy which are the two endpoints of an i-path,
and the path from the root to wy passes through wy, then F; releases ws.

4. If, after the forced phase, F; is in a single component with exactly three
unclaimed branch points, wq, wy and ws where there is an ¢-path from wq to
wy and an ¢-path from ws to ws, then F; releases ws.

3.3. The Proof of Correctness. The proof of correctness of the algorithm
requires the following observation, and follows from Lemma 3.2 and Lemma 3.7.

OBSERVATION 3.1. If F; is in one component and it releases two branchpoints wy
and wy which share an i-path, then the resulting forest F; has at most 4 components.

Proof. Suppose without loss of generality that branchpoint wy is removed first.
This leaves F; in three pieces. Because wy shares an i-path with wq, this operation
reduces the degree of wy to two, so the two remaining i-paths adjacent to wy are
merged. Subsequently removing the ¢-path through w, adds only one more component.
0

LeMMA 3.2. At the end of the approximation phase, every forest F; has at most 4
connected components.

Proof. The forest F; can be in at most three components at the end of the forced
phase. If F; is in three components at the end of the forced phase, then, by Rule 2 of
the forced phase, every remaining node in F; is claimed during the forced phase, so
nothing is removed from F; during the approximation phase. If F; is in two components
after the forced phase, then, again by Rule 2, all branch points of F; are claimed during
the forced phase, so no branch points are removed from F; during the approximation
phase. Step 1 of the approximation phase, therefore, will remove at most one path
from each component (when the root has degree 2, since degree-3 roots are claimed)
and therefore breaks F; into at most four components. In this case Steps 2—4 of the
approximation phase do not apply, and at most one of Steps 2-4 can apply to each of
the remaining cases.

If F; is in one component after the forced phase, and Steps 2-4 do not apply then
we have two cases. If the root is degree three, Step 1 results in at most 3 components.
If the root is degree two, then F; could release the two branchpoints on either end of
this ¢-path, resulting in at most four components by Observation 3.1.

Suppose F; is in one component with exactly one unclaimed branchpoint after
the forced phase. If that branchpoint is released by Step 1, then F; is in at most

9

3 components after that step (only that branchpoint and its adjacent i-paths are
removed from F;), and Step 2 is redundant. Otherwise, Step 1 only has an effect
if the root has degree 2. In this case, Step 1 releases only the i-path through the
root, since its endpoints are claimed, resulting in two components, and the subsequent
application of Step 2 adds at most two more for a total of four.

Suppose Step 3 can be applied to F;. If wy is not an endpoint of the i-path through
the root of F; (or the root itself), then, as in the previous case, Step 1 results in at
most two components. Subsequently removing wq by Step 3 results in at most two
more components for a total of four. If wy is an endpoint of the ¢-path containing the
root of F; (or the root itself), then both wy and wy are released (and nothing more).
Since they share an i-path, this results in at most four components by Observation 3.1.

Finally, suppose Step 4 can be applied to F;. If none of wy, ws or ws is the root or
is an endpoint of the ¢-path adjacent to the root, then Step 1 will result in additional
components only if the root has degree two. Since both of the endpoints of this ¢-path
are claimed in this case, removing this ¢-path and wy (by Step 4) results in at most
four components. Otherwise, the combined application of Steps 1 and 4 requires the
release of wq, and possibly one of w; and ws as well (but not both, since if w, is the
root, neither of the other branchpoints will be released). By Observation 3.1 this will
result in at most four components. O

The following lemmas use this fact:

Fact 3.3. ([9]) The intersection of two subtrees of a tree is connected and contains
the root of at least one of the subtrees.

LemMA 3.4. If F; and F; are each in two components after the forced phase, then
after the approrimation phase, there is no node that is in F; and in F;.

Proof. This proof is similar to the correctness proof of the fixed-topology 2-
phylogeny algorithm in [9]. Let C; be a component of F; after the forced phase, and
let C; be a component of F; after the forced phase. Since F; and F} are both split in
two components during the forced phase, all branch points in C; and C; are claimed
during the forced phase (by Rule 2), and their intersection is a path in the fixed
topology (i.e., all nodes are degree 2). Furthermore, the root of C; or C; is in the
intersection. Therefore, the contention is cleared in Step 1 of the approximation phase
of the algorithm. O

LeMMA 3.5. If F; is in one component after the forced phase, and F; is in two
components after the forced phase, then there is no node that is in F; and in F; after
the approximation phase.

Proof. First note that no branch point of T} is part of T;. (Since F} is in only 2
pieces, it gave up only degree-2 nodes in the forced phase, and subsequently claimed
all branch points. None of these are in Fj, since F; was unbroken in the forced phase).
Thus, the intersection of T; and T} is a path in T;. We conclude that the intersection
of F; and Fj is a path in F; and contains at most one branch point of F; (otherwise, the
path would be removed from F; during the forced phase by Rule 1). If the intersection
contains the root of F}, then the contention will be removed during Step 1 of the
approximation phase. Otherwise, the intersection contains the root of F;. Thus, the
single branch point of F; that is contained in the intersection of F; and Fj is either
the root of F; or it is an endpoint of the ¢-path containing the root of F;. In either
case, the contention will be removed in Step 1 of the approximation phase. O

LemMMA 3.6. If F; and F; are each in one component after the forced phase, then
there is no node that is in F; and in F; after the approzimation phase.

10

Proof. We will consider various cases. Case (a, 3,7) will represent the situation in
which the intersection of F; and Fj after the forced phase contains o branch points of
F; and 8 branch points of F;, v of which are shared. Recall that when a branchpoint
v of F; is released, v and all nodes on i-paths adjacent to v are removed from Fj.
Case (0,0,0): As in the proof of Lemma 3.4, the intersection of F; and Fj is a path
containing the root of one of F; and Fj, so the contention is cleared in Step 1 of the
approximation phase.

Case (1,0,0): As in the proof of Lemma 3.5, the intersection of F; and Fj is a path
of F; containing one branch point of F; so the contention is cleared in Step 1 of the
approximation phase.

Case (1,1,7): Suppose without loss of generality that the root of F; is in the inter-
section of F; and Fj; after the forced phase. Then the branch point of F; is either the
root of F; or it is the endpoint of an ¢-path containing the root of F;. In either case,
it is released by F; during Step 1 of the approximation phase.

Case (2,0,0): This case cannot arise after the forced phase, because it requires two
branch points of F; on a single path of F;, which is forbidden by Rule 1 of the forced
phase.

Case (2,1,0): By Rule 1, after the forced phase, the intersection of F; and F; has
the branchpoint of F; (wg), between the two branchpoints for F; (w; and ws) as
illustrated in Figure 2(a). Let w4 be the other endpoint of the j-path adjacent to wy
that contains wy, and let w5 be the other endpoint of the j-path adjacent to ws that
contains ws. By Rule 3 of the forced phase, all branch points of F}; except wy, ws and
ws are claimed. If node wy is released by F; during the approximation phase, then
the contention is cleared. Otherwise, by Rules 2 and 4 of the approximation phase,
exactly one of {wy, w5} is unclaimed after the forced phase. Suppose without loss of
generality this is w4. Because wy is not released by F; in the approximation phase,
the root of Fj is not w, or on any j-path adjacent to it. Therefore the root of F; is in
the intersection. If the root of F; is on the ¢-path between w; and ws then by Step 1
of the approximation phase, F; will release both wy and w3, and the contention will be
cleared. If the root of F; was on the other i-path adjacent to wq in the intersection, then
wy would be the closest to the root of F; among the three unreleased F; branchpoints,
and F; would have released w, by step 3 of the approximation phase. Finally, if the
root is on an i-path adjacent to wz (but not wy), F; will release ws by Step 1 of the
approximation phase, clearing the i-path from ws to wy (not including wq). By Step 3
of the approximation phase F; will release wy, clearing the j-path from w; to w4 (not
including wgy). Therefore the contention is removed.

Case (2,1,1): This case cannot arise after the forced phase, because it requires two
branch points of F; on a single path (including endpoints) of F};, which is forbidden
by Rule 1 of the forced phase.

Case (2,2,0): By Rule 1 of the forced phase, the branch points of F; and F} are
interleaved and lie on a path, as illustrated in Figure 2(b). Label the four relevant
branch points wy, wq, w3, wy such that for k € {1,2, 3}, there is a path between wy, and
wg+1 which does not pass through any w; & {wy, wr41}. Without loss of generality,
assume that wq is a branch point of F;. Let ws be the other endpoint of the j-path
adjacent to wy that contains wq, and let wg be the other end of the ¢-path adjacent
to ws that contains wy. By repeated applications of Rule 3 of the forced phase, all
branch points of F; and F; other than w—wg are claimed.

If F; does not claim ws in the forced phase and F; does not claim we, then by

11

Fia. 2. Cases from Lemma 10. Branchpoints of forest F; are represented by solid circles, and
1-paths are solid lines. Branchpoints of forest F; are represented as empty circles with j-paths as
dashed lines. Dashed and solid together represent shared paths. (a) case (2,1,0), (b) case (2,2,0),
and (c) case (3,2,0).

Rule 4 of the approximation phase, w3 is released by F; and wy is released by F}, so
the contention is cleared.

So, suppose without loss of generality that wg is claimed by F;. Consider the
location of the root of F; relative to wy and ws. If the root of F; is on the far side of
we (down one of the i-paths not adjacent to ws), or on the (ws, wg) i-path between
wy and wg, then wy is on a j-path adjacent to the root of F;. Therefore, by Step 1
of the approximation phase, F; will release wy, clearing contention up to, but not
including w3, and by Step 3 of the approximation phase, F; will release wq, clearing
the remaining contention. A similar argument holds when the root is on the far side of
wy. If the root is on the (wy, ws) i-path, then by Step 1 of the approximation phase, F;
releases both wy and ws, removing contention. Similarly, if the root is on the (wq, wy)
j-path, (included in F}), then F; releases both wq and wy.

Case (3,2,0): By Rule 1 of the forced phase, the branch points of F; and F} are
interleaved and lie on a path as illustrated in Figure 2(c). Label the five relevant branch
points wy, wy, ws, wye, ws such that for k € {1,2,3,4}, there is a path between wy and
wg+1 which does not pass through any wy & {wg, wgs1}. By repeated application of
Rule 3 of the forced phase, all branch points of F; and F}; other than w;—ws are claimed.
Node w3 is released by F; by Rule 4 of the approximation phase. Contention remains
at wy and wg. Consider where the global root is with respect to this intersection. If
the global root is located down one of the paths adjacent to wy (but not adjacent to
w3), then the root of F; is on an j-path adjacent to wy. Fj releases wqg by Step 1 of

12

the approximation phase and wy by Step 3 of the approximation phase, removing the
remaining contention. A similar argument holds if the root is down a i-path adjacent
to ws (other than (ws, ws)). If the global root is down a j-path adjacent to wq (other
than (wsg,wy)), then the root of F; is on an i-path adjacent to wy (or wy itself),
and therefore F; will release it by Step 1 of the approximation phase. As before, Fj
will release wy by Step 3, removing the rest of the contention. A similar argument
holds when the global root is down a j-path adjacent to w4 (other than (wg,w4)). If
the global root is on j-path (wsq,ws), or down the i-path adjacent to ws which does
not intersect this j-path, then by Step 1, F} releases both w, and wy, removing all
contention.
Case (3,3,0): This case cannot arise. By Rule 1 of the forced phase, if it did exist,
the branch points of F; and F; would be interleaved and lie on a path. But then, by
applying Rule 3 of the forced phase, we find that at least one of the relevant branch
points of F; and F; would have been claimed during the forced phase.
Case (a > 1,5 > 1,7 > 0): This case cannot arise after the forced phase, because it
requires two branch points of F; on a single path of F;, which is forbidden by Rule 1
of the forced phase.
Case (3,5 <1,7): This case cannot arise after the forced phase, because it requires
two branch points of F; on a single path of F}, which is forbidden by Rule 1 of the
forced phase. O

LeMMA 3.7. After the approzimation phase, every node is in at most one forest F;.

Proof. The lemma follows from Lemmas 3.4, 3.5 and 3.6. O

4. Approximating Polymorphism. A polymorphic character (see [13]) al-
lows more than one state per character per species. This type of character has strong
application in linguistics [2, 18]. If there are r states, a polymorphic character is a
function ¢ : § — (201 7} —) where 281+ 7} denotes the power set (set of all
subsets) of {1, ..., r}. For a given set of species, the load is the maximum number of
states for any character for any species.

Often the evolution of biological polymorphic characters from parent to child is
modelled by mutations, losses and duplications of states between species (see [13]). A
mutation changes one state into another; a loss drops a state from a polymorphic
character from parent to child; and a duplication replicates a state which subse-
quently mutates. We associate a cost with each mutation, duplication and loss be-
tween a pair of species. In the state-independent model, which we will consider, a loss
costs ¢;, a mutation costs ¢,, and a duplication costs ¢q, regardless of which states are
involved. Following the justification in [2], we insist ¢; < ¢, < ¢q. Let sy, 89 € S and
assume sq is the parent of s,. In the state-independent model, we first look at the
differences in cardinality of the parent and child sets. If the parent has fewer states,
then we pay the appropriate duplication costs to account for the increased size of the
child. If the parent is bigger, then we pay the loss cost. Then we match up as many
elements as possible, and pay for the remaining changes as mutations. More specifi-
cally, as given in [2], we define X = ¢(s1)—c(s2), and Y = ¢(s2) —¢(s1). Then the cost
for the character ¢ from sy t0 3 is ¢, * | X | if | X| = |Y|, and is ¢;#[| X | = |Y|] + ¢ # ||
it | X|> Y] and is eq x [|[Y] = | X|] + e * | X i Y] > | X].

As input we are given a fixed-topology T which has a unique species from S
associated with each of its leaves, and label the leaf associated with s € S with
the set of states ¢(s). The parsimony problem is the problem of extending the

13

function ¢ to the internal nodes of T so that the sum of the costs over all edges
of T is minimized. In the monomorphic case (one state per character per species),
as discussed earlier, this problem can be solved in polynomial time [7], though the
problem of finding a minimum cost labelling is NP-hard if the input does not include
a topology [4, 5, 8, 17]. We will consider the load problem,introduced in [2]; calculate
a labelling of the internal nodes of a fixed topology T with load at most ¢ and cost
at most p. This problem was shown to be NP-hard in [2], even when ¢; = 0 and the
topology T is a binary tree. Note that the dynamic programming techniques presented
in Jiang, Lawler and Wang’s [11] and Gusfield and Wang’s [15] papers do not appear
to generalize for the polymorphic load problem. An (a,f)-approximation algorithm
for the load problem computes a phylogeny with load at most af and cost at most ¢
provided there is a load-{ cost-c¢ phylogeny. Note that this is a pseudoapproximation
algorithm, since the cost of the best af-load phylogeny may be significantly lower than
the cost of the best {-load phylogeny. In this section of the paper, we consider the load
problem when ¢; = 0 and the topology is arbitrary. We extend the results of section 2
to obtain, for any a > 1, an («a, -%5)-approximation algorithm for the problem. (Note
that taking o = 2 gives a (2, 2)-approximation algorithm.)

We first quote the following observation, which was first noted in [2]:

OBSERVATION 4.1. If ¢; = 0, then if there is a labelling for the topology T which
has load { and cost p, then there is also a labelling for T with load { and cost p such
that each internal node contains all the states in the subtree rooted at it or else has
load (.

Therefore to approximate the load we only need to consider the labellings where
each internal node contains all the states in the subtree rooted at it or else has load £.
We begin by presenting an ILP which provides an exact solution for the load problem.
We then use the solution to the linear-programming relaxation of this ILP to compute
an (a, 7%)-approximation for the problem. The integer program P uses the variables
X,,i, for each node v of the fixed-topology T and each state ¢ € {1,...,r}, cost vari-
ables cost.; for each edge e € E(T') and each state 7 € {1,...,r} and the total cost
variable cost. for each edge e. These variables have the following interpretation:

X, _ 1 if state ¢ is in ¢(v)
o N 0 otherwise
coste; = 1 ifie c(v) and 7 & c(u), for e = (u — v)
' 0 otherwise
coste = Y i_jcosty,

The ILP P is then defined as:

minimize p

subject to

(9) Xo; = 1 for each leaf v € V(T), Vi € ¢(v)
(10) ZX < (Yo € V(T)

(11) l:clostw' > 0 Vee E(T), t=1,....r

14

(12) coste; > Xyi— Xu,; Ve=(u—v)e E(T),i=1,...,r

(13) coste = Y coste; Ve = (v — v) € E(T)
=1

(14) Z cost, < p/em

ecE(T)
(15) X, coste; € {0,1}

The integer program P solves the load problem. However, we require only that
it provides a lower bound on the best cost. We now show that when we solve P with
parameter {, the optimal value of p is a lower bound on the cost of the best load-/
solution to the fixed topology problem.

LEMMA 4.2. Let S be a species set, T be a fized topology and ¢ : S — (2{1""’7} —0)
be a polymorphic character on S. If the internal nodes v of T can be labelled with
subsets of {1,...,7} to create a phylogeny for ¢ with load { and cost p, then there is a
feasible solution for the linear program for this value of £ and p.

Proof. Because of Observation 4.1, we can assume that in the load-¢, cost-¢ phy-
logeny, for each internal node v in V(T'), either ¢(v') C ¢(v) for every child v’ of v, or
else [¢(v)[= (. Therefore the cost of this phylogeny is 3=, _..)ep(r)(cm*|c(v) —c(u)]) =
p. Assign values to the X, ; variable for each internal node v and to the cost.; variable
for each edge e = (u — v) as follows:

B 1 ifiec(v)
Ko B { 0 otherwise
B 1 ifi€e(v)—c(u)
costei = { 0 otherwise
This assignment satisfies constraints (15), (10), (11) and (12) of P. Constraint (9) is
automatically satisfied, and constraint (13)is definitional. Also, ¢, *coste = ¢y %|c(v)—
c(u)| for every e = (u — v) by definition of the cost.;, and therefore 3 cp(r) cm *
coste = p, and constraint (14) is satisfied. O
Once again, since integer linear programming is AP-hard, we solve the linear-
programming relaxation L£P of P, which consists of all the constraints of P except
that Constraint 15 is replaced with the constraint 0 < X, ;, cost.; < 1 (15).

THEOREM 4.3. Suppose there is a solution for the linear program LP. Then we
can assign states to the internal nodes of input tree T such that the resulting phylogeny
for ¢ has load ol and cost no more than (ﬁ) p.

Proof. We assign states to the internal nodes of the fixed topology from the
leaves upwards. For each internal node v € V(T') — L(T'), consider the set R(v) =
Uw—vyerryc(v’). I [R(v)] < af, then define c(v) = R(v). If |[R(v)] > af then
choose the al states ¢ of R(v) which have the greatest X,,; values. By definition, this
assignment of states to the internal nodes of T' has load at most af.

_a
a—1

To show that the cost of this assignment is no more than ()p, note that

the cost on an edge e = (u — v) € E(T) is ¢ * |c(v) — c(u)|, as |e(v) — e(u)| is
the number of mutations on e. Our assignment guarantees that if |¢(u)| < af then
c(u) D ¢(v), which implies ¢, * |¢(v) — ¢(u)| = 0, so we need only consider edges
whose upper endpoint has full load. Suppose |¢(u)| = ol and ¢ € ¢(v) — ¢(u). Then,

15

by construction of the phylogeny, there is a downwards path from v to some leaf w
which has i € ¢(v’) at every node along the path, including w. Suppose this path is
er = (v— 1), eg =(v1 = v2), ..., € = (v;_1 — w). By the constraints of the linear
program, coste; +coste, i+ ...+ coste; i > (Xyi— X))+ (Xpp i = Xoi) +oo oA (X —
Xo;j_1,i) = Xw,i — Xy, and as w is a leaf and ¢ € ¢(w), this is 1 — X, ;. Then, since
i € c(u), and the ol states in c¢(u) were chosen to have the greatest X, ; values, we
know X, ; < {/(al+1). The worst case is achieved when there are al + 1 positive X, ;
values all equal. They sum to at most £ from constraint 10, and therefore the smallest
one, which cannot be included in the set, has value at most ¢/(al + 1). Therefore
coste; + coste, i + ...+ coste; i > ((@ — 1)+ 1)/(al + 1). Furthermore, the costs
coste ;, COStey iy ... COSte; will not be allocated to any other mutation to ¢, because any
mutation occurring above u will not have an unbroken path in ¢ intersecting with any of
the edges e, e1,...,e;. So every mutation along an edge e = (v — v) € T with |¢(u)| =
al contributes at least ((a —1)(+1)/(al + 1) to the sum 3 c p(7)coste in our linear

program. Hence p/em > eep(r) 0te > Lempumnen(r) le(2) = e(w)| (25555 s0
the cost 3 e (u—v)en(r) Cm * [€(v) = c(u)| < (af(a =1)) xp. D

16

REFERENCES

[1] H. Bodlaender, M. Fellows, T. Warnow, “Two Strikes Against Perfect Phylogeny”, Proceed-
ings of the 19th International Congress on Automata, Languages and Programming (ICALP),
Springer-Verlag Lecture Notes in Computer Science, pp. 273-287 (1992).

[2] M. Bonet, C. Phillips, T.J. Warnow and S. Yooseph, Constructing Evolutionary Trees in the
Presence of Polymorphic Characters, Proceedings of the 28th Annual ACM Symposium on the
Theory of Computing (1996).

[3] I. Borosh and L.B. Treybig, Bounds on positive integral solutions of linear Diophantine equations,
Proceedings of the American Mathematical Society, Vol 55 (1976).

[4] W.H.E. Day, Computationally difficult parsimony problems in phylogenetic systematics, Journal
of Theoretical Biology, Vol 103 (1983).

[5] W.H.E. Day, D.S. Johnson and D. Sankoff, The computational complexity of inferring phylogenies
by parsimony, Mathematical biosciences, Vol 81 (1986).

[6] W.H.E. Day and D. Sankoff, “Computational complexity of inferring phylogenies by compatibil-
ity”, Systematic Zoology, Vol 35(2):224-229 (1986).

[7] W. Fitch, Towards defining the course of evolution: minimum change for a specified tree topology,
Systematic Zoology, Vol 20 (1971).

[8] L.R. Foulds and R.L. Graham, “The Steiner Problem in Phylogeny is NP-complete”, Advances
in Applied Mathematics, Vol 3:43-49 (1982).

[9] L.A. Goldberg, P.W. Goldberg, C.A. Phillips, E. Sweedyk and T. Warnow, “Minimizing phylo-
genetic number to find good evolutionary trees”, Discrete Applied Mathematics, to appear.

[10] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
completeness, W.H. Freeman and Company (1979).

[11] T. Jiang, E.L. Lawler and L. Wang, “Aligning Sequences via an Evolutionary Tree: Complexity
and Approximation”, Proceedings of the 26th Annual ACM Symposium on the Theory of
Computing (1994).

[12] R.M. Karp, “Reducibility among combinatorial problems”, Complezity of Computer Computa-
tions, eds. R.E. Miller and J.W. Thatcher, Plenum Press (1972).

[13] M. Nei, Molecular Evolutionary genetics, Columbia University Press, New York (1987).

[14] M.A. Steel, “The complexity of reconstructing trees from qualitative characters and subtrees”,
Journal of Classification, Vol 9:91-116 (1992).

[15] L. Wang and D. Gusfield, “Improved Approximation Algorithms for Tree Alignment”, Proceedings
of the Tth Annual Symposium on Combinatorial Pattern Matching, 220-233 (1996).

[16] L. Wang, T. Jiang, and D. Gusfield, “A more efficient approximation scheme for tree alignment”,
Proceedings of the First Annual International Conference on Computational Molecular Biology
(1997).

[17] T.H. Wareham, “On the Computational Complexity of Inferring Evolutionary Trees”, M.Sc.
thesis, Technical Report No. 9301, Department of Computer Science, Memorial University of
Newfoundland, Canada, (1993).

[18] T. Warnow, D. Ringe and A. Taylor, “A character based method for reconstructing evolutionary
history for natural languages”, Tech Report, Institute for Research in Cognitive Science, Uni-
versity of Pennsylvania, (1995), and Proceedings of the 7th Annual ACM/SIAM Symposium
on Discrete Algorithms (1996).

17

