Computation in permutation groups: counting
and randomly sampling orbits

Leslie Ann Goldberg

Abstract

Let © be a finite set and let G be a permutation group acting on 2.
The permutation group G partitions € into orbits. This survey fo-
cuses on three related computational problems, each of which is defined
with respect to a particular input set Z. The problems, given an input
(Q2,G) € Z, are (1) count the orbits (exactly), (2) approximately count
the orbits, and (3) choose an orbit uniformly at random. The goal is to
quantify the computational difficulty of the problems. In particular, we
would like to know for which input sets 7 the problems are tractable.

1 Introduction

Let Q be a finite set and let G be a permutation group acting on 2. The
permutation group G partitions €2 into orbits: Two elements of {2 are in the
same orbit if and only if there is a permutation in G which maps one element
to the other. This survey focuses on three related computational problems,
each of which is defined with respect to a particular input set Z:

1. Given an input (2, G) € Z, count the orbits.
2. Given an input (2, G) € Z, approximately count the orbits.
3. Given an input (2, G) € Z, choose an orbit uniformly at random.

The goal is to quantify the computational difficulty of the problems. In partic-
ular, we would like to know for which input sets Z the problems are tractable.

Many interesting orbit-counting problems come from the setting of “Pélya
theory”. In this setting, X is a fixed alphabet of size at least two. For every
(infinite) set G of permutation groups, we get an input set Z(G). In particular,
the group G € G corresponds to the input (Em,@) € Z(G), where m is the
degree of G, ¥X™ is the set of length-m words over alphabet X, and G is a
permutation group acting on X™ which is induced by G. We will later give a
precise definition of G (as a function of G), but the rough idea is as follows:
Every permutation g € GG induces exactly one permutation g € G. The image
of a word o € ¥™ under ¢ is the word 3 that is obtained from « by permuting
the m alphabet symbols in « (applying g to the “positions” of the symbols).
We use the notation P to denote the set of all permutation groups, so Z(P) is
the input set corresponding to all inputs in the Pélya-theory framework (over
a fixed alphabet X).
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Problems 1-3 are studied in Sections 3, 4 and 5 respectively. In those sec-
tions, we will give the precise complexity-theory definitions which we will need
to formally capture the notion of “tractability”. We will also give appropriate
references, tracing the development of ideas. In this section, we introduce the
area by giving a very high-level sketch, stating (roughly) what is known about
each of the three problems, without giving details, definitions, or references.

There are natural input sets for which exact orbit-counting is tractable.
Here is an example. Suppose that €2, is the set of all n-vertex trees and
that G,, is the permutation group acting on €2, which is induced by vertex
permutations. The orbits of €2, under G,, correspond to isomorphism classes.
That is, there is one orbit for each unlabelled n-vertex tree. Unlabelled trees
can be counted quickly using classical methods based on generating functions
and dynamic programming. Thus, the orbit-counting problem is tractable for
the input set Z = {(Q,,Gn)}.

Perhaps surprisingly, the orbit-counting problem becomes intractable if we
make the input set slightly more complicated: Suppose that each input cor-
responds to a tree 1", and orbits correspond to unlabelled subtrees of 1. It
turns out that this orbit-counting problem is #P-complete. We will discuss
the complexity class #P in Section 3. To give a rough idea, counting problems
which are complete in #P are equivalent in difficulty to counting the number of
satisfying assignments of a Boolean formula, and this is believed to be very de-
manding computationally. Thus, it is unlikely that there is a polynomial-time
algorithm for counting unlabelled subtrees of a tree 7. What happens when
we make the input set still more complicated? Suppose now that each input
corresponds to a graph H, and orbits correspond to unlabelled subtrees of H.
By the previous result, the new problem (counting unlabelled subtrees of a
graph) is at least as difficult as #P. But perhaps it is more difficult? Whether
or not it is more difficult is unknown, but a complexity-theoretic result of Toda
implies that it cannot be much more difficult. The new problem is complete
in the complexity class FP*Y which, as we will see later, is not so different
from #P. The problem of counting orbits in the Pdlya-theory setting (with
input set Z(P)) is also complete in FP#¥. There are several natural prob-
lems for which the complexity of orbit-counting is unresolved. For example,
there is no known efficient algorithm for exactly counting unlabelled n-vertex
graphs. It seems plausible that this problem is computationally difficult, but
we seem to lack the complexity-theory machinery to quantify the difficulty of
such problems. These problems are members of the complexity class #P,,
which will be discussed in Section 3.

There are many known examples of counting problems which are #P-
complete to solve exactly but for which good (efficient) approximation al-
gorithms exist. Interestingly, we do not know any natural' orbit-counting

! Technically, every counting problem without orbits can be expressed as an orbit-counting
problem in which the relevant permutation group contains only the identity, but this is not
what we mean by a “natural” orbit-counting problem.
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problems which have this property, though perhaps this is just because orbit-
counting problems have not been sufficiently studied.

There are examples of problems for which the complexity of exact orbit-
counting is unresolved, but approximate orbit-counting is known to be tractable.
For example, there is an efficient algorithm for approximately counting unla-
belled n-vertex graphs. It is worth pointing out we do not know any effi-
cient algorithms for this problem using traditional methods such as generating
functions and dynamic programming. The only algorithm which is known
relies upon a reduction from almost-uniform sampling, which we will discuss
presently (see also Section 5.6).

As we mentioned before, some #P-complete counting problems have effi-
cient approximation algorithms. For other #P-complete counting problems,
the corresponding approximation problem can be shown to be “complete” in a
formal sense which implies that there is no efficient approximation algorithm
under standard complexity-theoretic assumptions. It would be very interesting
to know whether the approximate orbit-counting problem is complete in this
sense for the set of Pélya-theory inputs Z(P). This seems to be a very difficult
question. At present, the most that can be said is that the related question
of approximately counting orbits over a coset (rather than over a group) is
complete.

For many computational counting problems, there is a close connection
between the complexity of approximately counting and the complexity of sam-
pling uniformly at random. However, with a few exceptions, which we will
discuss, these connections break down for orbit-counting problems. Thus, sam-
pling must be studied separately from approximate counting.

Most of the work on sampling orbits has focused on three methods: induc-
tive sampling, the orbit-sampling process, and rejection sampling. “Inductive
sampling” can be used when generating functions for enumerating orbits can
be efficiently evaluated. The idea is to find a recurrence for the coefficients
of the generating function, which can be computed by dynamic programming.
The recurrence should show how to express outputs corresponding to a given
instance of the problem in terms of outputs to smaller instances. Sampling is
then done recursively: The coefficients are used to probabilistically select the
appropriate (recursive) sub-problem. For example, unlabelled n-vertex trees
can be sampled in this way.

The “orbit-sampling process” is inspired by the orbit-counting lemma of
Cauchy, Frobenius and Burnside. This lemma says that each orbit is repre-
sented |G| times in the set Y(Q2, G), which is the set of pairs («, g) such that
a €€, g € G and g fixes a (that is, g maps « to itself). The orbit-sampling
process is a Markov chain with state space €). To make a transition from the
state «, the chain first picks uniformly-at-random a permutation g € G which
fixes o and then chooses the new state uniformly-at-random from the subset
of € which is fixed by g. The orbit-sampling lemma can be used to show that
the stationary distribution of this process is uniform on orbits. If the input
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set is chosen such that (1) each transition can be implemented in polynomial
time, and (2) the Markov chain is rapidly mixing, then the orbit-process gives
an efficient sampler for orbits.

Not too much is known about the mixing-time of the orbit-sampling pro-
cess, even in the Pélya-theory setting. It is not rapidly-mixing for the complete
set of inputs Z(P). There is also an infinitely-large subset of Z(P) for which
the transitions can be implemented in polynomial time, but the process is still
not rapidly mixing. The process is known to be rapidly mixing if the set G of
permutation groups is either (1) the set of all symmetric groups S,,, or (2) the
set of all cyclic groups (all permutation groups with a single generator), but
nothing else is known. In particular, it is not even known whether the orbit-
sampling process is rapidly-mixing for the situation in which orbits correspond
to unlabelled n-vertex graphs.

As we mentioned earlier, there is an alternative efficient algorithm for sam-
pling unlabelled n-vertex graphs. This algorithm uses the “rejection sampling”
method, which will be explained in Section 5.6. The algorithm can be extended
to the general orbit-sampling framework. Whether or not it leads to an effi-
cient sampling algorithm depends upon the input set Z. What is clear is that
it will not work unless the identity permutation accounts for a sufficiently large
fraction of the pairs in Y(Q, G). That is, a typical member of {2 must not be
fixed by too many permutations in G.

An example of an input set which does not have this property is as follows:
Each input corresponds to a degree-sequence in which every degree is bounded.
Orbits correspond to unlabelled connected multigraphs with the given degree
sequence. Here the degree sequence may contain many vertices of degree 1 or 2,
in which case a typical member of €2 is a multigraph which is fixed by many
automorphisms. The ideas which have been described so far can be combined
to give an efficient sampling algorithm for this problem. Nevertheless, we lack
good general techniques for orbit-sampling, especially when the objects in (2
have many symmetries.

The final section of the survey is devoted to a problem which is related to
that of sampling and counting orbits — namely, the problem of listing orbits.
Not too much is known about the problem, and the section gives pointers to
some recent work in the area.

2 Definitions and Preliminaries

Let € be a finite set and let G be a permutation group acting on €. If
a € Q and g € G, we write af to denote the image of o under g. We write
G, to denote the subgroup of G consisting of the permutations in {g € G |
ad = a}. We define the relation ~ on € in which a~f if and only if there
is a permutation ¢ € G such that a9 = . The relation ~ partitions €2 into
equivalence classes, which are called orbits. We use the notation a“ to denote
the orbit {a? : ¢ € G} containing o and the notation ®(€2, G) to denote



Counting and randomly sampling orbits 5

the set of orbits. For each permutation g € G, we let fix(g) denote the set
{a € Q| a9 =a}. Welet T(Q,G) denote the set

T(QG)={(a,9)| a€Nand g€ G and « € fix(g) }.

The following lemma was known to Cauchy and Frobenius (see [40]) but is
often called “Burnside’s Lemma”. Following Cameron [7], we call it the “orbit-
counting” lemma.

Lemma 2.1 The orbit-counting lemma  Let G be a permutation group
on the finite set Q. Then for each orbit A € ®(Q, G) we have

{(e,9) € T(Q,G) [ € A} = |G,

T(Q,G)] = [2(2,G)|G].

Example 2.2 Let €2, be the set of all n-vertex graphs and let G,, be the per-
mutation group acting on §2, which is induced by vertex permutations. That is,
G, has n! permutations — one for each permutation of the n vertices. If 7 is
a permutation of the vertices and « s a graph in €2, then the image of o under
the permutation corresponding to 7 is the graph obtained from « by applying ©
to the vertices. The orbits of 2, under G,, correspond to isomorphism classes.
Thus, we can think of the orbits as representing the set of unlabelled n-vertex
graphs.

We will let Uq ¢ denote the uniform distribution on orbits. That is, for
each orbit A in ®(2, G), the probability of A in Ug ¢ (denoted Ug ¢(A)) is
1/]8(2,G)|.

We will measure the distance between two probability distributions D,
and D, over the discrete sample space ¥ using the total variation distance
metric. Namely,

A(D1. D) = mas Dy (4) = Dy(4)] = 3 32 Di(x) = Dafa).

zew

2.1 A special case of Pdlya’s theorem

Many of the orbit-counting problems which we will consider come from
the setting of Pdélya theory. We will not be using the fully general version of
Poélya’s theorem. Instead, we will restrict our attention to the special case of
the theorem that we define in this section. Suppose that ¥ = {0,...,k—1}isa
finite alphabet and that G is a group of permutations of the set {0,...,m—1},
which we denote [m]. For every permutation g € G, let ¢(g) denote the number
of cycles in g. Let Q be the set ¥™ of length-m words over alphabet ..
The group G has a natural action on 2 which is induced by permuting the
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“positions” 0,...,m — 1 of the alphabet symbols in the words. In particular,
if « = apa;...a,_; is a word in €2 then the image of a under the induced
action of g is the word 8 = bgby ...b,_1, in which, for all j € [m], b; is -1
That is, b; is the element a; such that ¢ = j. To avoid confusion, we use
the symbol G to denote the permutation group on €2 which is induced by G
and we use the symbol ¢ to denote the permutation of €2 which is induced by
permutation g € G.

Now fix(§) has k9 elements. In particular, if a word « is in fix(§), then
all of the positions which form a single cycle of ¢ must have the same alphabet
symbol in «. There are k possible symbols which can be chosen. Thus the
orbit-counting lemma (Lemma 2.1) gives us the following special case of Pélya’s
theorem.

Lemma 2.3 Pélya’s theorem If ¥ = [k] is a finite alphabet, Q = ¥™,
and G is a permutation group on [m)], then

(0, G)| = é' S ke,

geqG

Example 2.4 If ¥ = {0,1} and G is the symmetric group on [m] then the
m + 1 orbits consist of, for each i € [m + 1], those words in ¥™ with the
symbol “17 in 1 positions.

Example 2.5 The set of unlabelled n-vertex graphs (Example 2.2) can be en-
coded as orbits in the Polya-theory setting by using words in X™ to encode
graphs. In particular, the graph H can be represented by the word correspond-
ing to the upper-diagonal part of H’s adjacency matriz.

Further examples can be found in surveys such as [8] and [45].

2.2 Computational questions

We work in the following computational framework which is similar to that
of [25]. We specify the input set Z, where each input in Z consists of a set
and a permutation group G. The inputs are represented in a concise manner,
which depends upon Z. We study the following computational problems.

1. exact counting: Given an input (2, G) € Z, output |®(2, G)|.

2. approzimate counting: Given an input (£2,G) € Z and an accuracy pa-
rameter € € (0, 1), output an integer random variable Y satisfying

P _€<L<6 >§
"\© Ceae =) T
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3. almost-uniform sampling: Given an input (Q,G) € Z, and an accuracy
parameter € € (0, 1], output a random variable «. Typically, o will be
a member of (2, and will be viewed as a representative of its orbit, but
it will be technically useful to allow sampling algorithms to sometimes
produce other outputs.

We measure the accuracy of a sampling algorithm by constructing a
distribution D based on the output distribution of the algorithm. The
domain of D is taken to be ®(Q,G) U {L}, where L is an “error” sym-
bol, which records the fact that the output does not represent an or-
bit. For each orbit A € ®(, ), the probability of A in D is defined
to be Pr(a € A). Therefore, the probability of L in D is equal to
1= > Aca,q Pr(e € A). The algorithm is an almost-uniform sampler
if and only if diy (D, Ua¢) < e

For each particular input set Z, we get a particular exact counting prob-
lem, approximate counting problem, and almost-uniform sampling problem.
We will usually discuss the representation of the inputs when the particular
problem is discussed. Typically, we will represent inputs in a concise manner.

In the Pélya-theory setting, we will adopt the following notation from the
introduction. The alphabet ¥ is fixed. For any permutation group G, we will
let m(G) denote the degree of G. For any set G of permutation groups, Z(G)
denotes the input set corresponding to G. In particular,

7(G) = {(z™9,G) | G € G}.

We use the notation P to denote the set of all permutation groups, so Z(P) is
the input set corresponding to all inputs. The input (X™, G) will be presented
as a set of O(m) generators for G.?

For convenience (in applying complexity-theoretic definitions), we will as-
sume that all inputs to computational problems are encoded as words over
the binary alphabet {0, 1}. This typically does not present any problems. For
example a generator of a degree-m permutation group can be encoded as a
binary word of length O(mlogm). Note that the input size is typically much
smaller than the size of {2 or G. In the Pélya-theory setting, the size of {2 is k™
and the size of G can be as large as m!, but the size of the input is bounded
from above by a polynomial in m. We are interested in knowing for which
input sets Z the computational problems are tractable, in a sense which will
be made clear as we go along.

2The construction of small generating sets is beyond the scope of this article, but Chap-
ter 1 of [7] describes several such constructions, due to Schreier, Sims, Jerrum, Mclver and
Neumann.
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3 Exact counting

In Sections 3.2 and 3.3 we will see that for many natural input sets Z the
exact orbit-counting problem is #P-hard. Thus, it is as difficult as counting
the number of satisfying assignments of a Boolean formula. In order to give
details, we need some definitions, which are given in Section 3.1.

3.1 The complexity class #P

Following Valiant [50], we say that a function f : {0,1}* — N is in the
complexity class FP if it can be computed by a deterministic polynomial-
time Turing machine. We say that it is in #P if there is a nondeterministic
polynomial-time Turing machine M such that for all z € {0,1}* the number
of accepting computations of M on input x is f(z). A polynomial-time Turing
reduction from a function f : {0,1}* — N to a function ¢g : {0,1}* — N is
a deterministic polynomial-time oracle Turing machine which, whenever it is
supplied with an “oracle” for g, can compute f. Thus, the reduction shows
how to compute f in polynomial time, assuming that we have an imaginary
means for computing ¢ in polynomial time. A counting problem, i.e., a function
f:{0,1}* — N is said to be #P-hard if every function in #P is polynomial-
time Turing-reducible to f. If, in addition, f € #P, then it is said to be #P-
complete. A #P-complete problem is equivalent in computational difficulty to
problems such as counting the number of satisfying assignments of a Boolean
formula, or evaluating the permanent of a 0,1-matrix, which are widely believed
to be intractable. For background information on #P and its completeness
class, see, for example, [14] or [44].

3.2 Automating Pdlya theory

In this section, we see that the problem of counting orbits in the Pdlya-
theory setting is equivalent in computational difficulty to solving a #P-complete
problem. Let ¥ = [k] be a fixed alphabet with £ > 1. Consider the following
computational problem.

Name. #POLYAORBITS.
Instance. O(m) generators for a group G of permutations of [m].

Output. |G| - |®(=™, G)|.

The size of a permutation group can be computed in polynomial time from an
arbitrary set of generators (see [7]). Thus, #POLYAORBITS is computationally
equivalent to the orbit-counting problem with input set Z(P). The following
theorem quantifies the computational difficulty of this problem.

Theorem 3.1 [17] #POLYAORBITS is #P-complete.
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Pélya’s Theorem (Lemma 2.3) tells us that the appropriate output of
#POLYAORBITS is 3 ¢ k9. From this, it is not difficult to show that
#POLYAORBITS is in #P. Thus, to prove Theorem 3.1, we need only show
that it is #P-hard. The #P-hardness follows from Theorem 2 of [17] and an
alternative proof has been given by Jerrum in [27]. Nevertheless, in order to
generalise the result in Section 4, we will need a hardness proof which does
not use interpolation, so we provide such a proof here.

We start with some definitions. A “cut” of a graph is an unordered par-
tition (S,T) of its vertex set. The “cut edges” corresponding to the cut are
those edges of the graph which have one endpoint in S and the other in 7.
Since the partition (S,T') is unordered, a cut of a connected graph is uniquely
determined by the set of cut edges. The “size” of the cut is the number of cut
edges. Lemma 12 of Jerrum and Sinclair’s paper [30] shows that the following
problem is #P-complete.

Name. #LARGECUT.

Instance. A positive integer j and a connected non-bipartite graph H in which
no cuts are larger than size j.

Output. The number of size-j cuts of H.

Thus, Theorem 3.1 follows from the following lemma.

Lemma 3.2 There is a polynomial-time Turing-reduction from #LARGECUT
to #POLYAORBITS.

Proof Let j and H be an instance of # LARGECUT. Let V' denote the vertex
set of H and let E denote the edge set of H. Let r = |V|>. Let G be the degree-
2r|E| permutation group constructed as follows. For each edge e € E and each
i € [r], we will have an object a.; and an object b, ;. For each vertex v € V' we
will have a permutation g,. The action of g, on the set | J,.p L_Jiem{aeﬂ-7 bei} is
as follows. For every edge e € E which is incident on v, and for every i € [r],
gy transposes a.; and b ;. Let G be the group generated by the permutations
U’U Jv-

Since the permutations in {g,} commute and have order 2, the permuta-
tions in G correspond to subsets of V. The points a.; and b.; are transposed
in a given permutation if and only if exactly one of the endpoints of e is in the
corresponding subset of V. Thus, the permutations in GG are in one-to-one cor-
respondence with the cuts of H. A cut of size ¢ corresponds to a permutation
with 2|E|r — fr cycles.

Now let h be the permutation which transposes every pair (a., b.;). Since
H is not bipartite, h ¢ G. Let G’ be the permutation group generated by
{g,} U{h}. Note that the permutations in this set commute and have order 2.
Let C denote the coset of G in G' which is not equal to G. As before, the
permutations in C' are in one-to-one correspondence with the cuts of H. A
cut of size ¢ corresponds to a permutation with 2|E|r — (|E| — €)r = |E|r + {r
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cycles. Let P(G) denote the output of #POLYAORBITS(G) and let N; denote
the number of size-¢ cuts of H. Then

J
P(G') = P(G) =Y k9 =" N 5o
=0

geC
P(G') - P(G) v (e
kI Elr4jr - Nj + Z Nek™= 2.
£=0

Since Z o Nk is non-negative and (from the definition of Ny) is at
most 21k We have

v < P& = P(@)

oVl
i<~ SN2V

Since 7 = |V|* and k > 2 and N; is an integer,

A GE]

J LI Elr+jr

3.3 Counting subtrees of a tree

In this section, we will consider an exact orbit-counting problem that has a
rather different flavour from the Pélya-theory problem of the previous section.
We will see that this problem too is #P-complete. Thus, exactly counting
orbits is computationally difficult, even in a seemingly simple setting.

Suppose that T is a tree with vertex set V' and edge set E. We will let Qp
be the set containing all (labelled) subtrees of T. That is, every element T"
of Qr is a graph with vertex set V', some edge set £’ C E, and at most one
non-trivial connected component. (At most one connected component of 7"
will contain edges.) Let G be the permutation group acting on 7 which is
induced by vertex permutations. As in Example 2.2, the orbits correspond to
unlabelled subtrees of T'. Jerrum and I [20] have shown that this orbit-counting
problem, the problem #SUBTREES below, is #P-complete.

Name. #SUBTREES.
Instance. A tree T

Output. The number of distinct (up to isomorphism) subtrees of T'. That is,
|®(Qr, Gr)|.

The proof that #SUBTREES is #P-complete is contained in [20]. The
complexity of most variants of the problem is still unknown. For example, the
status of the following problem is open.
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Name. #SUBFORESTS.
Instance. A tree T
Output. The number of distinct (up to isomorphism) subforests of T.
The constructions used in [20] involve trees with high-degree vertices, so

it is also not clear whether the following problem is #P-complete for any
constant A > 2.

Name. #ATREE-SUBTREES.
Instance. A tree T in which every vertex has degree at most A.

Output. The number of distinct (up to isomorphism) subtrees of T.

We will conclude this section by briefly considering the following generali-
sation of #ATREE-SUBTREES.

Name. #AGRAPH-SUBTREES.
Instance. A graph H in which every vertex has degree at most A.

Output. The number of distinct (up to isomorphism) subtrees of H.

Corollary 6 of [20] shows that # AGRAPH-SUBTREES is in the complexity
class FP#Y. Informally, this is the class of functions which are “as easy” as
#P. More formally, a function f is in FP#T if it is polynomial-time Turing-
reducible to a problem in #P. Thus, by the following lemma, which is proved
in the appendix, # AGRAPH-SUBTREES is complete in FP#¥ for every fixed
A > 5.

Lemma 3.3 (Goldberg, Jerrum, Kelk) For any fized A > 5, the problem
#AGRAPH-SUBTREES is #P-hard.

3.4 Orbit-counting problems and the complexity class #P,

In the previous section, we have seen that the problem of counting unla-
belled subtrees of a given tree T is #P-complete. Now suppose that instead
of having a particular n-vertex tree 1" as input, the input is just n and we are
interested in counting all unlabelled trees with at most n vertices. We will
consider the following computational problem.

Name. #TREES.
Instance. A positive integer n, expressed in unary.

Output. The number of distinct (up to isomorphism) n-vertex trees.

3The reason that the input to #TREES is expressed in unary is that we are interested
in knowing whether there is an algorithm for # TREES whose running time is bounded from
above by a polynomial in n. Since there are exponentially many unlabelled n-vertex trees,
an algorithm whose running time is bounded from above by a polynomial in logn would not
even have enough time to write down the answer.
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The problem #TREES can be viewed as an orbit-counting problem. In par-
ticular, it is the orbit-counting problem corresponding to input set {(2,, G,)}
in which €2, is the set of n-vertex trees, and G,, is the group induced by vertex
permutations (see Example 2.2).

#TREES can be solved in polynomial time using a generating function for
the number of orbits. Once the generating function is given, its coefficients
can be computed by dynamic programming. Harary and Palmer’s book [23]
contains a survey on using generating functions to do unlabelled enumeration.
Their book gives a full treatment of the enumeration of unlabelled trees, fol-
lowing the work of Otter [43]. In order to illustrate the principles, we repeat a
few of the details here. Let T'(z) = Y - T,z" be the generating function for
rooted unlabelled trees. That is, 7}, is the number of rooted unlabelled trees
with n vertices. Pélya’s theorem gives an expression? for T'(z) which can be
manipulated to yield the recurrence

TM:%Z > ATy | Turn, (3.1)

k=1 \ dlk

where the sum is over all divisors d of k. Using this formula, the coefficients
Ty, T, ..., T, can be computed in polynomial time by dynamic programming.
(“Dynamic programming” just means that the coefficients should be computed
in the order 7,75, .... Note that a recursive algorithm would not complete in
polynomial time unless a device such as a “memory function” is used.) Next,
let t(z) = D7, t,a"™ be the generating function for (unrooted) unlabelled
trees. It can be shown that

o) =Tla) — 5 (T(@) = T(?))

so the coefficients 1, s, ..., %, can also be computed in polynomial time.
Now that we have seen a polynomial-time algorithm for #TREES, let us
consider the following related problem from Example 2.2.

Name. #GRAPHS.
Instance. A positive integer n, expressed in unary.
Output. The number of distinct (up to isomorphism) n-vertex graphs.

There is no known generating function which would enable us to quickly solve
#GRAPHS. In fact, there is no known polynomial-time algorithm (of any type)
for this problem.

Both #TREES and #GRAPHS are examples of problems from the com-
plexity class #P,. The definition of this class is similar to the definition of
#P. The only difference is that the input alphabet is now unary rather than
binary. Valiant [50] has shown that #P,; does contain complete problems.

4This expression was also discovered by Cayley.
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Notably, Bertoni, Goldwurm and Sabadini have shown that counting strings
of a given length in some context-free language is complete [4]. Nevertheless,
no natural combinatorial problem is known to be complete for #P, and it
seems unlikely that a problem such as #GRAPHS would be complete. Thus,
at present, we seem to lack methods for quantifying the computational com-
plexity of #GRAPHS and similar problems. This is an intriguing open question
in the complexity theory of counting.

4 Approximate counting

Definition A randomised approzimation scheme for a function f : {0,1}* —
N is a probabilistic Turing machine that takes as input a pair (z,€) € {0,1}* x
(0,1) and produces as output an integer random variable Y satisfying the
condition Pr(e ¢ < Y/f(x) < ef) > 3/4. Such an approximation scheme is
said to be a fully polynomial® randomised approximation scheme (or FPRAS)
if its running time is bounded from above by a polynomial in |z| and ¢~

Thus, an algorithm for the approximate counting problem of Section 2.2 is an
FPRAS if and only if its running time is bounded from above by a polynomial
in the size of the description of the the input (2, @), and in e L.

Clearly, there is an FPRAS for the problem #TREES, since this problem
can be solved (exactly) in deterministic polynomial time (see Section 3.4).
We will see in Section 5.6 that there is also an FPRAS for #GRAPHS. It
is worth observing at this point that there are asymptotic enumerations of
unlabelled graphs based on Pélya’s theorem, but these do not seem to be
strong enough to give an FPRAS. In particular, let U, denote the number of
unlabelled n-vertex graphs. Pélya showed that U, is asymptotically equal to

2(3)/71' Oberschelp [42] gave a more detailed formula for U,, with improved
error terms. (See Chapter 9 of [23].) For example, he showed that there is a

constant ¢ such that o)
y 2

U, <> (1 + %) . (4.1)
Equation 4.1 is sufficiently accurate when the desired error, €, exceeds cn?/2".
However, it is not immediately clear how to approximate U,, when the error
parameter € is smaller. Note that it takes Q(n!) time to apply Pélya’s theorem
directly and this can exceed poly(¢ 1) even when ¢ is too small for using
Equation 4.1.

We will return to the problem #GRAPHS in Section 5.6, where we will
describe an FPRAS. It is not known whether there are efficient approximate
counting algorithms for the rest of the problems introduced in Section 3. Before
we say more about these problems, we will look briefly at the complexity-theory
context.

>The definitions that we use are taken from [12] but they are closely related to Karp and
Luby’s definitions from [33].



14 Leslie Ann Goldberg

4.1 The complexity of approximate counting

From a complexity-theoretic point of view, ezactly solving a #P-complete
problem seems to be much more difficult than approzimately solving it. The
best way to illustrate this point is to introduce the notion of the “polynomial
hierarchy”. We will just state the relevant facts without giving details or
definitions. Details can be found in [14] and [44]. The polynomial hierarchy
contains an infinite sequence of complexity classes, X5 Y7 . ... The class b
is the same as the familiar class P and the class X is the same as NP. Tt is
widely believed that all classes in the hierarchy are distinct. In particular, ¥?
is believed to be a proper subset of ¥ ;. We can now state the relevance of the
polynomial hierarchy — Toda [49] has shown that every problem in the entire
polynomial hierarchy can be solved in polynomial time using an oracle for any
#P-complete problem. Thus, informally, a #P-complete problem is “as hard
as” the entire polynomial hierarchy. On the other hand, a result of Valiant and
Vazirani [51] implies that every function in #P can be approximated (in the
FPRAS sense) by a polynomial-time probabilistic Turing machine equipped
with an NP oracle.® We can therefore conclude that the approximate counting
problems in Sections 3.2 and 3.3 are “as easy as” NP, and we are interested in
knowing whether they are easier.

Dyer, Greenhill, Jerrum, and I [12] recently studied the following notion of
approximation-preserving reduction. Suppose f, ¢ : {0,1}* — N are functions
whose complexity (of approximation) we want to compare. An approximation-
preserving reduction from f to g is a probabilistic oracle Turing machine M
that takes as input a pair (x,€) € {0,1}* x (0,1), and satisfies the following
three conditions: (i) every oracle call made by M is of the form (w,d), where
w € {0,1}* is an instance of g and 0 < § < 1 is an error bound satisfying
61 < poly(|z],e1); (ii) the Turing machine M meets the specification for
being a randomised approximation scheme for f whenever the oracle meets the
specification for being a randomised approximation scheme for g; and (iii) the
run-time of M is polynomial in |z| and ¢~'. If an approximation-preserving
reduction from f to g exists we write f <ap ¢, and say that f is AP-reducible
to g.

In [12], we identify a class of problems which are complete for #P with
respect to AP-reducibility. It is unlikely that any of these problems has an
FPRAS. In particular, if any such complete problem has an FPRAS then so
does every problem in #P. This, in turn, would imply that RP = NP, which
is unlikely.

We will not be using the complexity class RP after Section 4, but for
completeness, we provide a definition. A decision problem (i.e., a problem with
a “yes” /“no” answer) is in RP (see Chapter 11 of [44]) if there is a randomised

6This is Corollary 3.6 of [51]. Only a sketch of the proof appears in [51], but a detailed
proof appears in Chapter 10 of [21]. For a related result, see [47].
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polynomial-time algorithm which, for every “no” instance, answers “no” and
for every “yes” instance, produces an output (“yes” or “no”) which, on any
given run, has probability at least 1/2 of being “yes”. The relationship between
RP and the more familiar classes P and NP is given by P C RP C NP. It is
widely conjectured (for example, Chapter 7 of [21]) that P = RP, or at least
that RP # NP.

4.2 Approximately automating Pdlya theory

It is an intriguing open question whether #POLYAORBITS is complete
for #P with respect to AP-reducibility. The most that we can say at this
point is that a related problem (in which we work in a coset rather than in
a group) is complete in this sense. The relationship between the new prob-
lem and #POLYAORBITS will be more clear if we first give a new definition
of #POLYAORBITS, which is equivalent to the original definition by Pdlya’s
theorem (Lemma 2.3). Recall that & is the size of the alphabet ¥ in which the
words are constructed.

Name. #POLYAORBITS.

Instance. O(m) generators for a group G of permutations of [m].

Output. >, cq k),

We now describe the related problem, in which we sum permutations over a
coset, rather than over the entire group.

Name. #COSETORBITS.

Instance. O(m) generators for a group G’ of permutations of [m], O(m) gen-
erators for a subgroup G of G' and a permutation h € G'.

Output. > can ke)

Note that #POLYAORBITS corresponds to the special case of #COSETORBITS
in which the coset Gh is a group. The following lemma implies that #COSE-
TORBITS is unlikely to have an FPRAS, in which case coset decomposition
cannot be used to give an FPRAS for #POLYAORBITS.

Lemma 4.1 #COSETORBITS is complete for #P with respect to A P-reducibility.

Proof Recall the problem #LARGECUT from Section 3.2. Theorem 1 of [12]
shows that #LARGECUT is complete for #P with respect to AP-reducibility.
Thus, it will suffice to show that #LARGECUT < p #COSETORBITS. Let j
and H be an instance of #LARGECUT and let N; denote the number of size-j
cuts of H. Construct G', G and h as in the proof of Lemma 3.2. Now note
that the output of #COSETORBITS corresponding to input (G', G, h), which

3



16 Leslie Ann Goldberg

we denote #COSETORBITS(G', G, h), is equal to the quantity P(G') — P(G)
in the notation of Lemma 3.2. Thus,

k\E\r-l—jr (42)

{#COSETORBITS(G’, G, h)J

Nj - .
We conclude that a good approximation to #COSETORBITS(G', G, h) gives a
good approximation to N;. We will omit the details about how to choose the
accuracy parameter ¢ in the reduction. If it were not for the floor function
in (4.2), we could simply set 6 = ¢, since division by a constant preserves
relative error. The discontinuous floor function could spoil the approximation
when its argument is small. However, this is a technical problem and not a
real difficulty. For a solution, see the proof of Theorem 3 of [12]. O

We have now shown that the approximation problem corresponding to
#COSETORBITS is intractable, subject to the standard complexity-theoretic
assumption that RP # NP. It seems plausible that the approximation prob-
lem corresponding to #POLYAORBITS is also intractable, perhaps in the sense
that it is also complete for #P with respect to AP-reducibility.” In Sec-
tion 5.5 we will return to this problem and we will describe some special
cases of #POLYAORBITS for which fully polynomial randomised approxima-
tion schemes are known. We close this section by mentioning a surprising fact.
Although it is currently unknown whether #POLYAORBITS has an FPRAS
for any fixed integer £ > 1, Jerrum and I (Theorem 4 of [17] or Theorem 6
of [27]) have shown that if £ is allowed to be any fixed rational that is not an
integer then there is no FPRAS for #POLYAORBITS unless RP = NP. Our
proof for the case in which k is not an integer sheds no light on the intriguing
integer case.

5 Almost-uniform sampling

Definition An algorithm for the almost-uniform sampling problem in Sec-
tion 2.2 is said to be a fully polynomial almost-uniform sampler if its running
time is bounded from above by a polynomial in the size of the description of
the input (2, G) and in log(e !).

The notion of “fully polynomial almost-uniform sampling” is due to Jerrum,
Valiant and Vazirani [31]. The particular definition that we use is based on
the one in [11]. Since the running time of a fully polynomial almost-uniform
sampler is bounded from above by a polynomial in the logarithm of €' (rather
than just by a polynomial in ¢7!), the output distribution D (see Section 2.2)

"Note that the reduction in Lemma 3.2 is not approximation preserving. In particular,
approximations for P(G') and P(G) do not give an accurate approximation for P(G')—P(G).
For example, e¢P(G') — e *P((G) can be much larger than e¢(P(G') — P(Q)).
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can be made very close to the uniform distribution Uq ¢ at modest computa-
tional expense. For example, if € is taken to be e~/ where |(Q2, G)| denotes
the size of the input (€2, G), then the variation distance between the two dis-
tributions is exponentially small in |(€2, G)|, even though the running time is
only polynomial in |(Q2, G)]. ®

5.1 Almost-uniform sampling and approximate counting

Jerrum, Valiant and Vazirani [31] have shown that there is a close con-
nection between almost-uniform sampling and approximate counting. In par-
ticular, for “self-reducible” combinatorial structures [46], a fully-polynomial
almost-uniform sampler exists if and only if an FPRAS exists. We will not
give a formal definition of “self-reducible” but intuitively it means that out-
puts corresponding to a given input can be expressed in terms of outputs
corresponding to “smaller” inputs. That is, the family of combinatorial struc-
tures has an inductive definition. The techniques from [31] have been used to
get similar results for some combinatorial structures that do not seem to be
self-reducible (see [11]). Furthermore, Dyer and Greenhill [11] have extended
the result to the (related, but larger) class of “self-partitionable” structures.
Self-reducibility and self-partitioning do not seem to apply (in general) to
orbit-counting problems and there is no known general connection between
the (approximate) orbit-counting problem and the orbit sampling problem.
We shall revisit this point briefly in Section 5.5. The reader is also referred to
Jerrum’s papers [25] and [27].

One situation in which “counting” technology can be used for sampling
orbits is when generating functions for enumerating orbits can be efficiently
evaluated. For example, Nijenhuis and Wilf [41] used Equation 3.1 (see Sec-
tion 3.4) to obtain a polynomial-time algorithm for sampling rooted unlabelled
trees. Their algorithm is given in Figure 1 (see also [48]). Note that this is an
exactly uniform sampling algorithm — its output distribution is exactly the
uniform distribution on orbits.

Nijenhuis and Wilf’s approach was extended by Wilf [52], who gave a fully-
polynomial almost-uniform sampler for the problem #TREES from Section 3.4.
Once again, the output distribution of Wilf’s algorithm is ezactly uniform on
orbits. Wilf’s algorithm is also based on finding a recurrence for the coefficients
of the relevant generating function. This approach to sampling has been sys-

8Note that a similarly demanding definition would not make sense in the context of an
FPRAS. If we changed the definition of FPRAS (at the start of Section 4), demanding
instead that the running time be bounded from above by a polynomial in |z| and log(e~1!),
then finding an FPRAS for a problem would be as difficult as finding an exact algorithm.
In particular, for many counting problems f, the quantity f(z) is only exponentially large
(as a function of |z|). Such problems could be solved exactly in polynomial time by running
an FPRAS with ¢ < 1/(2f(z)). The close connection between almost-uniform sampling
and approximate counting (Section 5.1) indicates that these definitions (less demanding for
FPRAS and more demanding for almost-uniform sampling) are the “right” ones.
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probability that the particular pair (d, k) is chosen should be ‘gzﬁ;ﬁ.

2. Recursively choose 7" uniformly at random (u.a.r.) from R, _y.

3. Recursively choose T” u.a.r. from Ry.

T

new tree.

1. Choose a pair (d,k) such that k& € [1,n — 1] and d divides k. The

4. Make k/d copies of T" and attach the root of each copy to the root of

5. Let the root of 7' be the root of the new n-vertex tree and output the

Figure 1: Let R, be set of rooted unlabelled n-vertex trees. Suppose n > 2.
The tree output by this algorithm of Nijenhuis and Wilf is equally likely to
be any element of R,. The reason for this is given in Equation 3.1 — every
n-vertex output comes up n — 1 times in the following process. Choose k and
d. Choose a d-vertex tree and an n — k-vertex tree. Connect these as described
in the algorithm. Count the resulting n-vertex tree d times. The quantities 7T;
are computed using dynamic programming as in Section 3.4.

tematised by Flajolet, Zimmerman and Van Cutsem [13]. In their systematic
approach, one specifies a set of structures using a formal grammar involving
set, sequence and cycle constructions. Generating functions can be derived
automatically from the specification, so uniform sampling can be done auto-
matically using dynamic programming. The combinatorial structures studied
in [13] are labelled structures, but the authors observe that similar principles
can sometimes be used for sampling “unlabelled structures” (orbits). Jerrum
and I have used their approach to sample some tree-like unlabelled structures
in Section 4 of [19].

5.2 The orbit-sampling process

We will now describe a general Markov-chain approach for sampling or-
bits. The approach was proposed’ by Jerrum [25]. Tt is essentially a random
walk on the bipartite graph which corresponds to the orbit-counting lemma
(Lemma 2.1). In particular, consider the bipartite graph in which the left-
hand vertex set is a finite set {2 and the right-hand vertex set is a permutation
group G acting on 2. There is an edge between element o € 2 and permu-
tation ¢ € G if and only if a9 = a. The Markov chain M (€, G), which we

9Jerrum’s description of the Markov chain was in terms of the Pélya-theory setting of
Section 2.1. However, as Cameron has observed [7], the chain is applicable in the general
orbit-counting setting.
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refer to as the “orbit-sampling process”, is essentially a random walk on this
graph. In particular, the state space of M(Q,G) is the set . The transi-
tion probabilities from a state a € €1 are specified by the following two-step
experiment:

1. Sample g uniformly at random (u.a.r.) from G,.

2. Sample o/ u.a.r. from fix(g).

The new state is o/. The chain M (2, G) is ergodic since every state a can
be reached from every other in a single transition, by selecting the identity
permutation in Step 1. (For Markov-chain definitions, see Chapter 6 of [22]).
Let 7 : © — [0,1] denote the stationary distribution of M (£, G). It is now
straightforward to verify that 7(«a) is proportional to the degree of a in the
bipartite graph. That is, 7(a) = |G4|/|T (22, G)|. We have thus established
the following Lemma from [25]:

Lemma 5.1 Let 7 be the stationary distribution of the Markov chain M (Q, G).

Then
Gal G 1

™) = @) T WO [l 8 6)

for all o € Q. in particular, ™ assigns equal probability to each orbit a°.

(5.1)

The second equality in Equation 5.1 follows from Lagrange’s Theorem which
implies that |G,| x [@“| = |G| and the third follows from Lemma 2.1.

Since the stationary distribution of M (€, G) is uniform on orbits, a rea-
sonable approach to the orbit-sampling problem is to simulate M(Q, G) for a
sufficient number of transitions (to get “close” to the stationary distribution)
and then output the result. Two issues arise at this point:

1. Can the steps of M (2, G) be simulated efficiently, and

2. how many transitions have to be simulated before the chain is close to
stationarity? In particular, how many transitions have to be simulated
before almost-uniform sampling is achieved? (The definition of “almost-
uniform sampling” is in Section 2.2.)

Both of these questions depend upon the specific input set Z and the specific
representation of the inputs in Z.

Let m be the stationary distribution of the Markov chain M(€2, G). Let m
be the distribution of M (2, G) after ¢ transitions, when started in state «.

Definition The mizing time of M (2, G), given initial state «y, is a function
Tao ¢ (0,1] = N, from tolerances € to simulation times, defined as follows:
for each ¢ € (0,1], let 7,,(¢) be the smallest ¢ such that d¢(my, 7) < € for
all ¢ > t. We define 7(€) to be the maximum of 7,,(¢) over all initial states
ap € Q. M(§,G) is said to be rapidly mizing if and only if 7(€) is at most a
polynomial in the size of the input (2, G) and in log(e™!).
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Note that if M (€, G) is rapidly mixing, and each transition can be implemented
in polynomial time, then M (£, G) is a fully-polynomial almost uniform sampler
for orbits.

5.3 The orbit-sampling process and Pélya theory

Let Z(G) be an input set in the Pdlya-theory setting. Recall that each
input (3™, @) is represented as a set of O(m) generators for G. Thus, the size
of the input is bounded from above by a polynomial in m.

In this framework, Step 2 of each transition is computationally easy: to
sample o' u.a.r. from fix(g), one just considers each of the ¢(g) cycles of g
and chooses one of the k alphabet symbols u.a.r. (see Section 2.1). However,
Step 1 is apparently difficult. It is equivalent under randomised polynomial-
time reductions to the Setwise Stabiliser problem, which includes Graph Iso-
morphism as a special case. There are, nevertheless, significant sets G of
groups G for which a polynomial-time implementation exists. Luks has shown
that p-groups—groups in which every element has order a power of p for some
prime p—is an example of such a set [36]. For the remainder of this section, we
will restrict our attention to input sets corresponding to sets G of permutation
groups for which each transition can be implemented in polynomial time.

5.3.1 Negative Results Jerrum [25] asked whether the orbit-sampling pro-
cess is rapidly mixing for the input set Z(P). Subsequently [18], he and I
showed that this is not the case. In particular, we constructed an infinite set
G of permutation groups such that when the inputs (X™, G) are chosen from
Z(G), the mixing time 7(1/3) of M(X™, G) is exponential in m.

We will describe the construction (but not the proofs) here. Let k be the
size of the fixed alphabet 3. Let A = 1/k*. We will construct one group for
each'® pair (I,n(l)) where [ and n(I) are natural numbers satisfying

(1 - ((11:22AA))ll;2((11_—AA))l’> - 4n18)2‘ = ”5)2'

To construct the group Gy (), we let Hy ;) denote the graph which is obtained
from the complete graph on n(l) vertices by subdividing each edge, inserting
[ — 1 intermediate vertices of degree two. Thus, H;, is formed by applying
the “l-stretch” operation of Jaeger, Vertigan and Welsh [24] to the complete
graph K, . Let Vj, and Ej,q) denote the vertex and edge sets of H )
(respectively) and let my ) be 3|Enq)|. We will construct a degree-my
permutation group G ).

Ginq) acts on the set K = UeeEz.nm
three-element sets K,. Arbitrarily orient the edges of H (), so that each edge
e € Ey @) has a defined start-vertex e~ and end-vertex et. Fore € E)nq) and

K., which is the disjoint union of

10Tn [18] we prove that there are infinitely many such pairs.
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v € Vinq), let he be some fixed permutation that induces a 3-cycle on K, and
leaves everything else fixed and let g, be the generator

Gy = H he H h;l.

e:et=v e:e”=v

Finally, let Gynq) be (g» : v € Vin), the group generated by {g,}. Ob-
serve that the generators of the group commute and have order three, so each
permutation g € Gy, () can be expressed as a product

I ¢,

VEV n (1)

where o : V' — {0,1,2}. Thus, for every pair (I,n(l)), the group Gy, is
Abelian and every permutation g € G () (other than the identity) has order 3.

Let G = {Ginw}- In [18], we showed that for any 0 > 0, the mixing
time of the orbit-sampling process with input set Z(G) satisfies 7(1/3) =
Q(exp(m(G)Y/+9)). Thus, the orbit-sampling process mixes slowly for an
infinite set of Abelian 3-groups.

We will not describe the slow-mixing proof here, but the high-level picture
is as follows: We can identify two types of permutation g € G such that, when
the chain is in the stationary distribution, the permutation ¢ selected in Step 1
is quite likely to have type 1 and also quite likely to have type 2. On the other
hand, it takes the chain a long time to move from a permutation of one type
to a permutation of the other type, and this implies slow mixing.

5.3.2 Positive results Despite the slow-mixing result of the previous sec-
tion, Jerrum [25] has identified two sets of permutation groups for which the
orbit-sampling chain is rapidly mixing.

1. G is the set of symmetric groups, as in Example 2.4.

2. G is the set of all cyclic groups (all groups which are generated by a single
permutation).

Jerrum showed that the orbit-sampling process is rapidly mixing in both cases,
so this process provides a fully-polynomial almost-uniform sampler in these
cases.

To illustrate the ideas, we will consider the second case. Let G be a degree-
m cyclic group and consider the Markov chain M (™, G).

As before, let m be the stationary distribution of M(zm,é), and let m
be the distribution after ¢ transitions, starting from state ag. A (Markovian)
coupling for M (X™, @) is a stochastic process (ay, ;) on X" x ¥™ such that
each of (ay) and (5;), considered marginally, is a faithful copy of M (X™, @)
In order to prove that M(X™, @) is rapidly mixing, we want to construct a
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coupling in which the moves of () and (3;) are correlated, so that () and
(B) coalesce rapidly, ensuring that oy = S, for all sufficiently large ¢. The
coupling lemma (see, for example, Aldous [1]) says that if 3, is chosen from 7
then

diy (11, ) < Prlay # Byl

Let 1 denote the identity permutation. Let g; denote the permutation
chosen in Step 1 of the 7’th transition of M (3™, G). Jerrum showed that there
is a constant € and a polynomial p(m) such that for every permutation g € G
Pr(gp(m) =1lg=g9) >c

Given this fact, the mixing time can be bounded via a straightforward
coupling: Let the two copies run independently until they reach a transition
during which they both select the identity during Step 1. After that, run the
copies together, keeping the second copy in the same state as the first. The
probability that coupling has not occurred by time 7 is exp(—Q(7/p(m))), so
the chain is rapidly mixing.

5.4 Open questions regarding the orbit-sampling process

As we observed in the previous section, when the set €2 consists of words
in the Pdlya-theory framework and the group G is cyclic, the orbit-sampling
process visits the identity permutation often, and this implies that it mixes
rapidly. Similarly, when the group is the symmetric group, the process visits
the word v = 00 - - - 0 often, and it mixes rapidly. I am not aware of any other
rapid-mixing results for the orbit-sampling process. It would be interesting to
identify a non-trivial input set for which the chain is rapidly mixing, but for
some other reason. As a test case, we might ask whether it is rapidly mixing
when orbits correspond to unlabelled 2-regular graphs. However, note that
unlabelled 2-regular graphs can easily be sampled directly using the connection
to integer partitions. See [35].

Cameron illustrated the orbit-sampling process in his textbook [7] by de-
scribing the case in which orbits represent unlabelled graphs (Example 2.2). In
this case, Step 1 of the process corresponds to Graph Isomorphism, which we
do not know how to solve in polynomial time. Nevertheless, as Cameron ob-
serves, there are good heuristics for graph isomorphism (for example, McKay’s
nauty [37]), so implementing the transitions may not represent a serious prac-
tical difficulty. It is worth recording the fact that we do not know whether the
orbit-sampling process is rapidly mixing for unlabelled graphs. Probably it is.
Since the identity permutation is visited often, a proof along the lines of the
one sketched in Section 5.3.2 may work. However, as far as [ know, nobody has
proved this. In particular, even though it is clear that the identity permutation
is visited often in the stationary distribution, it is not known whether there
are some “bad” starting points from which it takes a long time to reach the
identity. It would also be good to know whether the process is rapidly-mixing
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when orbits correspond to (unlabelled) bounded-degree graphs. In this case,
the transitions of the process can be efficiently implemented.

5.5 Approximate counting revisited

There is no known general connection between the problem of approxi-
mately counting orbits and the orbit sampling problem (see Section 5.1). This
is true even if we restrict attention to the Pdlya-theory framework of Sec-
tion 2.1. Nevertheless, in the Pélya-theory setting, the orbit-sampling process
can be used for approximate counting.

Recall that

T(QG)={(a,9)| a€Qand g€ G and « € fix(g) }.

Definition A fully-polynomial almost-uniform Y-sampler for an input set 7
is an algorithm which takes an input (2, G) € Z and an accuracy parameter
¢ € (0,1] and outputs a random variable. Typically, the output is a member of
Y (2, G). In particular, the variation distance between the output distribution
of the algorithm and the uniform distribution on Y (€2, G) should be at most e.
Furthermore, the running time of the algorithm should be bounded from above
by a polynomial in the size of the description of the input and in log(e™!).

If we run the orbit-sampling process, and observe the pair (¢, g) at the end
of each transition, then the stationary distribution of the process is uniform
on Y(Q,G) (see Lemma 5.1). Thus, the process is a fully-polynomial almost-
uniform T-sampler for an input set Z if and only if it is rapidly mixing for Z.

Now let Z(G) be an input set in the Pdlya-theory setting. The following
lemma is due to Jerrum.

Lemma 5.2 [25] If there is a fully-polynomial almost-uniform Y-sampler for
Z(G) then there is an FPRAS for the corresponding orbit-counting problem.

Together with Jerrum’s rapid-mixing results from Section 5.3.2, Lemma 5.2
implies that the problem #POLYAORBITS has an FPRAS if the group G is
required to be cyclic or to be a symmetric group. We will not include the
proof of the lemma but it will be useful to outline the key ideas, which are
frequently used in the “Markov Chain Monte Carlo” area. Note that the
proof in [25] uses slightly different definitions, but a general treatment, with
definitions similar to ours can be found in [11]. First, since \é| can be computed
exactly in polynomial time, Lemma 2.1 implies that it suffices to approximate
T(X™,G)|. In this approximation, the self-reducibility in the group structure
can be exploited. In particular, it suffices to estimate m ratios of the form

-~

T, Giy)
T, G 52
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where

G,={ge G|V ="Lforall {<j}

and i € {1,...,m}. |T(X™ G,)| can be calculated exactly (it is k™) and
this can be multiplied by all of the ratios to yield |Y(X™, Go)|, which is the
desired quantity. The ratio in Equation 5.2 can be estimated by sampling from
Y(£™, G;_1) and checking how many of the samples are in T(Z™, G;).

Lemma 5.2 tells us that approximate counting is as easy as almost-uniformly
sampling from Y (3™, @) but it is not known whether the converse is true. In
particular, T(Z"ﬂ@) does not seem to be “self-partitionable” in the sense
of [11]. It is easy to see that the set Y(X™, G) can be described inductively
by breaking G into cosets. However, the problem is that the natural “parts”
are cosets rather than groups, and we already know from Lemma 4.1 that
approximately counting is difficult over cosets.

In particular, a natural method for sampling from T(E”ﬁ@i) would be
to use counting estimates to determine the relative weight of each coset of
T(Em,@iﬂ), then select a coset (with the appropriate probability) and re-
cursively sample from the coset. But this approach is unlikely to lead to an
efficient algorithm because of Lemma 4.1.

5.6 Other orbit-sampling methods

5.6.1 Wormald’s Method As in Example 2.2, let €0, be the set of all n-
vertex graphs and let (G,, be the permutation group acting on €2, which is
induced by vertex permutations. The orbits of €2, under G,, correspond to
unlabelled n-vertex graphs. Let Z be the input set {(,,G,)}. The input
(Qy,, Gy) will be represented by the positive integer n, encoded in unary, as in
the problem #GRAPHS. It is unknown whether the orbit-sampling process is
rapidly mixing for Z. Nevertheless, there is a fully-polynomial almost-uniform
Y-sampler for Z. Thus, by Lemma 5.2, there is also an FPRAS for Z.!' The
Y-sampler is due to Wormald [55] and uses the “rejection sampling” method,
which is a frequently-used and powerful tool for sampling.

In order to simplify the description of Wormald’s algorithm, we introduce
the following notation: For every permutation g of a set {2, let

T(Q,9) ={(a,9) | o€ Qand « € fix(g) }.

Thus, Y(2,G) = U,eq T(2, 9).

First, suppose that we could estimate |Y(€,,g)| and |Y(Q,,Gy)|. Then
we could sample from Y(€,, G,) using the following algorithm of Dixon and
Wilf [9]:'2

!1Tn order to apply Lemma, 5.2, we are implicitly using the fact that Z can be encoded in
the Pdlya-theory setting. See Example 2.5.

2Dixon and Wilf’s algorithm is more sophisticated than the one that we describe here.
In particular, they show that the probabilities in Step 2 are identical for permutations
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1. Input n

2. Choose g € G, with probability M
T (2n,Gn)|

3. Choose (a, g) u.a.r. from Y(Q,, g).

Step 3 of the algorithm is easily implemented — it corresponds to Step 2
of the orbit-sampling process. The main problem is that we do not know how
to estimate | Y (Q,, G,,)|. Wormald [55] uses rejection sampling to avoid doing
this estimation. The basic idea of rejection sampling is as follows. It may
be too difficult to sample from a given desired distribution. So what the user
does instead is to sample from some other (more tractable) distribution. Imag-
ine the desired distribution as being “scaled down” so that it fits underneath
the more tractable distribution. To draw a sample from the desired distri-
bution, the user first draws a sample from the more tractable distribution.
The user then uses the sample to determine the probability with which the
more tractable distribution over-represents this sample (relative to the “scaled
down” desired distribution). With this probability, the sample is rejected (and
the value L is output instead). Otherwise, the sample is output. The method
is useful when it is easy to determine the probability with which a given sample
should be rejected (so rejection is fast) and, furthermore, the overall rejection
probability is low (so the variation distance between the output distribution
of the algorithm and the desired distribution is small).

We will now describe Wormald’s algorithm. To simplify the description,
we will first omit the accuracy parameter, €, from the input. After we have
described the algorithm, we will bound the variation distance between the out-
put distribution of the algorithm and the uniform distribution on Y (2, G,).
We will then say how to modify the algorithm to reduce the variation distance
to any desired quantity €. The outline of the algorithm is as follows, where
1 denotes the identity permutation (This is a slight abuse of notation, since
we use the single symbol 1, but when the input is n, we mean the identity
permutation on €2,.) We will use the symbol p,,, to represent the probability
with which permutation g is chosen (so > g Pgn = 1). Appropriate choices
for py, will be discussed below.

1. Input n
2. Choose g with probability pg .
3. Choose (a, g) u.a.r. from Y(£,,g).

P1i,n ‘T(Q’ﬂ:g)‘
T2, Py

in the same conjugacy class, and by breaking G,, into conjugacy classes, they show how to
implement Step 2 in polynomial time on average provided the value of | T(Q,,, G,,)| is known.
Details can be found in [9].

4. With probability

output (a, g); otherwise output L.
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Clearly, we will need to choose the probabilities p,, in such a way that
Criterion 1 (below) is satisfied (so that Step 4 can be implemented). We will
also choose the probabilities in such a way that Criteria 2 and 3 are satisfied,
so that the algorithm runs in polynomial time.

Criterion 1:  The probabilities p,, must be chosen so that

pra T(Qu0)]

1.
T, V)| pgn T

Criterion 2:  The probabilities p, ,, must be chosen so that Step 2 can

be implemented in polynomial time'?.

Criterion 3:  The probabilities p, ,, must be chosen so that Step 4 can
be implemented in polynomial time.

It is easy to check that the probability that any given pair («,g) from
Y (S, Gy) is output is p1, / | Y (2, 1)|. With the remaining probability, which
we denote 7, the algorithm outputs L. It is now straightforward to verify that
the total variation distance between the output distribution of the algorithm
and the uniform distribution on Y(2,, G,) is m. Note that the rejection prob-
ability is 0 whenever g = 1. Thus, 7 <1 — py .

If we wish to have an upper bound € on the total variation distance, then
we simply run the algorithm for [log(e)/log(1—pi,)]| iterations. If the output
is always L (for every iteration) then we output L. Otherwise, we output the
first member of Y(Q,,G,) which is output by an iteration. We get a fully-
polynomial almost-uniform T-sampler as long as the total number of times
that we run the algorithm is bounded from above by a polynomial in n and
log(e™!). Since

log(€)/ log(1 — p1,n) = log(e™")/log((1 — pra) ),

this follows from Criterion 4.

Criterion 4:  The probabilities p,, must be chosen so that, for some

positive constant ¢ and every n, we have p; , > n™°

Wormald [55] showed how to choose the probabilities p,, so that these
criteria are met. Thus, he gave a fully-polynomial almost-uniform Y-sampler
for unlabelled graphs.

13Note that choosing py, = % would make Wormald’s algorithm equivalent to

Dixon and Wilf’s. Thus, it would satisfy all criteria except Criterion 2.
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5.6.2 Extending Wormald’'s Method Wormald’s method can easily be ex-
pressed in the general orbit-sampling framework. As before, p, ¢ denotes the
probability with which permutation ¢ is chosen, so Zg Py = 1.

1. Input (Q,G)
2. Choose g € G with probability p, ¢.
3. Choose (a, g) u.a.r. from Y (£, g).

p1c  |T(2,9)]
IT(Q.1)] pyc

o

. With probability

output («, g); otherwise output L.

The analogue of Criterion 4 states that there is a positive constant ¢ such
that for every possible input (2, G), we must have p1 ¢ > m(G) . On the
other hand, the analogue of Criterion 1 implies

Y2 1)) IT(Q79)\7

5.3
Pi,c PG (5:3)
which implies
L
T T(R,6)]

Thus, we cannot simultaneously satisfy the two criteria unless there is a
positive constant ¢ such that for every possible input (2, G),

(@)« < L&D (5.4)
T(€2,G)|
In other words, we cannot use Wormald’s method unless the the part of
T (€2, G) which corresponds to the identity permutation accounts for at least a
polynomial fraction of Y (£, G).
Several natural sets of permutation groups satisfy Equation 5.4. For ex-
ample, Wormald has shown [55] how to use the method to efficiently sample
unlabelled r-regular graphs for r > 3.

5.6.3 Other possibilities Not much is known about how to sample orbits
when the input set does not satisfy Equation 5.4. We have just seen that
Wormald’s method relies on the identity permutation having a large weight
(in the sense that Equation 5.4 must be satisfied). One of the two positive
results in Section 5.3.2 (the result showing that the orbit-sampling process is
rapidly mixing for cyclic groups) also relies on this fact.

Jerrum and T [19] considered the following orbit-sampling problem, which
we chose specifically because Equation 5.4 does not hold.
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Example 5.3 Let A be any fized constant. For any multigraph H with degree
at most A, the degree sequence of H is a sequence n = ng,...,na, where
n; denotes the number of vertices of H with degree i. Let ), be the set of
all n-vertex connected multigraphs with degree sequence n. Let G, be the per-
mutation group acting on 2, which is induced by vertex permutations. As in
Example 2.2, the orbits correspond to isomorphism classes. That is, the orbits
of Qyn under Gy, correspond to the unlabelled connected multigraphs with degree
sequence n.

In [19], we gave a fully polynomial almost-uniform sampler for this orbit-
sampling problem (sampling unlabelled connected multigraphs with a given
(bounded) degree sequence). Unfortunately, our solution does not contain any
new methods — it is really a combination of the methods that have already
been described here. Discovering new methods for sampling orbits, particularly
methods which do not require Equation 5.4 remains an interesting challenge.

Our algorithm for sampling unlabelled connected multigraphs is based on
the following idea. Every unlabelled connected multigraph H is associated
with a unique “core”!* which has no vertices of degree 1 or 2. To randomly
generate a multigraph H, the algorithm first generates the core of H and then
extends the core by adding trees and chains of trees to obtain H.

The algorithm for generating the core is described using the configuration
model of Bender and Canfield [3], Bollobés [6] and Wormald [53]. A configura-
tion (for a given degree sequence) is a labelled combinatorial structure which
can be viewed as a refinement of a multigraph with the degree sequence. For
any given degree sequence, the orbits of all configurations (with respect to the
appropriate permutation group) correspond to the unlabelled multigraphs with
the degree sequence. Since the degree sequence of the core has no vertices of
degree 1 or 2, a typical core does not have many symmetries and Equation 5.4
is satisfied. (This follows from an extension of Bollobés’s analysis of unlabelled
regular graphs [5].) Thus, the algorithm uses Wormald’s method to generate
the core. (If the core is not connected, it is rejected. The fact that this does
not happen too often follows from another result of Wormald [54].)

After generating the core of the random multigraph, the algorithm extends
the core by adding trees and chains of trees. This part of the algorithm is
based on the generating-function approach illustrated in Section 5.1.

It is an open problem to sample unlabelled multigraphs given a general
degree sequence (in which degrees need not be bounded from above by a con-
stant). Our method is not applicable when the degrees are unbounded. In
fact, the problem with unbounded degrees seems to be difficult even in the
labelled case (see [29, 39, 10]).

MFor other uses of the “core” idea, see Zhan [56].
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6 A related problem: Listing orbits

Consider the following computational problem, which fits into the frame-
work of Section 2.2.

Definition The orbit-listing problem: Given an input (2,G) € Z, output
exactly one member of each orbit in ®(£2, G).

There is a vast literature on the problem of listing orbits. The reader is
referred particularly to McKay’s paper [38] which introduces a new method
and also explains the connection between various methods which are used in
practice. Further work along these lines can be found in [34]. In this survey we
will restrict our attention to polynomial delay listing, which is not mentioned
in these works.

The notion of “polynomial delay” is due to Johnson, Yannakakis and Pa-
padimitriou [32]. A listing algorithm has polynomial delay if and only if the
delay (in time-steps) between each pair of consecutive outputs is bounded from
above by a polynomial (in the input size).

When the permutation group is trivial (so the orbits are in one-to-one
correspondence with the elements of 2), listing can be shown to be strictly
less difficult than sampling [16], in the sense that the existence of a fully-
polynomial almost-uniform sampling algorithm for a given input set implies
the existence of a (randomised) polynomial-delay listing algorithm (but not
vice-versa). It is not known whether such a result holds for arbitrary input
sets, but the idea has been used for at least one non-trivial orbit sampling
problem. In particular, Dixon and Wilf [9] suggested using a sampling algo-
rithm for unlabelled graphs in order to list them. Using this idea, one can
combine Wormald’s unlabelled-graph sampling algorithm from Section 5.6.1
with Babai and Kucera’s canonical labelling algorithm [2] to obtain a (ran-
domised) polynomial-delay algorithm for listing unlabelled graphs [15, 16].
The duplicate-elimination contained in this algorithm requires each of the
(exponentially-many) orbits to be stored. However, it turns out that there
is also a deterministic polynomial-space polynomial-delay algorithm for listing
unlabelled graphs [15, 16].

It is not known whether there is a polynomial-delay listing algorithm for
listing orbits in the general Pélya-theory framework (i.e., for input set Z(P)).
It would be interesting to know more about this question, and about its con-
nection to the corresponding orbit-sampling problem.
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7 Appendix: Proof of Lemma 3.3

The proof is by reduction from the problem #CUBICHAM, which was
shown to be #P-complete by Jerrum [26].

Name. #CUBICHAM.
Instance. A graph H in which every vertex has degree at most 3.

Output. The number of Hamiltonian paths in H.

Proof Let F), be the graph with vertex set {c;; | i € [n],j € [2n + 2]} and
edge set

{(¢ig,cip) |i'=i+1 (modn)}U LJ{(CM7 ¢ij)|j =7+1 (mod2n+2)}.

7

Thus, F,, consists of a “central” length-n cycle ¢y, ..., c,—1,0 and, off of each
vertex ¢; o in the cycle, there is a length-(2n+2) cycle ¢;p, . . ., ¢ 2n4+1, which we
refer to as a “petal”. For every j € [n+1], let F[j] be the graph obtained from
F,, by deleting edges (coj, coj+1) and (co i1, Coj+2). Thus, F,[j] is obtained
from F;, by removing two adjacent edges from a petal. The shortest path from
the central cycle to the two deleted edges is the length-j path from ¢y to ¢ ;.
Let F; be the union of n + 1 disjoint graphs, the jth of which is isomorphic
to F1[j].

Let H be an instance of #CuBICHAM with vertexset V = {vg0, ..., Un-10}
Let H' be the graph with vertex set V.U {v;; | i € [n],j € {1,...,2n+1}}
which is constructed from H by adding the edges in

{ij,vig) | 5'=j+1 (mod2n+2)and j#i+1}.

i

Roughly, H' is formed from H by attaching petals, but the i + 1st edge is
deleted from the ith petal.

For any graph T, let N(I") denote the number of distinct (up to isomor-
phism) subtrees of I'. We claim that

N(H'UF,) - N(H'UF)) = N(F,) — N(F,) — #CuBicHAM(H),

which completes the proof.

To see why the claim is true, note that to form a subtree of F),, one
must delete an edge (c;0,ci0). Also, for each i € [n], one must delete an
edge (c;j, ¢ 7). If one stops at this point, then the subtree is not represented
in N(F)), but if any further edges are deleted, then the subtree is represented
in N(F!). Now we want to know how many subtrees in N(F,,) — N(F)) are
subtrees of H' and this turns out to be the number of Hamiltonian paths in H.

Il
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