
An Optical Simulation of Shared Memory �Leslie Ann Goldberg yDepartment of Computer ScienceUniversity of WarwickCoventry CV4 7AL Englandleslie@dcs.warwick.ac.uk Yossi MatiasAT&T Bell Laboratories600 Mountain AvenueMurray Hill, NJ 07974matias@research.att.comSatish RaoNEC Research Institute4 Independence WayPrinceton, NJ 08540satish@research.nec.comAbstractWe present a work-optimal randomized algorithm for simulating a shared memory machine(pram) on an optical communication parallel computer (ocpc). The ocpc model is motivatedby the potential of optical communication for parallel computation. The memory of an ocpc isdivided into modules, one module per processor. Each memory module only services a requeston a timestep if it receives exactly one memory request.Our algorithm simulates each step of an n lg lgn-processor erew pram on an n-processorocpc in O(lg lgn) expected delay. (The probability that the delay is longer than this is atmost n�� for any constant �.) The best previous simulation, due to Valiant, required �(lgn)expected delay.1 IntroductionThe huge bandwidth of the optical medium makes it possible to use optics to build communicationnetworks of very high degree. Eshaghian [8, ?] �rst studied the computational aspects of parallelarchitectures with complete optical interconnection networks. The OCPC model is an abstractmodel of computation which formalizes important properties of such architectures. It was �rstintroduced by Anderson and Miller [2] and Eshaghian and Kumar [10]. In an n-processor completelyconnected Optical Communication Parallel Computer (n-ocpc) n processors with local memory�A preliminary version of this paper appeared in Proc. 6th ACM Symp. on Parallel Algorithms and Architectures,June 1994.yThis work was performed at Sandia National Laboratories and was supported by the U.S. Department of Energyunder contract DE-AC04-76DP00789. 1

are connected by a complete network. A computation on this computer consists of a sequenceof communication steps. During each communication step each processor can perform some localcomputation and then send one message to any other processor. If a processor is sent a singlemessage during a communication step then it receives this message successfully, but if it is sentmore than one message then the transmissions are garbled and it receives none of them.While the ocpc seems a reasonable model for optical computers, it has not been used as aprogramming model to date. The pram model, on the other hand, has been extensively used forparallel algorithmic design (e.g., [19, 22, 34]). The convenience of programming on the pram islargely due to the fact that the programmer does not have to specify interprocessor communicationor to allocate storage in a distributed memory. For the very same reason, the pram is consideredas highly theoretical, and the task of emulating the pram on more realistic models has attractedconsiderable attention; emulations may enable automatic mapping of pram algorithms to weakermodels, as well as a better understanding of the relative power of di�erent models. Indeed, manyemulations of the pram on bounded degree networks were introduced (see, e.g., [1, 21, 23, 31, 32,37, 38] or [24] for a survey).In this paper, we present a simulation of an erew pram on the ocpc. In particular, we presenta randomized simulation of an n lg lg n processor erew pram on an n processor ocpc in which,with high probability, each step of the pram requires O(lg lg n) steps on the ocpc.1 Our simulationis work optimal, to within a constant factor.Our results are closely related to previous work on the well studied distributed memory machine(dmm) which consists of n processors and n memory modules connected via a complete networkof communication. Each processor can access any module in constant time, and each module canservice at most one memory request (read or write) at any time. The dmm is thus a weaker modelthan the shared memory pram, in that the memory address space is partitioned into modules witha restricted access imposed on them. We remark that there are several variants of dmm modelsdi�ering in their contention rules.Several papers have studied the emulation of a pram on various dmm models [31, 21, 39, 35, 6,20, 7]. Karp et al. [20] present O(lg lg n) expected delay simulations of various types of pram on acrcw dmm in which each memory module allows concurrent read or write access to at most oneof its memory locations during any step. Dietzfelbinger and Meyer auf der Heide [7] improve uponthis paper by presenting an O(lg lg n) expected delay simulation of an erew pram on the (weaker)c-collision dmm in which any memory module that receives c or fewer read or write requests servesall of them. Although Dietzfelbinger and Meyer auf der Heide require c � 3 for their analysisto work, they report that experiments show that c = 2 works as well. The 1-collision dmm isequivalent to the ocpc.Our result improves on the result of [7] in two ways. First, it is work-optimal. Second, it worksfor the ocpc (or 1-collision dmm). The previous best known work-optimal simulation of a pramon the ocpc is an O(lg n) delay simulation of Valiant [40]. In addition, unlike [40, 7] we explicitly1We will refer to the time required to simulate one pram step as the delay of the simulation.2

consider the construction and evaluation of the hash functions used in our simulation algorithm.1.1 Related workThe OCPC model The ocpc model was �rst introduced by Anderson and Miller [2] and Es-haghian and Kumar [10], and has been studied by Valiant [40], Ger�eb-Graus and Tsantilas [12],Gerbessiotis and Valiant [11], Rao [33], Goldberg, Jerrum, Leighton and Rao [17], and Goldberg,Jerrum and MacKenzie [18]. The feasibility of the ocpc from an engineering point of view isdiscussed in [2, 12]. See also the survey paper of McColl [30] and the references therein.Computing h-relation on the OCPC A fundamental problem that deals with contentionresolution on the ocpc is that of realizing an h-relation. In this problem, each processor has atmost h messages to send and at most h messages to receive. Following Anderson and Miller [2],Valiant [40], and Ger�eb-Graus and Tsantilas [12], Goldberg et al. [17] solved the problem in timeO(h + lg lg n) for an n-processor ocpc. A lower bound of
(plg lg n) expected time was recentlyobtained by Goldberg, Jerrum, and MacKenzie [18].Simulating PRAM on OCPCs Valiant described a simulation of an erew pram on an ocpcin [40]. More speci�cally, Valiant gave a constant delay simulation of a Bulk Synchronous Parallel(bsp) computer on the ocpc (there called the s�pram), and also gave an O(lg n) randomizedsimulation of an n lg n-processor erew pram on an n-processor bsp computer. A simpler simulationwith delay O(lg n lg lg n) was given by Ger�eb-Graus and Tsantilas [12]. Valiant's result is the bestpreviously known simulation of a pram on the ocpc.Independently of our work, MacKenzie, Plaxton and Rajaraman [28], and Meyer auf der Heide,Scheiderler and Stemann [27] have shown how to simulate a n processor erew pram on an n-processor ocpc. Both simulations have �(lg lgn) expected delay. However, neither simulation iswork-optimal, and both simulations require n
(1) storage at each processor.Simulating PRAMs on DMMs Mehlhorn and Vishkin [31] used a (lgn= lg lgn)-universal classof hash functions to achieve a simple simulation of a crcw pram on a crcw dmm with expecteddelay O(lgn= lg lg n). An n-processor crcw pram can be simulated on an n-processor erew dmmin O(lg n) expected delay using techniques from [40]. The work of this simulation is thus a �(lg n)factor away from optimality. The best work-optimal simulation of a pram on an erew dmm hasdelay O(n�) [23].Recently, Karp, Luby and Meyer auf der Heide [20] presented a simulation of an n-processorcrcw pram on an n-processor crcw dmm with O(lg lgn) delay. They also presented a work-optimal simulation of an (n lg lg n lg� n)-processor erew pram on an n-processor crcw dmm inO(lg lgn lg� n) expected delay, and a nearly work-optimal simulation of an n lg lg n processor crcwpram on an n-processor crcw dmm with the same delay. Subsequently, Dietzfelbinger and Meyerauf der Heide [7] presented a simpli�ed (non-optimal) simulation of an n-processor erew pram on3

an n-processor dmm with O(lg lg n) expected delay. The simulation in [20] introduces a powerfultechnique that incorporates the use of two or three hash functions to map the memory address spaceinto the memory modules, combined with the use of a crcw pram algorithm for perfect hashing(see [16] and references therein). It heavily uses the concurrent read capability of the crcw dmm.The simulation in [7] circumvents the need for using the crcw pram perfect hashing by an elegantuse of an idea from Upfal and Wigderson [39].1.2 Overview of the algorithmOur simulation algorithm incorporates techniques and ideas from the simulation algorithms of [20,7], as well as from the h-relation routing algorithm of [17], as follows.The simulation in [7] uses three hash functions to map each memory cell of the erew pram tothree processors (and memory cells) in the dmm. A write on an erew memory cell is implementedby writing a value and a time stamp to at least two out of the three associated dmm memory cells.A read of an erew memory cell is implemented by reading two out of three of the memory cellsand choosing the value with the most recent time stamp. Dietzfelbinger and Meyer auf der Heide'sproof that their simulation requires only O(lg lgn) delay on a 3-collision dmm relies on the factthat, given a randomly generated tripartite hypergraph on 3n nodes with �n edges, one can, withhigh probability, remove all the nodes in the hypergraph using the following process.Repeat O(lg lgn) times:1. Remove all of the nodes with degree at most 3.2. Remove all resulting trivial hyperedges (hyperedges in which only one incident node remains.)Each hyperedge corresponds to a read or write of a pram memory location: The three verticescorrespond to the three processors in the dmm associated with that memory location. Thus, onestep of an �n node erew pram is implemented by using the process above to deliver at least twoout of three of the messages associated with each memory request.Since we are simulating an n lg lgn processor pram on an n-node ocpc, we must simultaneouslyimplement the process above for O(lg lgn) 3n-node hypergraphs using only n processors. To dothis, we start by sparsifying all of the hypergraphs using ideas from the (lg lg n)-relation routingalgorithm in [17]. That is, we route all but O(n= lgc n) messages and we ensure that at most oneundelivered message remains at any processor. Even so, implementing the process above in parallelcould still require
(lg lgn) time steps per iteration since each destination may participate in asmany as (lg lg n=�) di�erent hypergraphs. Thus, we must also \copy" each destination in such amanner that each message can locate the appropriate copy of its destination. We then performthe process in each hypergraph, ensuring that the process delivers at most a constant number ofmessages to each copy of a destination. After that, the messages can be sequentially forwarded totheir true destinations in O(lg lg n) time.We remark that, in fact, we cannot directly perform the process above on any of the O(lg lg n)hypergraphs since our processors can only receive one message in a time step whereas the processors4

in [7] can receive three messages in a time step. The details of our solution to this problem can befound in the technical sections.1.3 Paper outlineWe proceed in Section 2 with a high level description of our simulation. In Section 3, we presentour algorithm in detail and prove correctness. In Section 4 we deal with the evaluation of the hashfunction that maps the virtual shared memory to the memory modules.2 The SimulationOur objective is to show how to simulate one step of an n lg lg n processor erew pram in O(lg lg n)time-steps on an n processor ocpc. Our simulation follows [7] in using the following idea from [39].The memory of the pram is hashed using three hash functions, h1, h2, and h3. Thus, each memorycell of the pram is stored in three memory cells of the ocpc. To write memory cell x, a processorof the ocpc sends a message to at least two of the processors in fh1(x); h2(x); h3(x)g. The messagecontains the new value for cell x and also a time stamp. To read memory cell x, a processor p ofthe ocpc sends a message to at least two of the processors in fh1(x); h2(x); h3(x)g. Each of thesetwo processors sends p the value that it has for cell x and also its time stamp for cell x. Processor puses the value with the later time step. The hash functions h1, h2, and h3 are chosen from the\highly" universal family Rd;jm;n from [20], which guarantees random-like behavior.Each ocpc processor will simulate lg lg n pram processors. Thus, at the start of a pram step,each of the ocpc processors will wish to access up to lg lg n cells of the pram memory. Eachprocessor uses h1, h2 and h3 to obtain the three destinations where each memory cell is stored.Thus, each ocpc processor wants to send messages to up to 3 lg lgn destinations. Our objective isto deliver at least two of the messages associated with every request.As in [17], we will divide the processors of the ocpc into target groups of size k = lgc n. We willalso divide the n lg lgn memory requests into lg lg n=� groups of �n requests each for a su�cientlysmall constant �. We will refer to the set of messages associated with a particular group of memoryrequests as a \group of messages". The messages will be delivered using the following procedures:� Thinning and deliver to target groups. Initially, the number of messages destined forany given target group may be as high as 4k lg lg n. (We will show that, with high probability,it is no larger than this.) We will use techniques from [17] to route the messages to theirtarget groups. With high probability when this procedure is �nished every message will bein the target group of its destination. Furthermore, each processor will have at most onemessage left to send. For a su�ciently large constant c2, we will allocate a contiguous blockof c2 processors from the target group to each un�nished message for that destination. Allsenders will know which processors are allocated for their destination. For a su�ciently largeconstant c1, we will ensure that for any of the lg lg n=� groups of �n messages, with high5

probability, all but O(n=(lgn)c1) of the messages in the group will be delivered to their �naldestinations.� Divide into sub-problems and duplicate. We now divide the ocpc into lg lgn=� sub-ocpcs, each with n0 = n�= lg lgn processors. Each sub-ocpc will work on the sub-problemof delivering the messages corresponding to a particular group of messages. For each sub-ocpc we now make lg2 n0 copies of the relevant sub-problem, all of which will reside in itsprocessors 1; : : : ; n0=2. We will also allocate its processors n0=2+1; : : : ; n0, as follows. For eachoutstanding memory request (i.e., for each memory request which has the property that atmost one of its three messages was delivered during the previous procedure), we will allocatelg2 n0 processors. These lg2 n0 processors will do the book-keeping concerning the request inthe lg2 n0 copies of the sub-problem. Each message will know the identity of the processorsresponsible for the book-keeping concerning its memory request.� Route messages for each sub-problem. In each copy of each sub-problem we routemessages according to the c2-collision access schedule from Section 3 of [7]. Dietzfelbingerand Meyer auf der Heide prove that with high probability each sub-problem is \good" (thisterm will be de�ned later on). We will prove that if a sub-problem is good then for anyparticular memory request in any particular copy of the sub-problem, the probability thatthe memory request is satis�ed in the c2-collision access schedule routing is at least 1=2. Also,no destination in any copy of any sub-problem receives more than a constant number (3c2)of messages during the c2-collision access schedule routing.� Combining problem copies and combining sub-problems. In this procedure weidentify a subset S of the set of messages that were delivered by the various copies of thec2-collision access schedule routing procedure. The messages in S are chosen in such a waythat every processor is the destination of O(lg lgn) messages in S. We show that with highprobability every memory request in every sub-problem that was created in the \divide intosub-problems and duplicate" procedure will be satis�ed if the messages in S are delivered.We deliver the messages in S using the routing algorithm in [17].3 Simulation details and analysisBefore giving the details and analysis we de�ne the class of hash functions Rd;jm;n being used anddescribe its properties that are used in the analysis. In the subsequent subsections we will give thedetails of each of the procedures described in the previous section.3.1 The hash functionsThe class Rd;jm;n is taken from [20] and is de�ned as follows.De�nition of Rd;jm;n: A function from Rd;jm;n is a combination of functions taken from severalclasses. Carter and Wegman [4] introduced Hdm;n � fg : [1; : : : ; m] ! [1; : : : ; n]g, the class of6

universal functions P (x) mod n where P is a polynomial of degree d � 1 over Zm. Siegel [35]introduced a class of functions Hnj;n � fh : [1; : : : ; nj] ! [1; : : : ; n]g. (More details on this classare given in Section 4.1.) To choose a random hash function h : [1; : : : ; m]! [1; : : : ; n] from Rd;jm;n,one �rst chooses� A function f , chosen uniformly at random from Hdm;pn� A function r, chosen uniformly at random from Hnj ;n� A function s, chosen uniformly at random from H1m;nj� pn integers a1; : : : ; apn, each chosen uniformly at random from the range [1; : : : ; n].The function h is de�ned by h(x) = (r(s(x)) + af(x)) mod n.We say that a set of random variables is k-wise independent if, for any subset of j � k randomvariables from the set, the joint probability density function of the j random variables is the productof the individual probability density functions of the random variables.As in [20], we say that a family Hp;n of hash functions is (�; k)-universal, if for each x1 <� � � < xj 2 f1; : : : ; pg, `1; : : : ; `j 2 f1; : : : ; ng j � k, it holds that, if the hash function h is drawnuniformly at random from Hp;n, then Pr[h(x1) = `1; : : : ; h(xj) = `j] � �=nj .Let ` be an arbitrary constant and let j and d be large enough relative to `. We will use thefollowing properties of the hash functions with respect to a set S � [1; : : : ; m], n � jSj � n11=10.The �rst two properties are proven in [20].Property 3.1 Let Rd;jm;n(s) be the restriction of Rd;jm;n induced by �xing s 2 H1m;nj . If s is chosenuniformly at random from H1m;nj then s is \1-perfect" on S with probability at least 1 � n�`. If sis \1-perfect" on S then Rd;jm;n(s) is (1;pn)-universal. (Hence, Rd;jm;n(s) is (1;pn)-universal withprobability 1� n�`.)Property 3.2 Let f be drawn randomly from Hdm;pn. Then with probability at least 1�n�` everyset f�1(i)\ S has size at most 2jSj=pn.We can now derive:Property 3.3 Let Z be a subset of [1; : : : ; n] and let i be an integer in [1; : : : ;pn]. Suppose that� � pn. Let h be chosen randomly from Rd;jm;n. (That is, let f , r, s, and a1; : : : ; apn be chosen asdescribed above.) The probability that � or more members of S \ f�1(i) are mapped to Z by h is atmost 2n�` + �2jSj=pn� �� jZjn ��.Proof. By Property 3.2, with probability at least 1 � n�` every set f�1(i) \ S has size atmost 2jSj=pn. By Property 3.1, with probability at least 1 � n�`, the hash destinations are pn-wise independent. 7

3.2 Thinning and deliver to target groupsWe start out by running the \thinning" procedure from [17], which is based on the algorithm ofAnderson and Miller [2]. The procedure runs for O(lg lgn) steps. During each step each senderchooses a message uniformly at random from the set of messages that it has not yet sent successfullyand it sends the message to its destination with a certain probability. Let h = 32e lg lg n. We provefurther below the following lemma.Lemma 3.1 With probability at least 1 � 2n�� (for any constant �), after the thinning proce-dure from [17] terminates, there are at most k=hdc3 lg lgne undelivered messages destined for anyparticular target group. (c3 is a constant which must be su�ciently large; it is the constant c2from [17].)The proof of Lemma 3.1 will use the following lemma.Lemma 3.2 With probability at least 1� n�� (for any constant �), each target group of size k isthe destination of at most 4k lg lg n messages.Proof. Consider a target group T and for each i in the range 1 � i � 3n lg lg n let xi be a randomvariable that is 1 if the ith message has a destination in T and 0 otherwise. Let X = Pi xi. ByProperty 3.1 of the the hash functions, Rd;jm;n(s) is (1;pn)-universal (and, therefore, (1; 1)-universal)with high probability. If this is the case, then the probability that any given xi is 1 is k=n, soE(X) = 3k lg lg n. If Rd;jm;n(s) is (1;pn)-universal then the xis are pn-wise independent, so using alimited independence Cherno� bound (Theorem 1 of [36]), we �nd that Pr(X � E(X)(1+ 1=3)) �e�E(X)=27. This probability is su�ciently small that we can sum the failure probability over thetarget groups.In order to continue with the proof of Lemma 3.1 we need some notation. For every targetgroup T let S(T) denote the set containing all senders that have messages destined for targetgroup T . We will say that a sender is bad if it has some message that has the same destination asat least h other messages. We will use the following lemma.Lemma 3.3 With probability at least 1�n�� (for any constant �) every set S(T) contains at mostk=(2h2dc3 lg lgne) bad senders.Proof. This proof is similar to the proof of Claim 2 in [17]. We include it here for completenessand also to demonstrate how the limited independence is handled. Let h0 = h=2. For a giventarget group T let M(S(T)) denote the set of messages that are sent by senders in S(T). We willsay that a message is externally bad with respect to a target group T if the message has the samedestination as at least h0 other messages that are not sent from senders in S(T). We will say thata message is internally bad with respect to a target group T if it has the same destination as atleast h0 other messages that are sent from senders in S(T). We wish to prove that with probability8

at least 1 � n�� at most k=(2h2dc3 lg lg ne) of the messages in M(S(T)) are either externally orinternally bad.First we consider externally bad messages. We will say that a processor P is externally crowdedwith respect to a target group T if there are at least h0 messages which are not in M(S(T)) andhave destination P . A set of b members of a target group are all externally crowded only if atleast bh0 messages have destinations in the set. Property 3.1 of the hash functions tells us thatthe destinations of the messages are pn-wise independent. Therefore, as long as b � pn=h0 theprobability that there is a set of b members of a target group that are all externally crowded is atmost n�� (for any constant �)2, plus�nk� kb! 4k lg lgnbh0 !� bk�bh0 :We can use Stirling's approximation to show that for b = k=h06 this quantity is at most (n=k)2�k=h05 .Therefore, with probability at least 1 � n�� � (n=k)2�k=h05 every target group has at most k=h06processors which are externally crowded with respect the T . Suppose that this is the case. Thenthe probability that a message in M(S(T)) chooses a destination which is externally crowded withrespect to T is at most h0�6 and the expected number of messages in M(S(T)) that choose a desti-nation which is externally crowded with respect to T is at most M(S(T))=h06. Property 3.1 of thehash functions tells us that the destinations of the messages are pn-wise independent (with highprobability). Hence, we can use a limited independence Cherno� bound from Theorem 1 of [36]to show that with probability at least 1 � exp(�jM(S(T))j = (12� h06)) at most 2 jM(S(T))j=h06messages in M(S(T)) choose a destination which is externally crowded with respect to T . Notethat as long as n is su�ciently large then 2 jM(S(T))j=h06 � k=(4h2dc3 lg lgne). Also, as long asjM(S(T))j � k=(4h2dc3 lg lg ne) and the constant c (in the de�nition of k) is su�ciently large, thesum of (n=k)2�k=h05 and (n=k) exp(�jM(S(T))j = (12� h06)) is at most n��.We now consider internally bad messages. We start by calculating an upper bound on theprobability that a message is internally bad. Lemma 3.2 tells us that with high probability at most4k lg lg n messages are destined for any target group. Thus, with high probability, at most 4k lg lg nmessages in M(S(T)) are destined for the same target group as the given message. Property 3.1of the hash functions tells us that the destinations of the messages are pn-wise independent.Therefore, the probability that the given message is internally bad is at most 4k lg lgnh0 !�1k�h0 � 2�h :So the expected number of messages in M(S(T)) which are internally bad is at most jM(S(T))j2�h.In order to prove that with high probability the number of internally bad messages is not farfrom the expectation we will use the following theorem of McDiarmid [29]. (The inequality is2By Lemma 3.2, n�� is an upper bound on the probability that more than 4k lg lg n messages are destined for anytarget group. 9

a development of the \Azuma martingale inequality"; a similar formulation was also derived byBollob�as in [3].)Theorem 3.1 [McDiarmid] Let x1; : : : ; xn be independent random variables, with xi takingvalues in a set Ai for each i. Suppose that the (measurable) function f : QAi ! R satis�esjf(x)� f(x0)j � ci whenever the vectors x and x0 di�er only in the ith coordinate. Let Y be therandom variable f(x1; : : : ; xn). Then for any t > 0,Pr (jY � E(Y)j � t) � 2 exp (� 2t2/Pni=1 c2i):If the hash functions h1, h2, and h3 were chosen uniformly at random from the set of func-tions from [1; : : : ; m] to [1; : : : ; n], the application of the bounded di�erences inequality would bestraightforward. We would take as the random variable xi the destination of the ith messagein M(S(T)). We would let Y be the random variable denoting the number of internally bad mes-sages in M(S(T)). If we change the value of one of the xis the value of Y would change by atmost h0 + 1. Plugging these values into the inequality, we would get a su�ciently small failureprobability.However, since h1, h2, and h3 are in fact drawn from the family Rd;jm;n, the xis are not independentso we cannot apply Theorem 3.1 to them. Instead, we follow the approach used in the proof ofLemma 6.1 in [20]. Consider the independent random variables a1; : : : ; apn. As before, let Y be arandom variable denoting the number of internally bad messages in M(S(T)). Let Z be the set ofall destinations of messages in M(S(T)). (The size of Z is at most jM(S(T))j, which is at most4k(lg lg n)2 (with high probability), by Lemma 3.2.) Suppose that we change one of the ais. ByProperty 3.3 of the hash functions, the probability that � or more members of M(S(T)) changedestination is at most 2n�� + �6n lg lgn=pn� ��4k(lg lgn)2n ��. This probability is su�ciently small aslong as the constant � is su�ciently large. So suppose that at most � members of M(S(T)) changedestination. Each of those may make at most h0 + 1 members of M(S(T)) become internally bad.Therefore, if we change one ai we change Y by at most �(h0 + 1). Therefore, by Theorem 3.1 theprobability that Y � k=(4h2dc3 lg lgne) is at most2 exp0B@�2� k4h2dc3 lg lgne � E(Y)�2(jM(S(T))j �2(h0 + 1)2) 1CA :Since E(Y) � k8h2dc3 lg lgne (for big enough n) and, with high probability (by Lemma 3.2),jM(S(T))j � 4k(lg lg n)2, the probability is at most2 exp(�k=(32h4dc3 lg lg ne24(lg lgn)2�2(h0 + 1)2)):This quantity is at most 12n�� (k=n) as long as c is su�ciently large. This concludes the proofof Lemma 3.3.The following lemma is proved in [17] (just after Lemma 3'). (The proof of the lemma uses thefact that jS(T)j � 4k lg lgn, which is true with high probability, according to Lemma 3.2.)10

Lemma 3.4 With probability at least 1� n�� the number of messages destined for any target groupthat start at good senders but are not delivered during the thinning procedure from [17] is at mostk=(2hdc3 lg lg ne).Proof of Lemma 3.1. We conclude that with probability at least 1�2n�� the number of undeliveredmessages destined for any given target group after the thinning procedure terminates is at mostk=(hdc3 lg lg ne).After the \thinning" procedure from [17] terminates we will use the \spreading" procedurefrom [17] to spread out the un�nished requests so that each processor has at most one un�nishedmessage to deliver. As part of the spreading procedure we will allocate one processor to do thebook-keeping associated with each memory request and we will ensure that all messages associatedwith the request know the identity of this processor. During this procedure of our simulation thethree messages associated with a request may be sent to various processors but they will keep thebook-keeping processor informed about their whereabouts.After the \spreading", we will use the \deliver to target groups" procedure from [17] to deliverthe rest of the messages to their target groups in O(lg lg n) steps. With probability at least 1�n��(for any constant �) every message will be in its target group at the end of the \deliver to targetgroup" procedure. Furthermore, each sender will have at most 2 undelivered messages to send and(by Lemma 3.1), the number of un�nished messages in a target group will be less than k. At thispoint we can sort the messages in the target groups by destination. After the sorting, each senderwill have at most one message to send.We now wish to allocate a contiguous block of c2 processors from the appropriate target groupto each un�nished destination (for a su�ciently large constant c2). We wish to do the allocationin such a way that all senders know which processors are allocated for their destination. We dothis as follows. If a destination is the destination of fewer than c2 requests we simply deliver them.Otherwise, we allocate c2 processors for the destination. The processors allocated will be the �rstc2 processors with requests for that destination.At this point we wish to send all but O(n2�c1 lg lgn) of the messages in any group to their �naldestinations. We will say that a message is bad if its destination is also the destination of at leastc1 lg lgn other messages. We will use the following lemma.Lemma 3.5 With probability at least 1� n�� (for any constant �) at most O(n2�c1 lg lgn) of themessages in any group of messages are bad.Proof. This proof is similar to the second part of the proof of Lemma 3.3. By Property 3.1 of thehash functions, the destinations are pn-wise independent with high probability. In this case, theprobability that a given message is bad is at most �3n lg lgnc1 lg lgn�n�c1 lg lgn. By Stirling's approximation,this is at most (3e=c1)c1 lg lgn which is at most 2�c1 lg lgn for c1 � 6e. Therefore, the expectednumber of bad messages in a group is at most �n2�c1 lg lgn.11

We now use Theorem 3.1 (the bounded di�erences inequality) to prove that with high probabilitythe number of bad messages in a group is not much more than the expectation.As in the case of Lemma 3.3, the bounded di�erences inequality would be straightforward ifthe hash functions h1, h2, and h3 were chosen uniformly at random from the set of functions from[1; : : : ; m] to [1; : : : ; n]. We would take as the random variable xi the destination of the ith messageand we would let Y be the random variable denoting the number of bad messages. If we changethe value of one of the xis the value of Y would change by at most c1 lg lgn + 1. Therefore, wewould obtain the following inequality.Pr(Y � 2E) � 2 exp(�2E2=(�n(c1 lg lg n+ 1)2)):However, since h1, h2, and h3 are in fact drawn from the family Rd;jm;n, we again follow the ap-proach used in the proof of Lemma 6.1 in [20]. Consider the independent random variables a1; : : : ; apn.Let Y be a random variable denoting the number of bad messages. If we change the value ofone of the ais then, with high probability at most 6n lg lg n=pn messages get new destinations.(This follows from Property 3.2 of the hash functions.) Each new destination could cause at mostc1 lg lgn + 1 messages to become bad. Thus, changing one of the ais could change Y by at most6pn lg lg n(c1 lg lg n+ 1). So, by the bounded di�erences inequality,Pr(Y � 2E) �2 exp(�2E2=(pn36n(lg lg n)2(c1 lg lgn + 1)2)) ;which is su�ciently small.Given Lemma 3.5, it su�ces to route c1 lg lgn messages to each destination. This can be donein O(lg lg n) steps since the messages are sorted by destination. At this point we have �nished the\thinning and deliver to target groups" procedure. The book-keeping processor associated withevery memory request now cancels the request if at least two of its messages were delivered. If therequest is canceled then the third message is deleted.3.3 Divide into sub-problems and duplicateOur goal is to divide the ocpc into lg lg n=� sub-ocpcs, each of which has n0 = n�= lg lgn proces-sors. Each sub-ocpc will work on the sub-problem of delivering the messages corresponding to aparticular group of messages. For each sub-ocpc we wish to make lg2(n0) copies of the relevantsub-problem, all of which will reside in its processors 1; : : : ; n0=2.We will use an approximate compaction tool to divide the problem into sub-problems and tomake copies of the problem. (For similar tools see [5, 15, 25, 26].) Given� an n-ocpc in which at most s senders each have one message to send,� a set of �s receivers which is known to all of the senders,12

the (s; �) approximate compaction problem is to deliver all of the messages to the set of receiversin such a way that each receiver receives at most one message.The following lemma is from [17].Lemma 3.6 For any positive constant � there is a positive constant c3 such that the (s; dc3 lg lg ne)approximate compaction problem can be solved in O(lg lg n) communication steps with failure prob-ability at most ��ps + s��We proved in the previous subsection that, with high probability, when the \thinning anddeliver to target groups" procedure terminates, the number of undelivered messages is at most3n lg lg n2�c1 lg lgn. Furthermore, every message is in the target group of its destination and eachprocessor will have at most one message left to send.The number of un�nished target groups is at most the number of un�nished messages, whichis at most 3n lg lg n2�c1 lg lgn � n0=(2 lg2(n0)k2dc3 lg lg ne)for a su�ciently large c1. Therefore, with high probability (by Lemma 3.6), we can compactone message from the �rst processor in each un�nished target group to the �rst n0=(2 lg2(n0)k2)processors in the n-ocpc. Having done that, we can copy each of the un�nished target groups toone of the �rst n0=(2 lg2(n0)k) target groups in the n-ocpc. Next, we can use doubling to makelg2(n0) copies of each un�nished target group. All of these copies will reside in the �rst n0=(2k)target groups in the n-ocpc.At this point, the entire problem is copied lg2(n0) times into the �rst n0=(2k) target groups in then-ocpc. These n0=(2k) target groups will form the �rst half of the processors in the �rst n0-processorsub-ocpc. Our objective is to use the �rst sub-ocpc to solve the sub-problem of delivering themessages in the �rst group of messages. The sub-ocpc will do this by simply ignoring all messagesthat are not in the �rst group of messages.The lg2(n0) copies of the entire problem can now be copied into the remaining lg lg n=� � 1sub-ocpcs. The jth sub-ocpc will ignore all messages that are not in the jth group of messages.Our next goal is to allocate the processors n0=2; : : : ; n0 of each sub-ocpc such that for eachoutstanding memory request (i.e., for each memory request which has the property that at most oneof its three messages was delivered during the previous procedure), we allocate lg2(n0) processors.(These lg2(n0) processors will do the book-keeping concerning the request in the lg2(n0) copies ofthe sub-problem.)The allocation can be done in the same way that the problem was split and copied because thenumber of remaining requests is at most 3n lg lg n2�c1 lg lgn.3.4 Route messages for each sub-problemConsider a particular copy of a particular sub-problem. Lemma 3.5 tells us that with high proba-bility at most O(n2�c1 lg lgn) of the memory requests from the �n memory requests associated with13

this sub-problem remain. Although each processor has at most one message to send, there is abook-keeping processor allocated to each memory request and each message knows the identity ofits book-keeping processor. Furthermore, there is a block of c2 contiguous processors allocated toeach un�nished destination and each sender knows which processors are allocated to its destination.For i 2 f1; 2; 3g we will say that a message is an \i-message" if it obtained its destination usinghash function i.We now route messages according to the c2-collision access schedule from Section 3 of Diet-zfelbinger and Meyer auf der Heide's paper [7]. Each round of the access schedule is de�ned asfollows.For i = 1; 2; 3:a. For all destinations d in parallel, repeat dc2 lg(2c2)e times: Each i-message with destination dthat is not already waiting at one of the c2 processors allocated to d picks a random processorfrom those allocated to d and sends there. Each of the allocated processors will only acceptone message.b. Each destination d now checks whether there are any other i-messages destined for d (that is,whether there are any i-messages with destination d that are not at the allocated processors).To do this, the �rst of the c2 processors allocated to d sends to d. Also, any i-messages withdestination d that have not yet been successful in reaching one of the c2 processors allocatedto d send to d. Then the �rst of the c2 processors allocated to d tells d whether or not it hada collision.c. For each destination d, if all of the i-messages destined for d are at the processors allocated to dthen these messages are delivered. Otherwise, no requests are delivered.d. The book-keeping processor associated with each memory request checks which of the messagesassociated with the requests were delivered. If at least 2 of the messages associated with therequest have been delivered then the request is canceled and the third message is deleted.Note that no destination receives more than 3c2 messages during the c2-collision access schedulerouting. We use the following lemma:Lemma 3.7 During one round of the c2-collision access schedule routing procedure any processorthat is the destination of at most c2 i-messages gets all of the i messages with probability at least 1=2(and none of them with the remaining probability). Any processor that is the destination of morethan c2 i-messages receives none of them.Proof. If d is the destination of at most c2 i-messages then the probability that one of them failsto reach the allocated processors in ` = dc2 lg(2c2)e attempts is at most c2(1� 1=c2)` � 1=2.In their analysis of the c2-collision access schedule routing procedure (as implemented on ac2-collision dmm), Dietzfelbinger and Meyer auf der Heide de�ne a hypergraph H = (V;E) for a14

set of memory requests x1; :::; x�n with vertex set V = fvrt j 1 � r � 3; 1 � t � ng and hyperedgeset E = ffv1;h1(xi); v2;h2(xi); v3;h3(xi)g j 1 � i � �ng.In light of Lemma 3.7, we can view the c2-collision access schedule routing as a process on H . Ineach round, the process removes each node with degree at most c2 (i.e., the i-messages destined forthe processor are delivered) with probability at least 1=2. Then the process removes each hyperedgethat consists of only one node (i.e., memory requests are canceled if at least two of the messagesassociated with the request are delivered).Following Dietzfelbinger and Meyer auf der Heide, we will say that H is s-good if1. The largest connected component in H has at most � = �(s) lgn nodes.2. Every set A � V intersects fewer than jAj+ s hyperedges from E in at least 2 points.Dietzfelbinger and Meyer auf der Heide prove the following lemma. (The proof presented in [7]is based on the assumption that h1, h2, and h3 are chosen uniformly at random from the set offunctions from [1; : : : ; m] to [1; : : : ; n]. However, the lemma is also true if h1, h2, and h3 are chosenrandomly from Rd;jm;n.)Lemma 3.8 The probability that H is s-good is 1�O(n�s).We will prove the following lemma.Lemma 3.9 Suppose that H is s-good for some positive constant s. Then the probability that anyparticular memory request is satis�ed after O(lg lgn) rounds of routing according to the c2-collisionaccess schedule is at least 1=2.Proof. Let Ht denote the hypergraph obtained by applying t rounds of the c2-collision accessschedule routing process to H . Dietzfelbinger and Meyer auf der Heide have made the followingobservation [7].Observation 3.1 If H is s-good and A � V is a component of Ht for some t � 0, then A containsat most 3jAj=(c2+ 1) + 3s=(c2 + 1) nodes of degree larger than ct in Ht.We will use the following lemma.Lemma 3.10 Suppose that H is s-good. Let r be an edge in a component of size ` � s of Ht forsome t � 0. If c2 � 23 then with probability at least 1 � exp(�`=54) the component of r in Ht+1has size at most 5`=6.Proof. Let b = 3(`+ s)=(c2 + 1). By Observation 3.1 and Lemma 3.7, the expected number ofnodes in the component of r in Ht+1 is at most `=2+ b=2. Using a Cherno� bound, we see that theprobability that there are at most 4=3(`=2+b=2)� 5`=6 nodes is at least 1�exp(�(`=2+b=2)=27).15

Using Lemma 3.10, we conclude that for some constant c4 � s, with probability at least 3=4,O(lg lgn) rounds of the c2-collision access schedule routing procedure reduce the size of the compo-nent of a given memory request r to at most c4. We conclude the proof of Lemma 3.9 by observingthat as long as c2 > 3s + 2, O(1) rounds will, with probability at least 3=4, further reduce thecomponent to size 1.3.5 Combining problem copies and combining sub-problemsLet us focus our attention on the jth sub-problem. Let Sj be the set of messages that were inthe sub-problem when it was created. Let S0j be the subset containing all messages in Sj that aredelivered in at least lg2(n0)=9 copies of the c2-collision access schedule routing procedure.Note that when the c2-collision access schedule routing procedure terminates the lg2(n0) proces-sors per memory request that were allocated in the \divide and copy" procedure to do book-keepingcan inform all of the the messages in Sj (in the �rst copy of the sub-problem) whether or not theyare in S0j .We will prove the following lemma.Lemma 3.11 With probability at least 1 � n�� (for any positive constant �) each set S0j has thefollowing properties.1. Each processor is the destination of at most 27c2 messages in S0j.2. Each memory request in the jth sub-problem will be satis�ed if the messages in S0j are delivered.If each set S0j has the properties described in Lemma 3.11 (as it will, with high probability), thenwe can satisfy all of the memory requests in O(lg lg n) steps by routing the messages in S = Sj S0j .These messages form a 27c2 lg lg n=�-relation, so we can use the routing algorithm in [17] to routethe messages.To prove Lemma 3.11 we use the following lemma and the following observation.Lemma 3.12 With probability at least 1�n�� (for any constant �) every memory request in everysub-problem is satis�ed in at least lg2(n0)=3 of the lg2(n0) copies of the c2-collision access schedulerouting procedure.Proof. Suppose that every sub-problem is such that the corresponding hypergraph is s-good.(Lemma 3.8 shows that this is so with high probability, as long as s is chosen to be su�cientlylarge.) Consider a particular memory request in a particular sub-problem. Lemma 3.9 shows thatthe probability that this request is satis�ed in any given copy of the sub-problem is at least 1=2.A Cherno� bound shows that with probability at least 1 � ne� lg2(n0)=54 the request is satis�ed inat least lg2(n0)=3 copies. The lemma follows by summing the failure probabilities over particularmemory requests. 16

Observation 3.2 If x1, x2 and x3 are the three messages in a memory request that is satis�ed inat least ` copies of the c2-collision access schedule routing procedure then there is a pair of messagesfrom fx1; x2; x3g such that both of the messages in the pair are satis�ed in at least `=3 copies of theprocedure. Similarly, if x1 and x2 are the two messages in a memory request that is satis�ed in atleast ` copies of the c2-collision access schedule routing procedure then at least one of x1 and x2 issatis�ed in at least `=2 copies of the procedure.Proof of Lemma 3.11. The fact that (with high probability) each memory request in the jth sub-problem will be satis�ed if the messages in S0j are delivered follows from Lemma 3.12 and fromObservation 3.2. To see that each processor is the destination of at most 27c2 messages in S0j notethat a message is a member of S0j only if it is delivered in at least lg2(n0)=9 copies of the c2-collisionaccess schedule routing procedure. However, we proved in the previous section that each destinationwill receive at most 3c2 messages in each copy of the procedure. Therefore, at most 27c2 messagesthat have the same destination will be included in S0j . This completes the proof of Lemma 3.11.4 Construction and evaluation of the hash functionIn the simulation algorithm we have assumed that a hash function h was chosen uniformly atrandom from the family Rd;jm;n and is available to every processor for constant time evaluation.When concurrent-read is available in the simulating model, a hash function in use can be kept inthe shared memory, and be read as necessary in constant time. The exclusive-read nature of theocpc model, together with the fact that the function h 2 Rd;jm;n is represented by a polynomialnumber of memory words, imply a more subtle situation. A straightforward implementation is tokeep a copy of the function h at each processor. However, this implies polynomial overheads in boththe time of preprocessing for distributing all copies, and in the space dedicated for this function ateach processor. In the remainder of this section we describe an e�cient implementation in whichthe function requires only a total of linear space, and its evaluation increases the simulation delayby at most a constant factor.4.1 The hash functionOur basic approach is: (i) replace the class Rd;jm;n with a class whose functions h have similarproperties, but can be represented in O(n�) space, where 1=2 � � < 1; the modi�ed class exhibitsonly n�-universality (rather than pn-universality as in Property 3.1), but this is enough for ourpurpose; (ii) make O(n1��) copies of the selected function h; and (iii) make sure that at eachsimulation step the number of processors that need to read a component of h is bounded byO(n1�� lg lg n), an average of O(lg lgn) per copy, thereby enable the use of an e�cient lg lg n-relation algorithm for the read operation. (A similar approach of making duplicates to reduce17

contention was used in [14], in implementing a perfect hash function on the qrqw pram.) Toimplement the approach sketched above we �rst modify the de�nition of Rd;jm;n as follows.Let t = j=�. The function s from the family Rd;jm;n is re-de�ned to be the tuple hs1; : : : ; sti, withthe operation s(x) = hs1(x); : : : ; st(x)i, where si, 1 � i � t, are chosen uniformly at random fromHdm;n� , for an appropriately large constant d. The following lemma shows that Property 3.1 stillholds for the new family of hash functions.Lemma 4.1 Let ` � 1 be arbitrary and let d and j be large enough relative to `. Let S � [1; : : : ; m],n � jSj � n11=10. If s is chosen randomly as described above then Pr[s is 1-perfect on S] is at least1� n�`.Proof. The probability that two given distinct points x; y 2 S will collide under s, i.e., thats(x) = s(y), is at most (2=n�)t, since the si's are (2; d)-universal. The probability that any pair ofpoints from S will collide is therefore at most jSj2 !(2=n�)t � n22=10�j2j�1The lemma follows by taking j > `+ 22=10.The class of functions Hnj;n from which r is taken is modi�ed next.Siegel [35] de�nes a (p; �; d; h)-weak concentrator H as a bipartite graph on the sets of verticesI (inputs) and O (outputs), where jI j = p, and jOj = p�, that has outdegree d for each node in jI j,and that has, for any h inputs, edges matching them one-by-one with some h outputs.A (p; �; d; h)-weak concentratorH is used to construct a function F by storing d random numbersfrom [0; : : : ; p�1] at each node of O. On input i, F (i) is computed by evaluating a polynomial hashfunction of degree d� 1 whose coe�cients are determined by the numbers stored at the neighborsof i in O. Siegel showed that the family of hash functions F so de�ned is a (1; h)-universal familyof hash functions mapping [0; p� 1] 7! [0; p� 1].Let H be a (n�; �; d; n�0)-weak concentrator. Siegel showed that the Cartesian product G = H tis a (nj ; �; dt; n�0)-weak concentrator. The graph G can therefore be used to construct a (1; n�0)-wiseindependent family of hash functions mapping [1; :::; nj] to [1; :::; nj].The above was used by Siegel to provide a space-e�cient construction of the hash function,which turns out useful for our needs. To enable approximately uniform contention distribution wewill need the function to exhibit one more property.Lemma 4.2 There exists a graph H that is (n�; �; d; n�0)-weak concentrator, and which also has theproperty that every output of H has degree at most 2dn���2 .Proof. We use a probabilistic construction, as given in [35] for �nding an (n�; �; d; n�0)-weakconcentrator. Suppose that each input of H chooses its d (distinct) neighbors uniformly at random.Siegel proves that the probability thatH is not a (n�; �; d; n�0)-weak concentrator is at most n�(�2��0).(As long as �0 is su�ciently small.) We can now use a Cherno� bound to show that the degree ofeach output of H is su�ciently small as required.18

4.2 Constructing the hash functionThe graph H from Lemma 4.2 can be constructed and be built into the machine when the machineis built. Each of the n� inputs has d neighbors. A set of n1�� processors is selected and eachprocessor in the set is given the name of these dn� neighbors.A new hash function h from the family Rd;jm;n is constructed in O(lgn) steps as follows:(1) Select (appropriately at random) s1; ::; st and f and distribute to all processors.(2) Each of the nj� output nodes of G = H t chooses dt values in [0; ::; nj � 1]. A set of n1�j�processors is selected for each given output node and each processor in the set is given the dtvalues associated with the output node.(3) The values a1; :::; apn are generated. pn sets of pn processors are selected and each processorin a set i is given the value of ai.Recall that it may be the case that a new function needs to be constructed (a \re-hash" opera-tion), when the selected one does not satisfy the required properties. (This occurs with polynomiallysmall probability for each parallel step, and with high probability after a polynomial number ofsteps.)4.3 Evaluating the hash functionAt each simulation step, the hash function is computed for all memory addresses in O(lg lg n)time, as described next. Let S be the set of 3n lg lgn requests from [1; ::; m]. Recall that h(x) =(r(s(x)) + af(x)) mod n.Each processor executes the following steps for each request x:(1) Compute s1(x); :::; st(x).(2) Compute the names of the neighbors of hs1(x); :::; st(x)i in G.(3) Read the values corresponding to the neighbors ofhs1(x); :::; st(x)i in G.(4) Apply r to hs1(x); :::; st(x)i.(5) Compute f(x).(6) Read af(x).(7) Compute r(s(x)) + af(x).The executions of Steps 1,4,5, and 7 are in constant time. The following lemma of Dietzfelbinger,given in [23], is central to the analysis of the other steps.19

Lemma 4.3 Let X1; :::; Xn be 0 � 1 valued, d-independent, equidistributed random variables. Let� = E(Xi). Then, for n � d=(2�),Pr nXi=1(Xi � �) � �! � �(n�)d=2�dwhere � is a constant that depends on d but not on n.Claim 4.4 In Step 2, with high probability, for every y in [1; :::; n�] (i.e., for every input of H)there are at mostO(n1�� lg lg n) pairs (i; x) such that x 2 S and si(x) = y.Proof. Note that the set of values si(x) : 1 � x � m is d-independent. Following Kruskal,Rudolph, and Snir [23] we use Lemma 4.3. Fix a y and i and let Xb be a 0-1 random vari-able which is 1 if and only if si maps the b'th member of S to y. � is 1=n�. Let � be jSj=n�. Thenthe probability that si maps more than 2� to y is O(n�d=2(1��)). Choose d large enough to sumover all i and y.We conclude that at most O(n1�� lg lg n) processors want to read the information about inputy, and so we have a \target group O(lg lg n) relation". The requests can be routed using [17].Claim 4.5 In Step 3, with high probability, for every output y of G there are at most O(n1�j� lg lg n)values x in S such that hs1(x); :::; st(x)i is a neighbor of y in G.Proof. Fix y = hy1; ::; yti. Let Li denote the neighbors of yi in H . Note that jLij � 2dn���2 . Ifs(x) has a neighbor y in G then si(x) is in Li, for 1 � i � t.The probability of this event is at most (2d=n�2)t. Let Xb be a 0-1 random variable which is 1if and only if the b-th member x of S has s(x) mapped to y in G. Apply Lemma 4.3: � is at most(2d=n�2)t by Lemma 4.2; let � be jSj(2d=n�2)t. The probability that there are more than � suchvalues x is at most �n�(d=2)(1�j�).Given the claim, we have a \target group O(lg lg n) relation". The requests can be routed using[17].It remains to analyze Step 6. By Property 3.2, with probability at least 1 � n�� each groupneeds to be read by at most 6pn lg lg n of the requests, so we have a \target group 6 lg lgn relation".The requests can be routed using [17].5 ConclusionsIn this paper we have described a work-optimal algorithm which simulates an n lg lg n-processorerew pram on an n-processor ocpc with O(lg lg n) expected delay. The probability that the delayis longer than this is at most n�� for any constant �.It would be interesting to determine whether this is the fastest possible work-optimal simulation.It would also be interesting to discover how much delay is required in order to simulate a crcw20

pram. We have recently derived an algorithm that simulates an n-processor crcw pram stepon an n-processor ocpc in time O(lg k + lg lg n) with high probability, where k is the maximummemory contention of the crcw step.The simulation algorithm assumes that k is known. This assumption can be removed by aug-menting the ocpc model to include a single bus which can be used to synchronize all of theprocessors: each processor can broadcast a `1' bit and every processor can determine whether ornot any processor is broadcasting a `1' at any given time.We note that the lg k term in the simulation algorithm is provably necessary, as implied by an
(lg k) expected time lower bound for broadcasting the value of a bit to k processors on a qrcwpram (and hence on an ercw), by Gibbons, Matias and Ramachandran (see [14]).Evidently, the performance of the crcw simulation depends on the maximum contention. Amodel that accounts for memory contention was recently proposed in [13]. In this model the runtime of each step is a function of the memory contention encountered at this step. Thus, in thesub-model of simd-qrqw(log) pram, a step in which the maximum memory contention is k isassumed to take lg k time units.The crcw simulation implies that an n-processor simd-qrqw(log) pram algorithm can be sim-ulated on an n-processor ocpc, augmented with a bus, with delay O(lg lgn) with high probability.We note that the simd-qrqw(log) pram is strictly stronger than the erew pram.References[1] H. Alt, T. Hagerup, K. Mehlhorn and F.P. Preparata, Deterministic Simulation of IdealizedParallel Computers on More Realistic Ones. SIAM Journal of Computing 16 (1987) 808{835.[2] R.J. Anderson and G.L. Miller, Optical Communication for Pointer Based Algorithms, Techni-cal Report CRI 88-14, Computer Science Department, University of Southern California, LosAngeles, CA 90089-0782 USA, 1988.[3] B. Bollob�as, Martingales, Isoperimetric Inequalities and Random Graphs, in Combinatorics(eds A. Hajnal, L. Lov�asz, and V. T. S�os), Colloq. Math. Soc. J�anos Bolyai 52 (North Holland1988) 113{139.[4] J.L. Carter and M.N. Wegman, Universal Classes of Hash Functions, Journal of Computer andSystems Sciences 18 (1979) 143{154.[5] B.S. Chlebus, K. Diks, T. Hagerup, and T. Radzik, New Simulations between CRCW PRAMs,Proc. Foundations of Computation Theory 7 , Lecture Notes in Computer Science 380(Springer-Verlag 1989) 95{104.[6] M. Dietzfelbinger and F. Meyer auf der Heide, How to Distribute a Dictionary in a CompleteNetwork, Proceedings of the ACM Symposium On Theory of Computing 22 (1990) 117{127.21

[7] M. Dietzfelbinger and F. Meyer auf der Heide, Simple, E�cient Shared Memory Simulations,Proceedings of the ACM Symposium On Parallel Algorithms and Architectures 5 (1993) 110{119.[8] M.M. Eshaghian, Parallel Computing with Optical Interconnects, PhD thesis, USC 1988.[9] M.M. Eshaghian, Parallel Algorithms for Image Processing on OMC, IEEE Transactions onComputers, 40(7) (1991) 827{833.[10] M.M. Eshaghian and V.K.P. Kumar, Optical Arrays for Parallel Processing, Proc. SecondAnnual Parallel Processing Symposium (1988) 58{71.[11] A.V. Gerbessiotis and L.G. Valiant, Direct Bulk-Synchronous Parallel Algorithms, Proceedingsof the Scandinavian Workshop on Algorithm Theory 3 (1992).[12] M. Ger�eb-Graus and T. Tsantilas, E�cient Optical Communication in Parallel Computers,Proceedings of the ACM Symposium On Parallel Algorithms and Architectures 4 (1992) 41{48.[13] P.B. Gibbons, Y. Matias, and V. L. Ramachandran. The QRQW PRAM: Accounting forcontention in parallel algorithms. Proceedings of the ACM-SIAM Symposium On Discrete Al-gorithms 5 (1994) 638{648.[14] P.B. Gibbons, Y. Matias, and V. L. Ramachandran. E�cient Low-Contention Parallel Al-gorithms, Proceedings of the ACM Symposium On Parallel Algorithms and Architectures 6(1994) 236{247.[15] J. Gil and Y. Matias, Fast Hashing on a PRAM { Designing by Expectation, Proceedings ofthe ACM-SIAM Symposium On Discrete Algorithms 2 (1991) 271{280.[16] J. Gil, Y. Matias, and U. Vishkin. Towards a Theory of Nearly Constant Time Parallel Algo-rithms, Proceedings of the IEEE Symposium on Foundations of Computer Science 32 (1991)698{710.[17] L.A. Goldberg, M. Jerrum, T. Leighton and S. Rao, Doubly Logarithmic CommunicationAlgorithms for Optical Communication Parallel Computers, Pre-print, 1994. (A preliminaryversion of this paper appeared in Proceedings of the ACM Symposium On Parallel Algorithmsand Architectures 5 (1993).)[18] L.A. Goldberg, M. Jerrum and P.D. MacKenzie, An
(plg lg n) Lower Bound for Routing inOptical Networks, Proceedings of the ACM Symposium On Parallel Algorithms and Architec-tures 6 (1994).[19] J. J�aJ�a. An Introduction to Parallel Algorithms. (Addison-Wesley, 1992).22

[20] R.M. Karp, M. Luby and F. Meyer auf der Heide, E�cient PRAM Simulation on a DistributedMemory Machine, Pre-print, 1994. (A preliminary version of this paper appeared in Proceedingsof the ACM Symposium On Theory of Computing 24 (1992) 318{326.)[21] A.R. Karlin and E. Upfal, Parallel Hashing | an E�cient Implementation of Shared Memory,Proceedings of the ACM Symposium On Theory of Computing 18 (1986) 160{168.[22] R.M. Karp and V. Ramachandran, Parallel Algorithms for Shared-Memory Machines, Hand-book of Theoretical Computer Science, Volume A, (J. van Leeuwen, editor, Elsevier, 1990)869{941.[23] C.P. Kruskal, L. Rudolph, and M. Snir, A Complexity Theory of E�cient Parallel Algorithms,Theoretical Computer Science, 71 (1990) 95{132.[24] F.T. Leighton, Methods for Message Routing in Parallel Machines, Proceedings of the ACMSymposium On Theory of Computing 24 (1992) 77{96.[25] Y. Matias, Highly Parallel Randomized Algorithmics. PhD thesis, Tel Aviv University, Israel,1992.[26] Y. Matias and U. Vishkin, Converting High Probability into Nearly-Constant Time | withApplications to Parallel Hashing, Proceedings of the ACM Symposium On Theory of Computing23 (1991) 307{316.[27] F. Meyer auf der Heide, C. Scheiderler, and V. Stemann, Fast simple dictionaries and sharedmemory simulation on distributed memory machines; upper and lower bounds, Pre-print 1994.[28] P.D. MacKenzie, C.G. Plaxton, and R. Rajaraman, On Contention Resolution Protocols andAssociated Probabilistic Phenomena, Proceedings of the ACM Symposium On Theory of Com-puting 26 (1994) To appear.[29] C. McDiarmid, On the Method of Bounded Di�erences, Surveys in Combinatorics, LondonMath. Soc. Lecture Notes Series 141 (Cambridge Univ. Press, 1989) 148{188.[30] W.F. McColl. General Purpose Parallel Computing, in Lectures on Parallel Computation,Proc. 1991 ALCOM Spring School on Parallel Computation, Edited by A.M. Gibbons andP. Spirakis, (Cambridge University Press 1993) 337{391.[31] K. Mehlhorn and U. Vishkin. Randomized and deterministic simulations of PRAMs by parallelmachines with restricted granularity of parallel memories. Acta Informatica, 21:339{374, 1984.[32] A.G. Ranade, How to Emulate Shared Memory, Journal of Computer and Systems Sciences42 (1991) 307{326. 23

[33] S.B. Rao, Properties of an Interconnection Architecture Based on Wavelength Division Multi-plexing, Technical Report TR-92-009-3-0054-2, NEC Research Institute, 4 Independence Way,Princeton, NJ 08540 USA, 1992.[34] J.H. Reif, editor, A Synthesis of Parallel Algorithms (Morgan-Kaufmann, 1993).[35] A. Siegel, On Universal Classes of Fast High Performance Hash Functions, Their Time-SpaceTradeo�, and Their Applications, Proceedings of the IEEE Symposium on Foundations ofComputer Science 30 (1989) 20{25.[36] J.P. Schmidt, A. Siegel and A. Srinivasan, Cherno�-Hoe�ding Bounds for Applications withLimited Independence, Pre-print, 1994. (A preliminary version of this paper appeared in Pro-ceedings of the ACM-SIAM Symposium On Discrete Algorithms (1993).[37] E. Upfal, E�cient Schemes for Parallel Communications, Journal of the ACM 31 (1984) 507{517.[38] E. Upfal, A Probabilistic Relation Between Desirable and Feasible Models of Parallel Compu-tation, Proceedings of the ACM Symposium On Theory of Computing 16 (1984) 258{265.[39] E. Upfal, A. Wigderson, How to Share Memory in a Distributed System, Journal of the ACM34 (1987) 116{127.[40] L.G. Valiant, General Purpose Parallel Architectures, Chapter 18 of Handbook of TheoreticalComputer Science, Edited by J. van Leeuwen (Elsevier 1990).

24

