
Computation in permutation groups: 
ountingand randomly sampling orbitsLeslie Ann GoldbergAbstra
tLet 
 be a �nite set and let G be a permutation group a
ting on 
.The permutation group G partitions 
 into orbits. This survey fo-
uses on three related 
omputational problems, ea
h of whi
h is de�nedwith respe
t to a parti
ular input set I. The problems, given an input(
; G) 2 I, are (1) 
ount the orbits (exa
tly), (2) approximately 
ountthe orbits, and (3) 
hoose an orbit uniformly at random. The goal is toquantify the 
omputational diÆ
ulty of the problems. In parti
ular, wewould like to know for whi
h input sets I the problems are tra
table.1 Introdu
tionLet 
 be a �nite set and let G be a permutation group a
ting on 
. Thepermutation group G partitions 
 into orbits: Two elements of 
 are in thesame orbit if and only if there is a permutation in G whi
h maps one elementto the other. This survey fo
uses on three related 
omputational problems,ea
h of whi
h is de�ned with respe
t to a parti
ular input set I:1. Given an input (
; G) 2 I, 
ount the orbits.2. Given an input (
; G) 2 I, approximately 
ount the orbits.3. Given an input (
; G) 2 I, 
hoose an orbit uniformly at random.The goal is to quantify the 
omputational diÆ
ulty of the problems. In parti
-ular, we would like to know for whi
h input sets I the problems are tra
table.Many interesting orbit-
ounting problems 
ome from the setting of \P�olyatheory". In this setting, � is a �xed alphabet of size at least two. For every(in�nite) set G of permutation groups, we get an input set I(G). In parti
ular,the group G 2 G 
orresponds to the input (�m; bG) 2 I(G), where m is thedegree of G, �m is the set of length-m words over alphabet �, and bG is apermutation group a
ting on �m whi
h is indu
ed by G. We will later give apre
ise de�nition of bG (as a fun
tion of G), but the rough idea is as follows:Every permutation g 2 G indu
es exa
tly one permutation ĝ 2 bG. The imageof a word � 2 �m under ĝ is the word � that is obtained from � by permutingthe m alphabet symbols in � (applying g to the \positions" of the symbols).We use the notation P to denote the set of all permutation groups, so I(P) isthe input set 
orresponding to all inputs in the P�olya-theory framework (overa �xed alphabet �). 1



2 Leslie Ann GoldbergProblems 1{3 are studied in Se
tions 3, 4 and 5 respe
tively. In those se
-tions, we will give the pre
ise 
omplexity-theory de�nitions whi
h we will needto formally 
apture the notion of \tra
tability". We will also give appropriatereferen
es, tra
ing the development of ideas. In this se
tion, we introdu
e thearea by giving a very high-level sket
h, stating (roughly) what is known aboutea
h of the three problems, without giving details, de�nitions, or referen
es.There are natural input sets for whi
h exa
t orbit-
ounting is tra
table.Here is an example. Suppose that 
n is the set of all n-vertex trees andthat Gn is the permutation group a
ting on 
n whi
h is indu
ed by vertexpermutations. The orbits of 
n under Gn 
orrespond to isomorphism 
lasses.That is, there is one orbit for ea
h unlabelled n-vertex tree. Unlabelled trees
an be 
ounted qui
kly using 
lassi
al methods based on generating fun
tionsand dynami
 programming. Thus, the orbit-
ounting problem is tra
table forthe input set I = f(
n; Gn)g.Perhaps surprisingly, the orbit-
ounting problem be
omes intra
table if wemake the input set slightly more 
ompli
ated: Suppose that ea
h input 
or-responds to a tree T , and orbits 
orrespond to unlabelled subtrees of T . Itturns out that this orbit-
ounting problem is #P-
omplete. We will dis
ussthe 
omplexity 
lass #P in Se
tion 3. To give a rough idea, 
ounting problemswhi
h are 
omplete in #P are equivalent in diÆ
ulty to 
ounting the number ofsatisfying assignments of a Boolean formula, and this is believed to be very de-manding 
omputationally. Thus, it is unlikely that there is a polynomial-timealgorithm for 
ounting unlabelled subtrees of a tree T . What happens whenwe make the input set still more 
ompli
ated? Suppose now that ea
h input
orresponds to a graph H, and orbits 
orrespond to unlabelled subtrees of H.By the previous result, the new problem (
ounting unlabelled subtrees of agraph) is at least as diÆ
ult as #P. But perhaps it is more diÆ
ult? Whetheror not it is more diÆ
ult is unknown, but a 
omplexity-theoreti
 result of Todaimplies that it 
annot be mu
h more diÆ
ult. The new problem is 
ompletein the 
omplexity 
lass FP#P, whi
h, as we will see later, is not so di�erentfrom #P. The problem of 
ounting orbits in the P�olya-theory setting (withinput set I(P)) is also 
omplete in FP#P. There are several natural prob-lems for whi
h the 
omplexity of orbit-
ounting is unresolved. For example,there is no known eÆ
ient algorithm for exa
tly 
ounting unlabelled n-vertexgraphs. It seems plausible that this problem is 
omputationally diÆ
ult, butwe seem to la
k the 
omplexity-theory ma
hinery to quantify the diÆ
ulty ofsu
h problems. These problems are members of the 
omplexity 
lass #P1,whi
h will be dis
ussed in Se
tion 3.There are many known examples of 
ounting problems whi
h are #P-
omplete to solve exa
tly but for whi
h good (eÆ
ient) approximation al-gorithms exist. Interestingly, we do not know any natural1 orbit-
ounting1Te
hni
ally, every 
ounting problem without orbits 
an be expressed as an orbit-
ountingproblem in whi
h the relevant permutation group 
ontains only the identity, but this is notwhat we mean by a \natural" orbit-
ounting problem.



Counting and randomly sampling orbits 3problems whi
h have this property, though perhaps this is just be
ause orbit-
ounting problems have not been suÆ
iently studied.There are examples of problems for whi
h the 
omplexity of exa
t orbit-
ounting is unresolved, but approximate orbit-
ounting is known to be tra
table.For example, there is an eÆ
ient algorithm for approximately 
ounting unla-belled n-vertex graphs. It is worth pointing out we do not know any eÆ-
ient algorithms for this problem using traditional methods su
h as generatingfun
tions and dynami
 programming. The only algorithm whi
h is knownrelies upon a redu
tion from almost-uniform sampling, whi
h we will dis
usspresently (see also Se
tion 5.6).As we mentioned before, some #P-
omplete 
ounting problems have eÆ-
ient approximation algorithms. For other #P-
omplete 
ounting problems,the 
orresponding approximation problem 
an be shown to be \
omplete" in aformal sense whi
h implies that there is no eÆ
ient approximation algorithmunder standard 
omplexity-theoreti
 assumptions. It would be very interestingto know whether the approximate orbit-
ounting problem is 
omplete in thissense for the set of P�olya-theory inputs I(P). This seems to be a very diÆ
ultquestion. At present, the most that 
an be said is that the related questionof approximately 
ounting orbits over a 
oset (rather than over a group) is
omplete.For many 
omputational 
ounting problems, there is a 
lose 
onne
tionbetween the 
omplexity of approximately 
ounting and the 
omplexity of sam-pling uniformly at random. However, with a few ex
eptions, whi
h we willdis
uss, these 
onne
tions break down for orbit-
ounting problems. Thus, sam-pling must be studied separately from approximate 
ounting.Most of the work on sampling orbits has fo
used on three methods: indu
-tive sampling, the orbit-sampling pro
ess, and reje
tion sampling. \Indu
tivesampling" 
an be used when generating fun
tions for enumerating orbits 
anbe eÆ
iently evaluated. The idea is to �nd a re
urren
e for the 
oeÆ
ientsof the generating fun
tion, whi
h 
an be 
omputed by dynami
 programming.The re
urren
e should show how to express outputs 
orresponding to a giveninstan
e of the problem in terms of outputs to smaller instan
es. Sampling isthen done re
ursively: The 
oeÆ
ients are used to probabilisti
ally sele
t theappropriate (re
ursive) sub-problem. For example, unlabelled n-vertex trees
an be sampled in this way.The \orbit-sampling pro
ess" is inspired by the orbit-
ounting lemma ofCau
hy, Frobenius and Burnside. This lemma says that ea
h orbit is repre-sented jGj times in the set �(
; G), whi
h is the set of pairs (�; g) su
h that� 2 
, g 2 G and g �xes � (that is, g maps � to itself). The orbit-samplingpro
ess is a Markov 
hain with state spa
e 
. To make a transition from thestate �, the 
hain �rst pi
ks uniformly-at-random a permutation g 2 G whi
h�xes � and then 
hooses the new state uniformly-at-random from the subsetof 
 whi
h is �xed by g. The orbit-sampling lemma 
an be used to show thatthe stationary distribution of this pro
ess is uniform on orbits. If the input



4 Leslie Ann Goldbergset is 
hosen su
h that (1) ea
h transition 
an be implemented in polynomialtime, and (2) the Markov 
hain is rapidly mixing, then the orbit-pro
ess givesan eÆ
ient sampler for orbits.Not too mu
h is known about the mixing-time of the orbit-sampling pro-
ess, even in the P�olya-theory setting. It is not rapidly-mixing for the 
ompleteset of inputs I(P). There is also an in�nitely-large subset of I(P) for whi
hthe transitions 
an be implemented in polynomial time, but the pro
ess is stillnot rapidly mixing. The pro
ess is known to be rapidly mixing if the set G ofpermutation groups is either (1) the set of all symmetri
 groups Sn, or (2) theset of all 
y
li
 groups (all permutation groups with a single generator), butnothing else is known. In parti
ular, it is not even known whether the orbit-sampling pro
ess is rapidly-mixing for the situation in whi
h orbits 
orrespondto unlabelled n-vertex graphs.As we mentioned earlier, there is an alternative eÆ
ient algorithm for sam-pling unlabelled n-vertex graphs. This algorithm uses the \reje
tion sampling"method, whi
h will be explained in Se
tion 5.6. The algorithm 
an be extendedto the general orbit-sampling framework. Whether or not it leads to an eÆ-
ient sampling algorithm depends upon the input set I. What is 
lear is thatit will not work unless the identity permutation a

ounts for a suÆ
iently largefra
tion of the pairs in �(
; G). That is, a typi
al member of 
 must not be�xed by too many permutations in G.An example of an input set whi
h does not have this property is as follows:Ea
h input 
orresponds to a degree-sequen
e in whi
h every degree is bounded.Orbits 
orrespond to unlabelled 
onne
ted multigraphs with the given degreesequen
e. Here the degree sequen
e may 
ontain many verti
es of degree 1 or 2,in whi
h 
ase a typi
al member of 
 is a multigraph whi
h is �xed by manyautomorphisms. The ideas whi
h have been des
ribed so far 
an be 
ombinedto give an eÆ
ient sampling algorithm for this problem. Nevertheless, we la
kgood general te
hniques for orbit-sampling, espe
ially when the obje
ts in 
have many symmetries.The �nal se
tion of the survey is devoted to a problem whi
h is related tothat of sampling and 
ounting orbits { namely, the problem of listing orbits.Not too mu
h is known about the problem, and the se
tion gives pointers tosome re
ent work in the area.2 De�nitions and PreliminariesLet 
 be a �nite set and let G be a permutation group a
ting on 
. If� 2 
 and g 2 G, we write �g to denote the image of � under g. We writeG� to denote the subgroup of G 
onsisting of the permutations in fg 2 G j�g = �g. We de�ne the relation � on 
 in whi
h ��� if and only if thereis a permutation g 2 G su
h that �g = �. The relation � partitions 
 intoequivalen
e 
lasses, whi
h are 
alled orbits. We use the notation �G to denotethe orbit f�g : g 2 Gg 
ontaining � and the notation �(
; G) to denote



Counting and randomly sampling orbits 5the set of orbits. For ea
h permutation g 2 G, we let �x(g) denote the setf� 2 
 j �g = �g. We let �(
; G) denote the set�(
; G) = f(�; g) j � 2 
 and g 2 G and � 2 �x(g) g:The following lemma was known to Cau
hy and Frobenius (see [40℄) but isoften 
alled \Burnside's Lemma". Following Cameron [7℄, we 
all it the \orbit-
ounting" lemma.Lemma 2.1 The orbit-
ounting lemma Let G be a permutation groupon the �nite set 
. Then for ea
h orbit � 2 �(
; G) we havejf(�; g) 2 �(
; G) j � 2 �gj = jGj;so j�(
; G)j = j�(
; G)j jGj:Example 2.2 Let 
n be the set of all n-vertex graphs and let Gn be the per-mutation group a
ting on 
n whi
h is indu
ed by vertex permutations. That is,Gn has n! permutations | one for ea
h permutation of the n verti
es. If � isa permutation of the verti
es and � is a graph in 
n then the image of � underthe permutation 
orresponding to � is the graph obtained from � by applying �to the verti
es. The orbits of 
n under Gn 
orrespond to isomorphism 
lasses.Thus, we 
an think of the orbits as representing the set of unlabelled n-vertexgraphs.We will let U
;G denote the uniform distribution on orbits. That is, forea
h orbit � in �(
; G), the probability of � in U
;G (denoted U
;G(�)) is1=j�(
; G)j.We will measure the distan
e between two probability distributions D1and D2 over the dis
rete sample spa
e 	 using the total variation distan
emetri
. Namely,dtv(D1; D2) = maxA�	 jD1(A)�D2(A)j = 12Xx2	 jD1(x)�D2(x)j:2.1 A spe
ial 
ase of P�olya's theoremMany of the orbit-
ounting problems whi
h we will 
onsider 
ome fromthe setting of P�olya theory. We will not be using the fully general version ofP�olya's theorem. Instead, we will restri
t our attention to the spe
ial 
ase ofthe theorem that we de�ne in this se
tion. Suppose that � = f0; : : : ; k�1g is a�nite alphabet and that G is a group of permutations of the set f0; : : : ; m�1g,whi
h we denote [m℄. For every permutation g 2 G, let 
(g) denote the numberof 
y
les in g. Let 
 be the set �m of length-m words over alphabet �.The group G has a natural a
tion on 
 whi
h is indu
ed by permuting the



6 Leslie Ann Goldberg\positions" 0; : : : ; m� 1 of the alphabet symbols in the words. In parti
ular,if � = a0a1 : : : am�1 is a word in 
 then the image of � under the indu
eda
tion of g is the word � = b0b1 : : : bm�1, in whi
h, for all j 2 [m℄, bj is ajg�1That is, bj is the element ai su
h that ig = j. To avoid 
onfusion, we usethe symbol bG to denote the permutation group on 
 whi
h is indu
ed by Gand we use the symbol ĝ to denote the permutation of 
 whi
h is indu
ed bypermutation g 2 G.Now �x(ĝ) has k
(g) elements. In parti
ular, if a word � is in �x(ĝ), thenall of the positions whi
h form a single 
y
le of g must have the same alphabetsymbol in �. There are k possible symbols whi
h 
an be 
hosen. Thus theorbit-
ounting lemma (Lemma 2.1) gives us the following spe
ial 
ase of P�olya'stheorem.Lemma 2.3 P�olya's theorem If � = [k℄ is a �nite alphabet, 
 = �m,and G is a permutation group on [m℄, thenj�(
; bG)j = 1jGjXg2G k
(g):Example 2.4 If � = f0; 1g and G is the symmetri
 group on [m℄ then them + 1 orbits 
onsist of, for ea
h i 2 [m + 1℄, those words in �m with thesymbol \1" in i positions.Example 2.5 The set of unlabelled n-vertex graphs (Example 2.2) 
an be en-
oded as orbits in the P�olya-theory setting by using words in �m to en
odegraphs. In parti
ular, the graph H 
an be represented by the word 
orrespond-ing to the upper-diagonal part of H's adja
en
y matrix.Further examples 
an be found in surveys su
h as [8℄ and [45℄.2.2 Computational questionsWe work in the following 
omputational framework whi
h is similar to thatof [25℄. We spe
ify the input set I, where ea
h input in I 
onsists of a set 
and a permutation group G. The inputs are represented in a 
on
ise manner,whi
h depends upon I. We study the following 
omputational problems.1. exa
t 
ounting: Given an input (
; G) 2 I, output j�(
; G)j.2. approximate 
ounting: Given an input (
; G) 2 I and an a

ura
y pa-rameter � 2 (0; 1), output an integer random variable Y satisfyingPr�e�� � Yj�(
; G)j � e�� � 34 :



Counting and randomly sampling orbits 73. almost-uniform sampling: Given an input (
; G) 2 I, and an a

ura
yparameter � 2 (0; 1℄, output a random variable �. Typi
ally, � will bea member of 
, and will be viewed as a representative of its orbit, butit will be te
hni
ally useful to allow sampling algorithms to sometimesprodu
e other outputs.We measure the a

ura
y of a sampling algorithm by 
onstru
ting adistribution D based on the output distribution of the algorithm. Thedomain of D is taken to be �(
; G) [ f?g, where ? is an \error" sym-bol, whi
h re
ords the fa
t that the output does not represent an or-bit. For ea
h orbit � 2 �(
; G), the probability of � in D is de�nedto be Pr(� 2 �). Therefore, the probability of ? in D is equal to1�P�2�(
;G) Pr(� 2 �). The algorithm is an almost-uniform samplerif and only if dtv(D;U
;G) � �.For ea
h parti
ular input set I, we get a parti
ular exa
t 
ounting prob-lem, approximate 
ounting problem, and almost-uniform sampling problem.We will usually dis
uss the representation of the inputs when the parti
ularproblem is dis
ussed. Typi
ally, we will represent inputs in a 
on
ise manner.In the P�olya-theory setting, we will adopt the following notation from theintrodu
tion. The alphabet � is �xed. For any permutation group G, we willlet m(G) denote the degree of G. For any set G of permutation groups, I(G)denotes the input set 
orresponding to G. In parti
ular,I(G) = f(�m(G); bG) j G 2 Gg:We use the notation P to denote the set of all permutation groups, so I(P) isthe input set 
orresponding to all inputs. The input (�m; bG) will be presentedas a set of O(m) generators for G.2For 
onvenien
e (in applying 
omplexity-theoreti
 de�nitions), we will as-sume that all inputs to 
omputational problems are en
oded as words overthe binary alphabet f0; 1g. This typi
ally does not present any problems. Forexample a generator of a degree-m permutation group 
an be en
oded as abinary word of length O(m logm). Note that the input size is typi
ally mu
hsmaller than the size of 
 or G. In the P�olya-theory setting, the size of 
 is kmand the size of bG 
an be as large as m!, but the size of the input is boundedfrom above by a polynomial in m. We are interested in knowing for whi
hinput sets I the 
omputational problems are tra
table, in a sense whi
h willbe made 
lear as we go along.2The 
onstru
tion of small generating sets is beyond the s
ope of this arti
le, but Chap-ter 1 of [7℄ des
ribes several su
h 
onstru
tions, due to S
hreier, Sims, Jerrum, M
Iver andNeumann.



8 Leslie Ann Goldberg3 Exa
t 
ountingIn Se
tions 3.2 and 3.3 we will see that for many natural input sets I theexa
t orbit-
ounting problem is #P-hard. Thus, it is as diÆ
ult as 
ountingthe number of satisfying assignments of a Boolean formula. In order to givedetails, we need some de�nitions, whi
h are given in Se
tion 3.1.3.1 The 
omplexity 
lass #PFollowing Valiant [50℄, we say that a fun
tion f : f0; 1g� ! N is in the
omplexity 
lass FP if it 
an be 
omputed by a deterministi
 polynomial-time Turing ma
hine. We say that it is in #P if there is a nondeterministi
polynomial-time Turing ma
hine M su
h that for all x 2 f0; 1g� the numberof a

epting 
omputations ofM on input x is f(x). A polynomial-time Turingredu
tion from a fun
tion f : f0; 1g� ! N to a fun
tion g : f0; 1g� ! N isa deterministi
 polynomial-time ora
le Turing ma
hine whi
h, whenever it issupplied with an \ora
le" for g, 
an 
ompute f . Thus, the redu
tion showshow to 
ompute f in polynomial time, assuming that we have an imaginarymeans for 
omputing g in polynomial time. A 
ounting problem, i.e., a fun
tionf : f0; 1g� ! N is said to be #P-hard if every fun
tion in #P is polynomial-time Turing-redu
ible to f . If, in addition, f 2 #P, then it is said to be #P-
omplete. A #P-
omplete problem is equivalent in 
omputational diÆ
ulty toproblems su
h as 
ounting the number of satisfying assignments of a Booleanformula, or evaluating the permanent of a 0,1-matrix, whi
h are widely believedto be intra
table. For ba
kground information on #P and its 
ompleteness
lass, see, for example, [14℄ or [44℄.3.2 Automating P�olya theoryIn this se
tion, we see that the problem of 
ounting orbits in the P�olya-theory setting is equivalent in 
omputational diÆ
ulty to solving a #P-
ompleteproblem. Let � = [k℄ be a �xed alphabet with k > 1. Consider the following
omputational problem.Name. #P�olyaOrbits.Instan
e. O(m) generators for a group G of permutations of [m℄.Output. jGj � j�(�m; bG)j.The size of a permutation group 
an be 
omputed in polynomial time from anarbitrary set of generators (see [7℄). Thus, #P�olyaOrbits is 
omputationallyequivalent to the orbit-
ounting problem with input set I(P). The followingtheorem quanti�es the 
omputational diÆ
ulty of this problem.Theorem 3.1 [17℄ #P�olyaOrbits is #P-
omplete.



Counting and randomly sampling orbits 9P�olya's Theorem (Lemma 2.3) tells us that the appropriate output of#P�olyaOrbits is Pg2G k
(g). From this, it is not diÆ
ult to show that#P�olyaOrbits is in #P. Thus, to prove Theorem 3.1, we need only showthat it is #P-hard. The #P-hardness follows from Theorem 2 of [17℄ and analternative proof has been given by Jerrum in [27℄. Nevertheless, in order togeneralise the result in Se
tion 4, we will need a hardness proof whi
h doesnot use interpolation, so we provide su
h a proof here.We start with some de�nitions. A \
ut" of a graph is an unordered par-tition (S; T ) of its vertex set. The \
ut edges" 
orresponding to the 
ut arethose edges of the graph whi
h have one endpoint in S and the other in T .Sin
e the partition (S; T ) is unordered, a 
ut of a 
onne
ted graph is uniquelydetermined by the set of 
ut edges. The \size" of the 
ut is the number of 
utedges. Lemma 12 of Jerrum and Sin
lair's paper [30℄ shows that the followingproblem is #P-
omplete.Name. #LargeCut.Instan
e. A positive integer j and a 
onne
ted non-bipartite graph H in whi
hno 
uts are larger than size j.Output. The number of size-j 
uts of H.Thus, Theorem 3.1 follows from the following lemma.Lemma 3.2 There is a polynomial-time Turing-redu
tion from #LargeCutto #P�olyaOrbits.Proof Let j and H be an instan
e of #LargeCut. Let V denote the vertexset of H and let E denote the edge set of H. Let r = jV j2. Let G be the degree-2rjEj permutation group 
onstru
ted as follows. For ea
h edge e 2 E and ea
hi 2 [r℄, we will have an obje
t ae;i and an obje
t be;i. For ea
h vertex v 2 V wewill have a permutation gv. The a
tion of gv on the set Se2ESi2[r℄fae;i; be;ig isas follows. For every edge e 2 E whi
h is in
ident on v, and for every i 2 [r℄,gv transposes ae;i and be;i. Let G be the group generated by the permutationsSv gv.Sin
e the permutations in fgvg 
ommute and have order 2, the permuta-tions in G 
orrespond to subsets of V . The points ae;1 and be;1 are transposedin a given permutation if and only if exa
tly one of the endpoints of e is in the
orresponding subset of V . Thus, the permutations in G are in one-to-one 
or-responden
e with the 
uts of H. A 
ut of size ` 
orresponds to a permutationwith 2jEjr � `r 
y
les.Now let h be the permutation whi
h transposes every pair (ae;i; be;i). Sin
eH is not bipartite, h 62 G. Let G0 be the permutation group generated byfgvg[fhg. Note that the permutations in this set 
ommute and have order 2.Let C denote the 
oset of G in G0 whi
h is not equal to G. As before, thepermutations in C are in one-to-one 
orresponden
e with the 
uts of H. A
ut of size ` 
orresponds to a permutation with 2jEjr� (jEj � `)r = jEjr+ `r
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y
les. Let P (G) denote the output of #P�olyaOrbits(G) and let N` denotethe number of size-` 
uts of H. ThenP (G0)� P (G) =Xg2C k
(g) = jX̀=0 N`kjEjr+`r; soP (G0)� P (G)kjEjr+jr = Nj + j�1X̀=0 N`k(`�j)r:Sin
e Pj�1`=0 N`k(`�j)r is non-negative and (from the de�nition of N`) is atmost 2jV jk�r we haveNj � P (G0)� P (G)kjEjr+jr � Nj + 2jV jk�r:Sin
e r = jV j2 and k � 2 and Nj is an integer,Nj = �P (G0)� P (G)kjEjr+jr � : �3.3 Counting subtrees of a treeIn this se
tion, we will 
onsider an exa
t orbit-
ounting problem that has arather di�erent 
avour from the P�olya-theory problem of the previous se
tion.We will see that this problem too is #P-
omplete. Thus, exa
tly 
ountingorbits is 
omputationally diÆ
ult, even in a seemingly simple setting.Suppose that T is a tree with vertex set V and edge set E. We will let 
Tbe the set 
ontaining all (labelled) subtrees of T . That is, every element T 0of 
T is a graph with vertex set V , some edge set E 0 � E, and at most onenon-trivial 
onne
ted 
omponent. (At most one 
onne
ted 
omponent of T 0will 
ontain edges.) Let GT be the permutation group a
ting on 
T whi
h isindu
ed by vertex permutations. As in Example 2.2, the orbits 
orrespond tounlabelled subtrees of T . Jerrum and I [20℄ have shown that this orbit-
ountingproblem, the problem #SubTrees below, is #P-
omplete.Name. #SubTrees.Instan
e. A tree T .Output. The number of distin
t (up to isomorphism) subtrees of T . That is,j�(
T ; GT )j.The proof that #SubTrees is #P-
omplete is 
ontained in [20℄. The
omplexity of most variants of the problem is still unknown. For example, thestatus of the following problem is open.
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e. A tree T .Output. The number of distin
t (up to isomorphism) subforests of T .The 
onstru
tions used in [20℄ involve trees with high-degree verti
es, soit is also not 
lear whether the following problem is #P-
omplete for any
onstant � > 2.Name. #�Tree-SubTrees.Instan
e. A tree T in whi
h every vertex has degree at most �.Output. The number of distin
t (up to isomorphism) subtrees of T .We will 
on
lude this se
tion by brie
y 
onsidering the following generali-sation of #�Tree-SubTrees.Name. #�Graph-SubTrees.Instan
e. A graph H in whi
h every vertex has degree at most �.Output. The number of distin
t (up to isomorphism) subtrees of H.Corollary 6 of [20℄ shows that #�Graph-SubTrees is in the 
omplexity
lass FP#P. Informally, this is the 
lass of fun
tions whi
h are \as easy" as#P. More formally, a fun
tion f is in FP#P if it is polynomial-time Turing-redu
ible to a problem in #P. Thus, by the following lemma, whi
h is provedin the appendix, #�Graph-SubTrees is 
omplete in FP#P for every �xed� � 5.Lemma 3.3 (Goldberg, Jerrum, Kelk) For any �xed � � 5, the problem#�Graph-SubTrees is #P-hard.3.4 Orbit-
ounting problems and the 
omplexity 
lass #P1In the previous se
tion, we have seen that the problem of 
ounting unla-belled subtrees of a given tree T is #P-
omplete. Now suppose that insteadof having a parti
ular n-vertex tree T as input, the input is just n and we areinterested in 
ounting all unlabelled trees with at most n verti
es. We will
onsider the following 
omputational problem.Name. #Trees.Instan
e. A positive integer n, expressed in unary.3Output. The number of distin
t (up to isomorphism) n-vertex trees.3The reason that the input to #Trees is expressed in unary is that we are interestedin knowing whether there is an algorithm for #Trees whose running time is bounded fromabove by a polynomial in n. Sin
e there are exponentially many unlabelled n-vertex trees,an algorithm whose running time is bounded from above by a polynomial in logn would noteven have enough time to write down the answer.



12 Leslie Ann GoldbergThe problem#Trees 
an be viewed as an orbit-
ounting problem. In par-ti
ular, it is the orbit-
ounting problem 
orresponding to input set f(
n; Gn)gin whi
h 
n is the set of n-vertex trees, and Gn is the group indu
ed by vertexpermutations (see Example 2.2).#Trees 
an be solved in polynomial time using a generating fun
tion forthe number of orbits. On
e the generating fun
tion is given, its 
oeÆ
ients
an be 
omputed by dynami
 programming. Harary and Palmer's book [23℄
ontains a survey on using generating fun
tions to do unlabelled enumeration.Their book gives a full treatment of the enumeration of unlabelled trees, fol-lowing the work of Otter [43℄. In order to illustrate the prin
iples, we repeat afew of the details here. Let T (x) =P1n=1 Tnxn be the generating fun
tion forrooted unlabelled trees. That is, Tn is the number of rooted unlabelled treeswith n verti
es. P�olya's theorem gives an expression4 for T (x) whi
h 
an bemanipulated to yield the re
urren
eTn+1 = 1n nXk=10�Xdjk d Td1ATn�k+1; (3.1)where the sum is over all divisors d of k. Using this formula, the 
oeÆ
ientsT1; T2; : : : ; Tn 
an be 
omputed in polynomial time by dynami
 programming.(\Dynami
 programming" just means that the 
oeÆ
ients should be 
omputedin the order T1; T2; : : :. Note that a re
ursive algorithm would not 
omplete inpolynomial time unless a devi
e su
h as a \memory fun
tion" is used.) Next,let t(x) = P1n=1 tnxn be the generating fun
tion for (unrooted) unlabelledtrees. It 
an be shown thatt(x) = T (x)� 12 �T 2(x)� T (x2)� ;so the 
oeÆ
ients t1; t2; : : : ; tn 
an also be 
omputed in polynomial time.Now that we have seen a polynomial-time algorithm for #Trees, let us
onsider the following related problem from Example 2.2.Name. #Graphs.Instan
e. A positive integer n, expressed in unary.Output. The number of distin
t (up to isomorphism) n-vertex graphs.There is no known generating fun
tion whi
h would enable us to qui
kly solve#Graphs. In fa
t, there is no known polynomial-time algorithm (of any type)for this problem.Both #Trees and #Graphs are examples of problems from the 
om-plexity 
lass #P1. The de�nition of this 
lass is similar to the de�nition of#P. The only di�eren
e is that the input alphabet is now unary rather thanbinary. Valiant [50℄ has shown that #P1 does 
ontain 
omplete problems.4This expression was also dis
overed by Cayley.



Counting and randomly sampling orbits 13Notably, Bertoni, Goldwurm and Sabadini have shown that 
ounting stringsof a given length in some 
ontext-free language is 
omplete [4℄. Nevertheless,no natural 
ombinatorial problem is known to be 
omplete for #P1 and itseems unlikely that a problem su
h as #Graphs would be 
omplete. Thus,at present, we seem to la
k methods for quantifying the 
omputational 
om-plexity of #Graphs and similar problems. This is an intriguing open questionin the 
omplexity theory of 
ounting.4 Approximate 
ountingDe�nition A randomised approximation s
heme for a fun
tion f : f0; 1g� !N is a probabilisti
 Turing ma
hine that takes as input a pair (x; �) 2 f0; 1g��(0; 1) and produ
es as output an integer random variable Y satisfying the
ondition Pr(e�� � Y=f(x) � e�) � 3=4. Su
h an approximation s
heme issaid to be a fully polynomial5 randomised approximation s
heme (or FPRAS)if its running time is bounded from above by a polynomial in jxj and ��1.Thus, an algorithm for the approximate 
ounting problem of Se
tion 2.2 is anFPRAS if and only if its running time is bounded from above by a polynomialin the size of the des
ription of the the input (
; G), and in ��1.Clearly, there is an FPRAS for the problem #Trees, sin
e this problem
an be solved (exa
tly) in deterministi
 polynomial time (see Se
tion 3.4).We will see in Se
tion 5.6 that there is also an FPRAS for #Graphs. Itis worth observing at this point that there are asymptoti
 enumerations ofunlabelled graphs based on P�olya's theorem, but these do not seem to bestrong enough to give an FPRAS. In parti
ular, let Un denote the number ofunlabelled n-vertex graphs. P�olya showed that Un is asymptoti
ally equal to2(n2)=n!. Obers
help [42℄ gave a more detailed formula for Un with improvederror terms. (See Chapter 9 of [23℄.) For example, he showed that there is a
onstant 
 su
h that Un � 2(n2)n! �1 + 
n22n � : (4.1)Equation 4.1 is suÆ
iently a

urate when the desired error, �, ex
eeds 
n2=2n.However, it is not immediately 
lear how to approximate Un when the errorparameter � is smaller. Note that it takes 
(n!) time to apply P�olya's theoremdire
tly and this 
an ex
eed poly(��1) even when � is too small for usingEquation 4.1.We will return to the problem #Graphs in Se
tion 5.6, where we willdes
ribe an FPRAS. It is not known whether there are eÆ
ient approximate
ounting algorithms for the rest of the problems introdu
ed in Se
tion 3. Beforewe say more about these problems, we will look brie
y at the 
omplexity-theory
ontext.5The de�nitions that we use are taken from [12℄ but they are 
losely related to Karp andLuby's de�nitions from [33℄.



14 Leslie Ann Goldberg4.1 The 
omplexity of approximate 
ountingFrom a 
omplexity-theoreti
 point of view, exa
tly solving a #P-
ompleteproblem seems to be mu
h more diÆ
ult than approximately solving it. Thebest way to illustrate this point is to introdu
e the notion of the \polynomialhierar
hy". We will just state the relevant fa
ts without giving details orde�nitions. Details 
an be found in [14℄ and [44℄. The polynomial hierar
hy
ontains an in�nite sequen
e of 
omplexity 
lasses, �p0;�p1; : : :. The 
lass �p0is the same as the familiar 
lass P and the 
lass �p1 is the same as NP. It iswidely believed that all 
lasses in the hierar
hy are distin
t. In parti
ular, �piis believed to be a proper subset of �pi+1. We 
an now state the relevan
e of thepolynomial hierar
hy | Toda [49℄ has shown that every problem in the entirepolynomial hierar
hy 
an be solved in polynomial time using an ora
le for any#P-
omplete problem. Thus, informally, a #P-
omplete problem is \as hardas" the entire polynomial hierar
hy. On the other hand, a result of Valiant andVazirani [51℄ implies that every fun
tion in #P 
an be approximated (in theFPRAS sense) by a polynomial-time probabilisti
 Turing ma
hine equippedwith an NP ora
le.6 We 
an therefore 
on
lude that the approximate 
ountingproblems in Se
tions 3.2 and 3.3 are \as easy as" NP, and we are interested inknowing whether they are easier.Dyer, Greenhill, Jerrum, and I [12℄ re
ently studied the following notion ofapproximation-preserving redu
tion. Suppose f; g : f0; 1g� ! N are fun
tionswhose 
omplexity (of approximation) we want to 
ompare. An approximation-preserving redu
tion from f to g is a probabilisti
 ora
le Turing ma
hine Mthat takes as input a pair (x; �) 2 f0; 1g� � (0; 1), and satis�es the followingthree 
onditions: (i) every ora
le 
all made by M is of the form (w; Æ), wherew 2 f0; 1g� is an instan
e of g and 0 < Æ < 1 is an error bound satisfyingÆ�1 � poly(jxj; ��1); (ii) the Turing ma
hine M meets the spe
i�
ation forbeing a randomised approximation s
heme for f whenever the ora
le meets thespe
i�
ation for being a randomised approximation s
heme for g; and (iii) therun-time of M is polynomial in jxj and ��1. If an approximation-preservingredu
tion from f to g exists we write f �AP g, and say that f is AP-redu
ibleto g.In [12℄, we identify a 
lass of problems whi
h are 
omplete for #P withrespe
t to AP-redu
ibility. It is unlikely that any of these problems has anFPRAS. In parti
ular, if any su
h 
omplete problem has an FPRAS then sodoes every problem in #P. This, in turn, would imply that RP = NP, whi
his unlikely.We will not be using the 
omplexity 
lass RP after Se
tion 4, but for
ompleteness, we provide a de�nition. A de
ision problem (i.e., a problem witha \yes"/\no" answer) is in RP (see Chapter 11 of [44℄) if there is a randomised6This is Corollary 3.6 of [51℄. Only a sket
h of the proof appears in [51℄, but a detailedproof appears in Chapter 10 of [21℄. For a related result, see [47℄.
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h, for every \no" instan
e, answers \no" andfor every \yes" instan
e, produ
es an output (\yes" or \no") whi
h, on anygiven run, has probability at least 1=2 of being \yes". The relationship betweenRP and the more familiar 
lasses P and NP is given by P � RP � NP. It iswidely 
onje
tured (for example, Chapter 7 of [21℄) that P = RP, or at leastthat RP 6= NP.4.2 Approximately automating P�olya theoryIt is an intriguing open question whether #P�olyaOrbits is 
ompletefor #P with respe
t to AP-redu
ibility. The most that we 
an say at thispoint is that a related problem (in whi
h we work in a 
oset rather than ina group) is 
omplete in this sense. The relationship between the new prob-lem and #P�olyaOrbits will be more 
lear if we �rst give a new de�nitionof #P�olyaOrbits, whi
h is equivalent to the original de�nition by P�olya'stheorem (Lemma 2.3). Re
all that k is the size of the alphabet � in whi
h thewords are 
onstru
ted.Name. #P�olyaOrbits.Instan
e. O(m) generators for a group G of permutations of [m℄.Output. Pg2G k
(g).We now des
ribe the related problem, in whi
h we sum permutations over a
oset, rather than over the entire group.Name. #CosetOrbits.Instan
e. O(m) generators for a group G0 of permutations of [m℄, O(m) gen-erators for a subgroup G of G0 and a permutation h 2 G0.Output. Pg2Gh k
(g).Note that#P�olyaOrbits 
orresponds to the spe
ial 
ase of #CosetOrbitsin whi
h the 
oset Gh is a group. The following lemma implies that #Cose-tOrbits is unlikely to have an FPRAS, in whi
h 
ase 
oset de
omposition
annot be used to give an FPRAS for #P�olyaOrbits.Lemma 4.1 #CosetOrbits is 
omplete for #P with respe
t to AP-redu
ibility.Proof Re
all the problem#LargeCut from Se
tion 3.2. Theorem 1 of [12℄shows that #LargeCut is 
omplete for #P with respe
t to AP-redu
ibility.Thus, it will suÆ
e to show that #LargeCut �AP #CosetOrbits. Let jand H be an instan
e of #LargeCut and let Nj denote the number of size-j
uts of H. Constru
t G0, G and h as in the proof of Lemma 3.2. Now notethat the output of #CosetOrbits 
orresponding to input (G0; G; h), whi
h



16 Leslie Ann Goldbergwe denote #CosetOrbits(G0; G; h), is equal to the quantity P (G0) � P (G)in the notation of Lemma 3.2. Thus,Nj = �#CosetOrbits(G0; G; h)kjEjr+jr � : (4.2)We 
on
lude that a good approximation to #CosetOrbits(G0; G; h) gives agood approximation to Nj. We will omit the details about how to 
hoose thea

ura
y parameter Æ in the redu
tion. If it were not for the 
oor fun
tionin (4.2), we 
ould simply set Æ = �, sin
e division by a 
onstant preservesrelative error. The dis
ontinuous 
oor fun
tion 
ould spoil the approximationwhen its argument is small. However, this is a te
hni
al problem and not areal diÆ
ulty. For a solution, see the proof of Theorem 3 of [12℄. �We have now shown that the approximation problem 
orresponding to#CosetOrbits is intra
table, subje
t to the standard 
omplexity-theoreti
assumption that RP 6= NP. It seems plausible that the approximation prob-lem 
orresponding to#P�olyaOrbits is also intra
table, perhaps in the sensethat it is also 
omplete for #P with respe
t to AP-redu
ibility.7 In Se
-tion 5.5 we will return to this problem and we will des
ribe some spe
ial
ases of #P�olyaOrbits for whi
h fully polynomial randomised approxima-tion s
hemes are known. We 
lose this se
tion by mentioning a surprising fa
t.Although it is 
urrently unknown whether #P�olyaOrbits has an FPRASfor any �xed integer k > 1, Jerrum and I (Theorem 4 of [17℄ or Theorem 6of [27℄) have shown that if k is allowed to be any �xed rational that is not aninteger then there is no FPRAS for #P�olyaOrbits unless RP = NP. Ourproof for the 
ase in whi
h k is not an integer sheds no light on the intriguinginteger 
ase.5 Almost-uniform samplingDe�nition An algorithm for the almost-uniform sampling problem in Se
-tion 2.2 is said to be a fully polynomial almost-uniform sampler if its runningtime is bounded from above by a polynomial in the size of the des
ription ofthe input (
; G) and in log(��1).The notion of \fully polynomial almost-uniform sampling" is due to Jerrum,Valiant and Vazirani [31℄. The parti
ular de�nition that we use is based onthe one in [11℄. Sin
e the running time of a fully polynomial almost-uniformsampler is bounded from above by a polynomial in the logarithm of ��1 (ratherthan just by a polynomial in ��1), the output distribution D (see Se
tion 2.2)7Note that the redu
tion in Lemma 3.2 is not approximation preserving. In parti
ular,approximations for P (G0) and P (G) do not give an a

urate approximation for P (G0)�P (G).For example, e�P (G0)� e��P (G) 
an be mu
h larger than e�(P (G0)� P (G)).
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an be made very 
lose to the uniform distribution U
;G at modest 
omputa-tional expense. For example, if � is taken to be e�j(
;G)j, where j(
; G)j denotesthe size of the input (
; G), then the variation distan
e between the two dis-tributions is exponentially small in j(
; G)j, even though the running time isonly polynomial in j(
; G)j. 85.1 Almost-uniform sampling and approximate 
ountingJerrum, Valiant and Vazirani [31℄ have shown that there is a 
lose 
on-ne
tion between almost-uniform sampling and approximate 
ounting. In par-ti
ular, for \self-redu
ible" 
ombinatorial stru
tures [46℄, a fully-polynomialalmost-uniform sampler exists if and only if an FPRAS exists. We will notgive a formal de�nition of \self-redu
ible" but intuitively it means that out-puts 
orresponding to a given input 
an be expressed in terms of outputs
orresponding to \smaller" inputs. That is, the family of 
ombinatorial stru
-tures has an indu
tive de�nition. The te
hniques from [31℄ have been used toget similar results for some 
ombinatorial stru
tures that do not seem to beself-redu
ible (see [11℄). Furthermore, Dyer and Greenhill [11℄ have extendedthe result to the (related, but larger) 
lass of \self-partitionable" stru
tures.Self-redu
ibility and self-partitioning do not seem to apply (in general) toorbit-
ounting problems and there is no known general 
onne
tion betweenthe (approximate) orbit-
ounting problem and the orbit sampling problem.We shall revisit this point brie
y in Se
tion 5.5. The reader is also referred toJerrum's papers [25℄ and [27℄.One situation in whi
h \
ounting" te
hnology 
an be used for samplingorbits is when generating fun
tions for enumerating orbits 
an be eÆ
ientlyevaluated. For example, Nijenhuis and Wilf [41℄ used Equation 3.1 (see Se
-tion 3.4) to obtain a polynomial-time algorithm for sampling rooted unlabelledtrees. Their algorithm is given in Figure 1 (see also [48℄). Note that this is anexa
tly uniform sampling algorithm | its output distribution is exa
tly theuniform distribution on orbits.Nijenhuis and Wilf's approa
h was extended by Wilf [52℄, who gave a fully-polynomial almost-uniform sampler for the problem#Trees from Se
tion 3.4.On
e again, the output distribution of Wilf's algorithm is exa
tly uniform onorbits. Wilf's algorithm is also based on �nding a re
urren
e for the 
oeÆ
ientsof the relevant generating fun
tion. This approa
h to sampling has been sys-8Note that a similarly demanding de�nition would not make sense in the 
ontext of anFPRAS. If we 
hanged the de�nition of FPRAS (at the start of Se
tion 4), demandinginstead that the running time be bounded from above by a polynomial in jxj and log(��1),then �nding an FPRAS for a problem would be as diÆ
ult as �nding an exa
t algorithm.In parti
ular, for many 
ounting problems f , the quantity f(x) is only exponentially large(as a fun
tion of jxj). Su
h problems 
ould be solved exa
tly in polynomial time by runningan FPRAS with � � 1=(2f(x)). The 
lose 
onne
tion between almost-uniform samplingand approximate 
ounting (Se
tion 5.1) indi
ates that these de�nitions (less demanding forFPRAS and more demanding for almost-uniform sampling) are the \right" ones.



18 Leslie Ann Goldberg1. Choose a pair (d; k) su
h that k 2 [1; n � 1℄ and d divides k. Theprobability that the parti
ular pair (d; k) is 
hosen should be dTn�kTd(n�1)Tn .2. Re
ursively 
hoose T 0 uniformly at random (u.a.r.) from Rn�k.3. Re
ursively 
hoose T 00 u.a.r. from Rd.4. Make k=d 
opies of T 00 and atta
h the root of ea
h 
opy to the root ofT 0.5. Let the root of T 0 be the root of the new n-vertex tree and output thenew tree.Figure 1: Let Rn be set of rooted unlabelled n-vertex trees. Suppose n > 2.The tree output by this algorithm of Nijenhuis and Wilf is equally likely tobe any element of Rn. The reason for this is given in Equation 3.1 | everyn-vertex output 
omes up n� 1 times in the following pro
ess. Choose k andd. Choose a d-vertex tree and an n�k-vertex tree. Conne
t these as des
ribedin the algorithm. Count the resulting n-vertex tree d times. The quantities Tiare 
omputed using dynami
 programming as in Se
tion 3.4.tematised by Flajolet, Zimmerman and Van Cutsem [13℄. In their systemati
approa
h, one spe
i�es a set of stru
tures using a formal grammar involvingset, sequen
e and 
y
le 
onstru
tions. Generating fun
tions 
an be derivedautomati
ally from the spe
i�
ation, so uniform sampling 
an be done auto-mati
ally using dynami
 programming. The 
ombinatorial stru
tures studiedin [13℄ are labelled stru
tures, but the authors observe that similar prin
iples
an sometimes be used for sampling \unlabelled stru
tures" (orbits). Jerrumand I have used their approa
h to sample some tree-like unlabelled stru
turesin Se
tion 4 of [19℄.5.2 The orbit-sampling pro
essWe will now des
ribe a general Markov-
hain approa
h for sampling or-bits. The approa
h was proposed9 by Jerrum [25℄. It is essentially a randomwalk on the bipartite graph whi
h 
orresponds to the orbit-
ounting lemma(Lemma 2.1). In parti
ular, 
onsider the bipartite graph in whi
h the left-hand vertex set is a �nite set 
 and the right-hand vertex set is a permutationgroup G a
ting on 
. There is an edge between element � 2 
 and permu-tation g 2 G if and only if �g = �. The Markov 
hain M(
; G), whi
h we9Jerrum's des
ription of the Markov 
hain was in terms of the P�olya-theory setting ofSe
tion 2.1. However, as Cameron has observed [7℄, the 
hain is appli
able in the generalorbit-
ounting setting.



Counting and randomly sampling orbits 19refer to as the \orbit-sampling pro
ess", is essentially a random walk on thisgraph. In parti
ular, the state spa
e of M(
; G) is the set 
. The transi-tion probabilities from a state � 2 
 are spe
i�ed by the following two-stepexperiment:1. Sample g uniformly at random (u.a.r.) from G�.2. Sample �0 u.a.r. from �x(g).The new state is �0. The 
hain M(
; G) is ergodi
 sin
e every state � 
anbe rea
hed from every other in a single transition, by sele
ting the identitypermutation in Step 1. (For Markov-
hain de�nitions, see Chapter 6 of [22℄).Let � : 
 ! [0; 1℄ denote the stationary distribution of M(
; G). It is nowstraightforward to verify that �(�) is proportional to the degree of � in thebipartite graph. That is, �(�) = jG�j=j�(
; G)j. We have thus establishedthe following Lemma from [25℄:Lemma 5.1 Let � be the stationary distribution of the Markov 
hainM(
; G).Then �(�) = jG�jj�(
; G)j = jGjj�Gj j�(
; G)j = 1j�Gj j�(
; G)j (5.1)for all � 2 
. in parti
ular, � assigns equal probability to ea
h orbit �G.The se
ond equality in Equation 5.1 follows from Lagrange's Theorem whi
himplies that jG�j � j�Gj = jGj and the third follows from Lemma 2.1.Sin
e the stationary distribution of M(
; G) is uniform on orbits, a rea-sonable approa
h to the orbit-sampling problem is to simulate M(
; G) for asuÆ
ient number of transitions (to get \
lose" to the stationary distribution)and then output the result. Two issues arise at this point:1. Can the steps of M(
; G) be simulated eÆ
iently, and2. how many transitions have to be simulated before the 
hain is 
lose tostationarity? In parti
ular, how many transitions have to be simulatedbefore almost-uniform sampling is a
hieved? (The de�nition of \almost-uniform sampling" is in Se
tion 2.2.)Both of these questions depend upon the spe
i�
 input set I and the spe
i�
representation of the inputs in I.Let � be the stationary distribution of the Markov 
hain M(
; G). Let �tbe the distribution of M(
; G) after t transitions, when started in state �0.De�nition The mixing time of M(
; G), given initial state �0, is a fun
tion��0 : (0; 1℄ ! N , from toleran
es � to simulation times, de�ned as follows:for ea
h � 2 (0; 1℄, let ��0(�) be the smallest t su
h that dtv(�t0 ; �) � � forall t0 � t. We de�ne �(�) to be the maximum of ��0(�) over all initial states�0 2 
. M(
; G) is said to be rapidly mixing if and only if �(�) is at most apolynomial in the size of the input (
; G) and in log(��1).



20 Leslie Ann GoldbergNote that ifM(
; G) is rapidly mixing, and ea
h transition 
an be implementedin polynomial time, thenM(
; G) is a fully-polynomial almost uniform samplerfor orbits.5.3 The orbit-sampling pro
ess and P�olya theoryLet I(G) be an input set in the P�olya-theory setting. Re
all that ea
hinput (�m; bG) is represented as a set of O(m) generators for G. Thus, the sizeof the input is bounded from above by a polynomial in m.In this framework, Step 2 of ea
h transition is 
omputationally easy: tosample �0 u.a.r. from �x(ĝ), one just 
onsiders ea
h of the 
(g) 
y
les of gand 
hooses one of the k alphabet symbols u.a.r. (see Se
tion 2.1). However,Step 1 is apparently diÆ
ult. It is equivalent under randomised polynomial-time redu
tions to the Setwise Stabiliser problem, whi
h in
ludes Graph Iso-morphism as a spe
ial 
ase. There are, nevertheless, signi�
ant sets G ofgroups G for whi
h a polynomial-time implementation exists. Luks has shownthat p-groups|groups in whi
h every element has order a power of p for someprime p|is an example of su
h a set [36℄. For the remainder of this se
tion, wewill restri
t our attention to input sets 
orresponding to sets G of permutationgroups for whi
h ea
h transition 
an be implemented in polynomial time.5.3.1 Negative Results Jerrum [25℄ asked whether the orbit-sampling pro-
ess is rapidly mixing for the input set I(P). Subsequently [18℄, he and Ishowed that this is not the 
ase. In parti
ular, we 
onstru
ted an in�nite setG of permutation groups su
h that when the inputs (�m; bG) are 
hosen fromI(G), the mixing time �(1=3) of M(�m; bG) is exponential in m.We will des
ribe the 
onstru
tion (but not the proofs) here. Let k be thesize of the �xed alphabet �. Let � = 1=k2. We will 
onstru
t one group forea
h10 pair (l; n(l)) where l and n(l) are natural numbers satisfying�����1� (1 + 2�)l � (1� �)l(1 + 2�)l + 2(1� �)l�� 4 ln 2n(l) ���� � 3n(l)2 :To 
onstru
t the group Gl;n(l), we let Hl;n(l) denote the graph whi
h is obtainedfrom the 
omplete graph on n(l) verti
es by subdividing ea
h edge, insertingl � 1 intermediate verti
es of degree two. Thus, Hl;n(l) is formed by applyingthe \l-stret
h" operation of Jaeger, Vertigan and Welsh [24℄ to the 
ompletegraph Kn(l). Let Vl;n(l) and El;n(l) denote the vertex and edge sets of Hl;n(l)(respe
tively) and let ml;n(l) be 3 jEl;n(l)j. We will 
onstru
t a degree-ml;n(l)permutation group Gl;n(l).Gl;n(l) a
ts on the set K = Se2El;n(l) Ke, whi
h is the disjoint union ofthree-element sets Ke. Arbitrarily orient the edges of Hl;n(l), so that ea
h edgee 2 El;n(l) has a de�ned start-vertex e� and end-vertex e+. For e 2 El;n(l) and10In [18℄ we prove that there are in�nitely many su
h pairs.



Counting and randomly sampling orbits 21v 2 Vl;n(l), let he be some �xed permutation that indu
es a 3-
y
le on Ke andleaves everything else �xed and let gv be the generatorgv := Ye:e+=v he Ye:e�=v h�1e :Finally, let Gl;n(l) be hgv : v 2 Vl;n(l)i, the group generated by fgvg. Ob-serve that the generators of the group 
ommute and have order three, so ea
hpermutation g 2 Gl;n(l) 
an be expressed as a produ
tYv2Vl;n(l) gv�(v);where � : V ! f0; 1; 2g. Thus, for every pair (l; n(l)), the group Gl;n(l) isAbelian and every permutation g 2 Gl;n(l) (other than the identity) has order 3.Let G = fGl;n(l)g. In [18℄, we showed that for any Æ > 0, the mixingtime of the orbit-sampling pro
ess with input set I(G) satis�es �(1=3) =
(exp(m(G)1=(4+Æ))). Thus, the orbit-sampling pro
ess mixes slowly for anin�nite set of Abelian 3-groups.We will not des
ribe the slow-mixing proof here, but the high-level pi
tureis as follows: We 
an identify two types of permutation g 2 G su
h that, whenthe 
hain is in the stationary distribution, the permutation g sele
ted in Step 1is quite likely to have type 1 and also quite likely to have type 2. On the otherhand, it takes the 
hain a long time to move from a permutation of one typeto a permutation of the other type, and this implies slow mixing.5.3.2 Positive results Despite the slow-mixing result of the previous se
-tion, Jerrum [25℄ has identi�ed two sets of permutation groups for whi
h theorbit-sampling 
hain is rapidly mixing.1. G is the set of symmetri
 groups, as in Example 2.4.2. G is the set of all 
y
li
 groups (all groups whi
h are generated by a singlepermutation).Jerrum showed that the orbit-sampling pro
ess is rapidly mixing in both 
ases,so this pro
ess provides a fully-polynomial almost-uniform sampler in these
ases.To illustrate the ideas, we will 
onsider the se
ond 
ase. Let G be a degree-m 
y
li
 group and 
onsider the Markov 
hain M(�m; bG).As before, let � be the stationary distribution of M(�m; bG), and let �tbe the distribution after t transitions, starting from state �0. A (Markovian)
oupling for M(�m; bG) is a sto
hasti
 pro
ess (�t; �t) on �m � �m su
h thatea
h of (�t) and (�t), 
onsidered marginally, is a faithful 
opy of M(�m; bG).In order to prove that M(�m; bG) is rapidly mixing, we want to 
onstru
t a
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oupling in whi
h the moves of (�t) and (�t) are 
orrelated, so that (�t) and(�t) 
oales
e rapidly, ensuring that �t = �t for all suÆ
iently large t. The
oupling lemma (see, for example, Aldous [1℄) says that if �0 is 
hosen from �then dtv(�t; �) � Pr[�t 6= �t℄:Let 1 denote the identity permutation. Let gi denote the permutation
hosen in Step 1 of the i'th transition ofM(�m; bG). Jerrum showed that thereis a 
onstant � and a polynomial p(m) su
h that for every permutation g 2 GPr(gp(m) = 1 j g1 = g) � �.Given this fa
t, the mixing time 
an be bounded via a straightforward
oupling: Let the two 
opies run independently until they rea
h a transitionduring whi
h they both sele
t the identity during Step 1. After that, run the
opies together, keeping the se
ond 
opy in the same state as the �rst. Theprobability that 
oupling has not o

urred by time � is exp(�
(�=p(m))), sothe 
hain is rapidly mixing.5.4 Open questions regarding the orbit-sampling pro
essAs we observed in the previous se
tion, when the set 
 
onsists of wordsin the P�olya-theory framework and the group G is 
y
li
, the orbit-samplingpro
ess visits the identity permutation often, and this implies that it mixesrapidly. Similarly, when the group is the symmetri
 group, the pro
ess visitsthe word � = 00 � � �0 often, and it mixes rapidly. I am not aware of any otherrapid-mixing results for the orbit-sampling pro
ess. It would be interesting toidentify a non-trivial input set for whi
h the 
hain is rapidly mixing, but forsome other reason. As a test 
ase, we might ask whether it is rapidly mixingwhen orbits 
orrespond to unlabelled 2-regular graphs. However, note thatunlabelled 2-regular graphs 
an easily be sampled dire
tly using the 
onne
tionto integer partitions. See [35℄.Cameron illustrated the orbit-sampling pro
ess in his textbook [7℄ by de-s
ribing the 
ase in whi
h orbits represent unlabelled graphs (Example 2.2). Inthis 
ase, Step 1 of the pro
ess 
orresponds to Graph Isomorphism, whi
h wedo not know how to solve in polynomial time. Nevertheless, as Cameron ob-serves, there are good heuristi
s for graph isomorphism (for example, M
Kay'snauty [37℄), so implementing the transitions may not represent a serious pra
-ti
al diÆ
ulty. It is worth re
ording the fa
t that we do not know whether theorbit-sampling pro
ess is rapidly mixing for unlabelled graphs. Probably it is.Sin
e the identity permutation is visited often, a proof along the lines of theone sket
hed in Se
tion 5.3.2 may work. However, as far as I know, nobody hasproved this. In parti
ular, even though it is 
lear that the identity permutationis visited often in the stationary distribution, it is not known whether thereare some \bad" starting points from whi
h it takes a long time to rea
h theidentity. It would also be good to know whether the pro
ess is rapidly-mixing
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orrespond to (unlabelled) bounded-degree graphs. In this 
ase,the transitions of the pro
ess 
an be eÆ
iently implemented.5.5 Approximate 
ounting revisitedThere is no known general 
onne
tion between the problem of approxi-mately 
ounting orbits and the orbit sampling problem (see Se
tion 5.1). Thisis true even if we restri
t attention to the P�olya-theory framework of Se
-tion 2.1. Nevertheless, in the P�olya-theory setting, the orbit-sampling pro
ess
an be used for approximate 
ounting.Re
all that�(
; G) = f(�; g) j � 2 
 and g 2 G and � 2 �x(g) g:De�nition A fully-polynomial almost-uniform �-sampler for an input set Iis an algorithm whi
h takes an input (
; G) 2 I and an a

ura
y parameter� 2 (0; 1℄ and outputs a random variable. Typi
ally, the output is a member of�(
; G). In parti
ular, the variation distan
e between the output distributionof the algorithm and the uniform distribution on �(
; G) should be at most �.Furthermore, the running time of the algorithm should be bounded from aboveby a polynomial in the size of the des
ription of the input and in log(��1).If we run the orbit-sampling pro
ess, and observe the pair (�0; g) at the endof ea
h transition, then the stationary distribution of the pro
ess is uniformon �(
; G) (see Lemma 5.1). Thus, the pro
ess is a fully-polynomial almost-uniform �-sampler for an input set I if and only if it is rapidly mixing for I.Now let I(G) be an input set in the P�olya-theory setting. The followinglemma is due to Jerrum.Lemma 5.2 [25℄ If there is a fully-polynomial almost-uniform �-sampler forI(G) then there is an FPRAS for the 
orresponding orbit-
ounting problem.Together with Jerrum's rapid-mixing results from Se
tion 5.3.2, Lemma 5.2implies that the problem #P�olyaOrbits has an FPRAS if the group G isrequired to be 
y
li
 or to be a symmetri
 group. We will not in
lude theproof of the lemma but it will be useful to outline the key ideas, whi
h arefrequently used in the \Markov Chain Monte Carlo" area. Note that theproof in [25℄ uses slightly di�erent de�nitions, but a general treatment, withde�nitions similar to ours 
an be found in [11℄. First, sin
e j bGj 
an be 
omputedexa
tly in polynomial time, Lemma 2.1 implies that it suÆ
es to approximatej�(�m; bG)j. In this approximation, the self-redu
ibility in the group stru
ture
an be exploited. In parti
ular, it suÆ
es to estimate m ratios of the formj�(�m; bGi�1)jj�(�m; bGi)j (5.2)



24 Leslie Ann Goldbergwhere Gj = fg 2 G j `g = ` for all ` < jgand i 2 f1; : : : ; mg. j�(�m; bGm)j 
an be 
al
ulated exa
tly (it is km) andthis 
an be multiplied by all of the ratios to yield j�(�m; bG0)j, whi
h is thedesired quantity. The ratio in Equation 5.2 
an be estimated by sampling from�(�m; bGi�1) and 
he
king how many of the samples are in �(�m; bGi).Lemma 5.2 tells us that approximate 
ounting is as easy as almost-uniformlysampling from �(�m; bG) but it is not known whether the 
onverse is true. Inparti
ular, �(�m; bG) does not seem to be \self-partitionable" in the senseof [11℄. It is easy to see that the set �(�m; bG) 
an be des
ribed indu
tivelyby breaking bG into 
osets. However, the problem is that the natural \parts"are 
osets rather than groups, and we already know from Lemma 4.1 thatapproximately 
ounting is diÆ
ult over 
osets.In parti
ular, a natural method for sampling from �(�m; bGi) would beto use 
ounting estimates to determine the relative weight of ea
h 
oset of�(�m; bGi+1), then sele
t a 
oset (with the appropriate probability) and re-
ursively sample from the 
oset. But this approa
h is unlikely to lead to aneÆ
ient algorithm be
ause of Lemma 4.1.5.6 Other orbit-sampling methods5.6.1 Wormald's Method As in Example 2.2, let 
n be the set of all n-vertex graphs and let Gn be the permutation group a
ting on 
n whi
h isindu
ed by vertex permutations. The orbits of 
n under Gn 
orrespond tounlabelled n-vertex graphs. Let I be the input set f(
n; Gn)g. The input(
n; Gn) will be represented by the positive integer n, en
oded in unary, as inthe problem #Graphs. It is unknown whether the orbit-sampling pro
ess israpidly mixing for I. Nevertheless, there is a fully-polynomial almost-uniform�-sampler for I. Thus, by Lemma 5.2, there is also an FPRAS for I.11 The�-sampler is due to Wormald [55℄ and uses the \reje
tion sampling" method,whi
h is a frequently-used and powerful tool for sampling.In order to simplify the des
ription of Wormald's algorithm, we introdu
ethe following notation: For every permutation g of a set 
, let�(
; g) = f(�; g) j � 2 
 and � 2 �x(g) g:Thus, �(
; G) = Sg2G�(
; g).First, suppose that we 
ould estimate j�(
n; g)j and j�(
n; Gn)j. Thenwe 
ould sample from �(
n; Gn) using the following algorithm of Dixon andWilf [9℄:1211In order to apply Lemma 5.2, we are impli
itly using the fa
t that I 
an be en
oded inthe P�olya-theory setting. See Example 2.5.12Dixon and Wilf's algorithm is more sophisti
ated than the one that we des
ribe here.In parti
ular, they show that the probabilities in Step 2 are identi
al for permutations



Counting and randomly sampling orbits 251. Input n2. Choose g 2 Gn with probability j�(
n;g)jj�(
n;Gn)j .3. Choose (�; g) u.a.r. from �(
n; g).Step 3 of the algorithm is easily implemented | it 
orresponds to Step 2of the orbit-sampling pro
ess. The main problem is that we do not know howto estimate j�(
n; Gn)j. Wormald [55℄ uses reje
tion sampling to avoid doingthis estimation. The basi
 idea of reje
tion sampling is as follows. It maybe too diÆ
ult to sample from a given desired distribution. So what the userdoes instead is to sample from some other (more tra
table) distribution. Imag-ine the desired distribution as being \s
aled down" so that it �ts underneaththe more tra
table distribution. To draw a sample from the desired distri-bution, the user �rst draws a sample from the more tra
table distribution.The user then uses the sample to determine the probability with whi
h themore tra
table distribution over-represents this sample (relative to the \s
aleddown" desired distribution). With this probability, the sample is reje
ted (andthe value ? is output instead). Otherwise, the sample is output. The methodis useful when it is easy to determine the probability with whi
h a given sampleshould be reje
ted (so reje
tion is fast) and, furthermore, the overall reje
tionprobability is low (so the variation distan
e between the output distributionof the algorithm and the desired distribution is small).We will now des
ribe Wormald's algorithm. To simplify the des
ription,we will �rst omit the a

ura
y parameter, �, from the input. After we havedes
ribed the algorithm, we will bound the variation distan
e between the out-put distribution of the algorithm and the uniform distribution on �(
n; Gn).We will then say how to modify the algorithm to redu
e the variation distan
eto any desired quantity �. The outline of the algorithm is as follows, where1 denotes the identity permutation (This is a slight abuse of notation, sin
ewe use the single symbol 1, but when the input is n, we mean the identitypermutation on 
n.) We will use the symbol pg;n to represent the probabilitywith whi
h permutation g is 
hosen (so Pg pg;n = 1). Appropriate 
hoi
esfor pg;n will be dis
ussed below.1. Input n2. Choose g with probability pg;n.3. Choose (�; g) u.a.r. from �(
n; g).4. With probability p1;nj�(
n;1)j j�(
n;g)jpg;n output (�; g); otherwise output ?.in the same 
onjuga
y 
lass, and by breaking Gn into 
onjuga
y 
lasses, they show how toimplement Step 2 in polynomial time on average provided the value of j�(
n; Gn)j is known.Details 
an be found in [9℄.
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hoose the probabilities pg;n in su
h a way thatCriterion 1 (below) is satis�ed (so that Step 4 
an be implemented). We willalso 
hoose the probabilities in su
h a way that Criteria 2 and 3 are satis�ed,so that the algorithm runs in polynomial time.Criterion 1: The probabilities pg;n must be 
hosen so thatp1;nj�(
n; 1)j j�(
n; g)jpg;n � 1:Criterion 2: The probabilities pg;n must be 
hosen so that Step 2 
anbe implemented in polynomial time13.Criterion 3: The probabilities pg;n must be 
hosen so that Step 4 
anbe implemented in polynomial time.It is easy to 
he
k that the probability that any given pair (�; g) from�(
n; Gn) is output is p1;n = j�(
n; 1)j. With the remaining probability, whi
hwe denote �, the algorithm outputs ?. It is now straightforward to verify thatthe total variation distan
e between the output distribution of the algorithmand the uniform distribution on �(
n; Gn) is �. Note that the reje
tion prob-ability is 0 whenever g = 1. Thus, � � 1� p1;n.If we wish to have an upper bound � on the total variation distan
e, thenwe simply run the algorithm for dlog(�)= log(1�p1;n)e iterations. If the outputis always ? (for every iteration) then we output ?. Otherwise, we output the�rst member of �(
n; Gn) whi
h is output by an iteration. We get a fully-polynomial almost-uniform �-sampler as long as the total number of timesthat we run the algorithm is bounded from above by a polynomial in n andlog(��1). Sin
elog(�)= log(1� p1;n) = log(��1)= log((1� p1;n)�1);this follows from Criterion 4.Criterion 4: The probabilities pg;n must be 
hosen so that, for somepositive 
onstant 
 and every n, we have p1;n � n�
.Wormald [55℄ showed how to 
hoose the probabilities pg;n so that these
riteria are met. Thus, he gave a fully-polynomial almost-uniform �-samplerfor unlabelled graphs.13Note that 
hoosing pg;n = j�(
n;g)jj�(
n;Gn)j would make Wormald's algorithm equivalent toDixon and Wilf's. Thus, it would satisfy all 
riteria ex
ept Criterion 2.



Counting and randomly sampling orbits 275.6.2 Extending Wormald's Method Wormald's method 
an easily be ex-pressed in the general orbit-sampling framework. As before, pg;G denotes theprobability with whi
h permutation g is 
hosen, so Pg pg;G = 1.1. Input (
; G)2. Choose g 2 G with probability pg;G.3. Choose (�; g) u.a.r. from �(
; g).4. With probability p1;Gj�(
;1)j j�(
;g)jpg;G output (�; g); otherwise output ?.The analogue of Criterion 4 states that there is a positive 
onstant 
 su
hthat for every possible input (
; G), we must have p1;G � m(G)�
. On theother hand, the analogue of Criterion 1 impliesj�(
; 1)jp1;G � j�(
; g)jpg;G ; (5.3)whi
h implies p1;G � j�(
; 1)jj�(
; G)j :Thus, we 
annot simultaneously satisfy the two 
riteria unless there is apositive 
onstant 
 su
h that for every possible input (
; G),m(G)�
 � j�(
; 1)jj�(
; G)j : (5.4)In other words, we 
annot use Wormald's method unless the the part of�(
; G) whi
h 
orresponds to the identity permutation a

ounts for at least apolynomial fra
tion of �(
; G).Several natural sets of permutation groups satisfy Equation 5.4. For ex-ample, Wormald has shown [55℄ how to use the method to eÆ
iently sampleunlabelled r-regular graphs for r � 3.5.6.3 Other possibilities Not mu
h is known about how to sample orbitswhen the input set does not satisfy Equation 5.4. We have just seen thatWormald's method relies on the identity permutation having a large weight(in the sense that Equation 5.4 must be satis�ed). One of the two positiveresults in Se
tion 5.3.2 (the result showing that the orbit-sampling pro
ess israpidly mixing for 
y
li
 groups) also relies on this fa
t.Jerrum and I [19℄ 
onsidered the following orbit-sampling problem, whi
hwe 
hose spe
i�
ally be
ause Equation 5.4 does not hold.



28 Leslie Ann GoldbergExample 5.3 Let � be any �xed 
onstant. For any multigraph H with degreeat most �, the degree sequen
e of H is a sequen
e n = n0; : : : ; n�, whereni denotes the number of verti
es of H with degree i. Let 
n be the set ofall n-vertex 
onne
ted multigraphs with degree sequen
e n. Let Gn be the per-mutation group a
ting on 
n whi
h is indu
ed by vertex permutations. As inExample 2.2, the orbits 
orrespond to isomorphism 
lasses. That is, the orbitsof 
n under Gn 
orrespond to the unlabelled 
onne
ted multigraphs with degreesequen
e n.In [19℄, we gave a fully polynomial almost-uniform sampler for this orbit-sampling problem (sampling unlabelled 
onne
ted multigraphs with a given(bounded) degree sequen
e). Unfortunately, our solution does not 
ontain anynew methods | it is really a 
ombination of the methods that have alreadybeen des
ribed here. Dis
overing new methods for sampling orbits, parti
ularlymethods whi
h do not require Equation 5.4 remains an interesting 
hallenge.Our algorithm for sampling unlabelled 
onne
ted multigraphs is based onthe following idea. Every unlabelled 
onne
ted multigraph H is asso
iatedwith a unique \
ore"14 whi
h has no verti
es of degree 1 or 2. To randomlygenerate a multigraph H, the algorithm �rst generates the 
ore of H and thenextends the 
ore by adding trees and 
hains of trees to obtain H.The algorithm for generating the 
ore is des
ribed using the 
on�gurationmodel of Bender and Can�eld [3℄, Bollob�as [6℄ and Wormald [53℄. A 
on�gura-tion (for a given degree sequen
e) is a labelled 
ombinatorial stru
ture whi
h
an be viewed as a re�nement of a multigraph with the degree sequen
e. Forany given degree sequen
e, the orbits of all 
on�gurations (with respe
t to theappropriate permutation group) 
orrespond to the unlabelled multigraphs withthe degree sequen
e. Sin
e the degree sequen
e of the 
ore has no verti
es ofdegree 1 or 2, a typi
al 
ore does not have many symmetries and Equation 5.4is satis�ed. (This follows from an extension of Bollob�as's analysis of unlabelledregular graphs [5℄.) Thus, the algorithm uses Wormald's method to generatethe 
ore. (If the 
ore is not 
onne
ted, it is reje
ted. The fa
t that this doesnot happen too often follows from another result of Wormald [54℄.)After generating the 
ore of the random multigraph, the algorithm extendsthe 
ore by adding trees and 
hains of trees. This part of the algorithm isbased on the generating-fun
tion approa
h illustrated in Se
tion 5.1.It is an open problem to sample unlabelled multigraphs given a generaldegree sequen
e (in whi
h degrees need not be bounded from above by a 
on-stant). Our method is not appli
able when the degrees are unbounded. Infa
t, the problem with unbounded degrees seems to be diÆ
ult even in thelabelled 
ase (see [29, 39, 10℄).14For other uses of the \
ore" idea, see Zhan [56℄.



Counting and randomly sampling orbits 296 A related problem: Listing orbitsConsider the following 
omputational problem, whi
h �ts into the frame-work of Se
tion 2.2.De�nition The orbit-listing problem: Given an input (
; G) 2 I, outputexa
tly one member of ea
h orbit in �(
; G).There is a vast literature on the problem of listing orbits. The reader isreferred parti
ularly to M
Kay's paper [38℄ whi
h introdu
es a new methodand also explains the 
onne
tion between various methods whi
h are used inpra
ti
e. Further work along these lines 
an be found in [34℄. In this survey wewill restri
t our attention to polynomial delay listing, whi
h is not mentionedin these works.The notion of \polynomial delay" is due to Johnson, Yannakakis and Pa-padimitriou [32℄. A listing algorithm has polynomial delay if and only if thedelay (in time-steps) between ea
h pair of 
onse
utive outputs is bounded fromabove by a polynomial (in the input size).When the permutation group is trivial (so the orbits are in one-to-one
orresponden
e with the elements of 
), listing 
an be shown to be stri
tlyless diÆ
ult than sampling [16℄, in the sense that the existen
e of a fully-polynomial almost-uniform sampling algorithm for a given input set impliesthe existen
e of a (randomised) polynomial-delay listing algorithm (but notvi
e-versa). It is not known whether su
h a result holds for arbitrary inputsets, but the idea has been used for at least one non-trivial orbit samplingproblem. In parti
ular, Dixon and Wilf [9℄ suggested using a sampling algo-rithm for unlabelled graphs in order to list them. Using this idea, one 
an
ombine Wormald's unlabelled-graph sampling algorithm from Se
tion 5.6.1with Babai and Ku�
era's 
anoni
al labelling algorithm [2℄ to obtain a (ran-domised) polynomial-delay algorithm for listing unlabelled graphs [15, 16℄.The dupli
ate-elimination 
ontained in this algorithm requires ea
h of the(exponentially-many) orbits to be stored. However, it turns out that thereis also a deterministi
 polynomial-spa
e polynomial-delay algorithm for listingunlabelled graphs [15, 16℄.It is not known whether there is a polynomial-delay listing algorithm forlisting orbits in the general P�olya-theory framework (i.e., for input set I(P)).It would be interesting to know more about this question, and about its 
on-ne
tion to the 
orresponding orbit-sampling problem.A
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30 Leslie Ann Goldberg7 Appendix: Proof of Lemma 3.3The proof is by redu
tion from the problem #Cubi
Ham, whi
h wasshown to be #P-
omplete by Jerrum [26℄.Name. #Cubi
Ham.Instan
e. A graph H in whi
h every vertex has degree at most 3.Output. The number of Hamiltonian paths in H.Proof Let Fn be the graph with vertex set f
i;j j i 2 [n℄; j 2 [2n + 2℄g andedge setf(
i;0; 
i0;0) j i0 = i+ 1 (mod n)g [[i f(
i;j; 
i;j0) j j 0 = j + 1 (mod 2n+ 2)g:Thus, Fn 
onsists of a \
entral" length-n 
y
le 
0;0; : : : ; 
n�1;0 and, o� of ea
hvertex 
i;0 in the 
y
le, there is a length-(2n+2) 
y
le 
i;0; : : : ; 
i;2n+1, whi
h werefer to as a \petal". For every j 2 [n+1℄, let F 0n[j℄ be the graph obtained fromFn by deleting edges (
0;j; 
0;j+1) and (
0;j+1; 
0;j+2). Thus, F 0n[j℄ is obtainedfrom Fn by removing two adja
ent edges from a petal. The shortest path fromthe 
entral 
y
le to the two deleted edges is the length-j path from 
0;0 to 
0;j.Let F 0n be the union of n + 1 disjoint graphs, the jth of whi
h is isomorphi
to F 0n[j℄.LetH be an instan
e of #Cubi
Ham with vertex set V = fv0;0; : : : ; vn�1;0g.Let H 0 be the graph with vertex set V [ fvi;j j i 2 [n℄; j 2 f1; : : : ; 2n + 1ggwhi
h is 
onstru
ted from H by adding the edges in[i f(vi;j; vi;j0) j j 0 = j + 1 (mod 2n+ 2) and j 6= i + 1g:Roughly, H 0 is formed from H by atta
hing petals, but the i + 1st edge isdeleted from the ith petal.For any graph �, let N(�) denote the number of distin
t (up to isomor-phism) subtrees of �. We 
laim thatN(H 0 [ Fn)�N(H 0 [ F 0n) = N(Fn)�N(F 0n)�#Cubi
Ham(H);whi
h 
ompletes the proof.To see why the 
laim is true, note that to form a subtree of Fn, onemust delete an edge (
i;0; 
i0;0). Also, for ea
h i 2 [n℄, one must delete anedge (
i;j; 
i;j0). If one stops at this point, then the subtree is not representedin N(F 0n), but if any further edges are deleted, then the subtree is representedin N(F 0n). Now we want to know how many subtrees in N(Fn) � N(F 0n) aresubtrees of H 0 and this turns out to be the number of Hamiltonian paths in H.�
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