*

An Optical Simulation of Shared Memory

Leslie Ann Goldberg f Yossi Matias
Department of Computer Science AT&T Bell Laboratories
University of Warwick 600 Mountain Avenue
Coventry CV4 7TAL England Murray Hill, NJ 07974
leslie@dcs.warwick.ac.uk matias@research.att.com
Satish Rao

NEC Research Institute
4 Independence Way
Princeton, NJ 08540

satish@research.nec.com

Abstract

We present a work-optimal randomized algorithm for simulating a shared memory machine
(PRAM) on an optical communication parallel computer (ocpc). The ocPc model is motivated
by the potential of optical communication for parallel computation. The memory of an ocPC is
divided into modules, one module per processor. Each memory module only services a request
on a timestep if it receives exactly one memory request.

Our algorithm simulates each step of an nlglg n-processor EREW PRAM on an n-processor
ocpc in O(lglgn) expected delay. (The probability that the delay is longer than this is at
most n~ for any constant «.) The best previous simulation, due to Valiant, required O(lgn)

expected delay.

1 Introduction

The huge bandwidth of the optical medium makes it possible to use optics to build communication
networks of very high degree. Eshaghian [8, ?] first studied the computational aspects of parallel
architectures with complete optical interconnection networks. The OCPC model is an abstract
model of computation which formalizes important properties of such architectures. It was first
introduced by Anderson and Miller [2] and Eshaghian and Kumar [10]. In an n-processor completely

connected Optical Communication Parallel Computer (n-ocpc) n processors with local memory

*A preliminary version of this paper appeared in Proc. 6th ACM Symp. on Parallel Algorithms and Architectures,

June 1994.
TThis work was performed at Sandia National Laboratories and was supported by the U.S. Department of Energy

under contract DE-AC04-76DP00789.

are connected by a complete network. A computation on this computer consists of a sequence
of communication steps. During each communication step each processor can perform some local
computation and then send one message to any other processor. If a processor is sent a single
message during a communication step then it receives this message successfully, but if it is sent
more than one message then the transmissions are garbled and it receives none of them.

While the ocPc seems a reasonable model for optical computers, it has not been used as a
programming model to date. The PRAM model, on the other hand, has been extensively used for
parallel algorithmic design (e.g., [19, 22, 34]). The convenience of programming on the PRAM is
largely due to the fact that the programmer does not have to specify interprocessor communication
or to allocate storage in a distributed memory. For the very same reason, the PRAM is considered
as highly theoretical, and the task of emulating the PRAM on more realistic models has attracted
considerable attention; emulations may enable automatic mapping of PRAM algorithms to weaker
models, as well as a better understanding of the relative power of different models. Indeed, many
emulations of the PRAM on bounded degree networks were introduced (see, e.g., [1, 21, 23, 31, 32,
37, 38] or [24] for a survey).

In this paper, we present a simulation of an EREW PRAM on the ocpc. In particular, we present
a randomized simulation of an nlglgn processor EREW PRAM on an n processor OCPC in which,
with high probability, each step of the PRAM requires O(lglg n) steps on the ocpc.! Our simulation
is work optimal, to within a constant factor.

Our results are closely related to previous work on the well studied distributed memory machine
(pMM) which consists of n processors and n memory modules connected via a complete network
of communication. Each processor can access any module in constant time, and each module can
service at most one memory request (read or write) at any time. The DMM is thus a weaker model
than the shared memory PRAM, in that the memory address space is partitioned into modules with
a restricted access imposed on them. We remark that there are several variants of DMM models
differing in their contention rules.

Several papers have studied the emulation of a PRAM on various DMM models [31, 21, 39, 35, 6,
20, 7]. Karp et al. [20] present O(lglg n) expected delay simulations of various types of PRAM on a
CRCW DMM in which each memory module allows concurrent read or write access to at most one
of its memory locations during any step. Dietzfelbinger and Meyer auf der Heide [7] improve upon
this paper by presenting an O(lglg n) expected delay simulation of an EREW PRAM on the (weaker)
c-collision DMM in which any memory module that receives ¢ or fewer read or write requests serves
all of them. Although Dietzfelbinger and Meyer auf der Heide require ¢ > 3 for their analysis
to work, they report that experiments show that ¢ = 2 works as well. The 1-collision DMM is
equivalent to the ocpc.

Our result improves on the result of [7] in two ways. First, it is work-optimal. Second, it works
for the ocpc (or 1-collision pmMM). The previous best known work-optimal simulation of a PRAM
on the ocpc is an O(lgn) delay simulation of Valiant [40]. In addition, unlike [40, 7] we explicitly

We will refer to the time required to simulate one PRAM step as the delay of the simulation.

consider the construction and evaluation of the hash functions used in our simulation algorithm.

1.1 Related work

The OCPC model The ocpc model was first introduced by Anderson and Miller [2] and Es-
haghian and Kumar [10], and has been studied by Valiant [40], Geréb-Graus and Tsantilas [12],
Gerbessiotis and Valiant [11], Rao [33], Goldberg, Jerrum, Leighton and Rao [17], and Goldberg,
Jerrum and MacKenzie [18]. The feasibility of the ocpc from an engineering point of view is

discussed in [2, 12]. See also the survey paper of McColl [30] and the references therein.

Computing h-relation on the OCPC A fundamental problem that deals with contention
resolution on the ocpc is that of realizing an h-relation. In this problem, each processor has at
most h messages to send and at most h messages to receive. Following Anderson and Miller [2],
Valiant [40], and Geréb-Graus and Tsantilas [12], Goldberg et al. [17] solved the problem in time
O(h 4 1glgn) for an n-processor ocrc. A lower bound of Q(v/Iglgn) expected time was recently
obtained by Goldberg, Jerrum, and MacKenzie [18].

Simulating PRAM on OCPCs Valiant described a simulation of an EREW PRAM on an OCPC
in [40]. More specifically, Valiant gave a constant delay simulation of a Bulk Synchronous Parallel
(BspP) computer on the ocpc (there called the s*praM), and also gave an O(lgn) randomized
simulation of an n lg n-processor EREW PRAM on an n-processor BSP computer. A simpler simulation
with delay O(lg nlglg n) was given by Geréb-Graus and Tsantilas [12]. Valiant’s result is the best
previously known simulation of a PRAM on the ocpc.

Independently of our work, MacKenzie, Plaxton and Rajaraman [28], and Meyer auf der Heide,
Scheiderler and Stemann [27] have shown how to simulate a n processor EREW PRAM on an n-
processor OCPC. Both simulations have ©(lglgn) expected delay. However, neither simulation is

Q1)

work-optimal, and both simulations require n storage at each processor.

Simulating PRAMs on DMMs Mehlhorn and Vishkin [31] used a (lgn/lglg n)-universal class
of hash functions to achieve a simple simulation of a CRCW PRAM on a CRCW DMM with expected
delay O(lgn/lglgn). An n-processor CRCW PRAM can be simulated on an n-processor EREW DMM
in O(lg n) expected delay using techniques from [40]. The work of this simulation is thus a O(lgn)
factor away from optimality. The best work-optimal simulation of a PRAM on an EREW DMM has
delay O(n°) [23].

Recently, Karp, Luby and Meyer auf der Heide [20] presented a simulation of an n-processor
CRCW PRAM on an n-processor CRCW DMM with O(lglgn) delay. They also presented a work-
optimal simulation of an (nlglgnlg™ n)-processor EREW PRAM on an n-processor CRCW DMM in
O(lglgnlg™ n) expected delay, and a nearly work-optimal simulation of an nlglg n processor cRCwW
PRAM on an n-processor CRCW DMM with the same delay. Subsequently, Dietzfelbinger and Meyer

auf der Heide [7] presented a simplified (non-optimal) simulation of an n-processor EREW PRAM on

an n-processor DMM with O(lglg n) expected delay. The simulation in [20] introduces a powerful
technique that incorporates the use of two or three hash functions to map the memory address space
into the memory modules, combined with the use of a CRCW PrRAM algorithm for perfect hashing
(see [16] and references therein). It heavily uses the concurrent read capability of the CRCW DMM.
The simulation in [7] circumvents the need for using the cRCw PRAM perfect hashing by an elegant

use of an idea from Upfal and Wigderson [39].

1.2 Overview of the algorithm

Our simulation algorithm incorporates techniques and ideas from the simulation algorithms of [20,
7], as well as from the h-relation routing algorithm of [17], as follows.

The simulation in [7] uses three hash functions to map each memory cell of the EREW PRAM to
three processors (and memory cells) in the DMM. A write on an EREW memory cell is implemented
by writing a value and a time stamp to at least two out of the three associated DMM memory cells.
A read of an EREW memory cell is implemented by reading two out of three of the memory cells
and choosing the value with the most recent time stamp. Dietzfelbinger and Meyer auf der Heide’s
proof that their simulation requires only O(lglgn) delay on a 3-collision DMM relies on the fact
that, given a randomly generated tripartite hypergraph on 3n nodes with en edges, one can, with
high probability, remove all the nodes in the hypergraph using the following process.

Repeat O(lglgn) times:

1. Remove all of the nodes with degree at most 3.
2. Remove all resulting trivial hyperedges (hyperedges in which only one incident node remains.)

Each hyperedge corresponds to a read or write of a PRAM memory location: The three vertices
correspond to the three processors in the DMM associated with that memory location. Thus, one
step of an en node EREW PRAM is implemented by using the process above to deliver at least two
out of three of the messages associated with each memory request.

Since we are simulating an nlglgn processor PRAM on an n-node OCPC, we must simultaneously
implement the process above for O(lglgn) 3n-node hypergraphs using only n processors. To do
this, we start by sparsifying all of the hypergraphs using ideas from the (lglg n)-relation routing
algorithm in [17]. That is, we route all but O(n/lg®n) messages and we ensure that at most one
undelivered message remains at any processor. Even so, implementing the process above in parallel
could still require Q(lglgn) time steps per iteration since each destination may participate in as
many as (lglgn/e) different hypergraphs. Thus, we must also “copy” each destination in such a
manner that each message can locate the appropriate copy of its destination. We then perform
the process in each hypergraph, ensuring that the process delivers at most a constant number of
messages to each copy of a destination. After that, the messages can be sequentially forwarded to
their true destinations in O(lglgn) time.

We remark that, in fact, we cannot directly perform the process above on any of the O(lglg n)

hypergraphs since our processors can only receive one message in a time step whereas the processors

in [7] can receive three messages in a time step. The details of our solution to this problem can be

found in the technical sections.

1.3 Paper outline

We proceed in Section 2 with a high level description of our simulation. In Section 3, we present
our algorithm in detail and prove correctness. In Section 4 we deal with the evaluation of the hash

function that maps the virtual shared memory to the memory modules.

2 The Simulation

Our objective is to show how to simulate one step of an nlglg n processor EREW PRAM in O(lglg n)
time-steps on an n processor 0cpPcC. Our simulation follows [7] in using the following idea from [39].
The memory of the PRAM is hashed using three hash functions, hy, ks, and hs. Thus, each memory
cell of the PRAM is stored in three memory cells of the ocpc. To write memory cell z, a processor
of the ocPC sends a message to at least two of the processors in {hi(), ha(z), ha(z)}. The message
contains the new value for cell and also a time stamp. To read memory cell x, a processor p of
the ocpc sends a message to at least two of the processors in {hq(z), ha(z), ha(x)}. Each of these
two processors sends p the value that it has for cell # and also its time stamp for cell . Processor p
uses the value with the later time step. The hash functions hy, ho, and hz are chosen from the
“highly” universal family E;ir;{n from [20], which guarantees random-like behavior.

Each ocpc processor will simulate lglgn PRAM processors. Thus, at the start of a PRAM step,
each of the ocPc processors will wish to access up to lglgn cells of the PRAM memory. Each
processor uses hi, he and h3 to obtain the three destinations where each memory cell is stored.
Thus, each 0OCPC processor wants to send messages to up to 31lglgn destinations. Qur objective is
to deliver at least two of the messages associated with every request.

Asin [17], we will divide the processors of the OCPC into target groups of size k = 1g€n. We will
also divide the nlglgn memory requests into lglg n/e groups of en requests each for a sufficiently
small constant e. We will refer to the set of messages associated with a particular group of memory

requests as a “group of messages”. The messages will be delivered using the following procedures:

¢ Thinning and deliver to target groups. Initially, the number of messages destined for
any given target group may be as high as 4klglgn. (We will show that, with high probability,
it is no larger than this.) We will use techniques from [17] to route the messages to their
target groups. With high probability when this procedure is finished every message will be
in the target group of its destination. Furthermore, each processor will have at most one
message left to send. For a sufficiently large constant ¢, we will allocate a contiguous block
of ¢y processors from the target group to each unfinished message for that destination. All
senders will know which processors are allocated for their destination. For a sufficiently large

constant ¢y, we will ensure that for any of the lglgn/e groups of en messages, with high

probability, all but O(n/(lgn)) of the messages in the group will be delivered to their final

destinations.

e Divide into sub-problems and duplicate. =~ We now divide the ocpc into lglgn/e sub-
ocpcs, each with n’ = ne/lglgn processors. Each sub-ocprc will work on the sub-problem
of delivering the messages corresponding to a particular group of messages. For each sub-
ocPC we now make lg? n’ copies of the relevant sub-problem, all of which will reside in its
processors 1,...,n'/2. We will also allocate its processors n’/241,..., 7/, as follows. For each
outstanding memory request (i.e., for each memory request which has the property that at
most one of its three messages was delivered during the previous procedure), we will allocate
lg? n’ processors. These 1g? n’ processors will do the book-keeping concerning the request in
the lgZn’ copies of the sub-problem. Each message will know the identity of the processors

responsible for the book-keeping concerning its memory request.

e Route messages for each sub-problem. In each copy of each sub-problem we route
messages according to the cy-collision access schedule from Section 3 of [7]. Dietzfelbinger
and Meyer auf der Heide prove that with high probability each sub-problem is “good” (this
term will be defined later on). We will prove that if a sub-problem is good then for any
particular memory request in any particular copy of the sub-problem, the probability that
the memory request is satisfied in the ¢y-collision access schedule routing is at least 1/2. Also,
no destination in any copy of any sub-problem receives more than a constant number (3cz)

of messages during the ¢;-collision access schedule routing.

¢ Combining problem copies and combining sub-problems. In this procedure we
identify a subset § of the set of messages that were delivered by the various copies of the
co-collision access schedule routing procedure. The messages in S are chosen in such a way
that every processor is the destination of O(lglgn) messages in S. We show that with high
probability every memory request in every sub-problem that was created in the “divide into
sub-problems and duplicate” procedure will be satisfied if the messages in .5 are delivered.

We deliver the messages in S using the routing algorithm in [17].

3 Simulation details and analysis

_dvj
R,

Before giving the details and analysis we define the class of hash functions 'n being used and

describe its properties that are used in the analysis. In the subsequent subsections we will give the

details of each of the procedures described in the previous section.

3.1 The hash functions

The class Ei;{n is taken from [20] and is defined as follows.

.. —d,) —dj . .)
Definition of Rmfn: A function from Rmfn is a combination of functions taken from several

classes. Carter and Wegman [4] introduced HE , C {g : [1,...,m] — [1,...,n]}, the class of

m,n

universal functions P(z) mod n where P is a polynomial of degree d — 1 over Z,,. Siegel [35]
win C©{h:[1,....,n7] = [1,...,n]}. (More details on this class

are given in Section 4.1.) To choose a random hash function ~ : [1,...,m] — [1,...,n] from Ei’l{n,

introduced a class of functions H.

one first chooses
e A function f, chosen uniformly at random from Hi S
o A function r, chosen uniformly at random from Fnjm

e A function s, chosen uniformly at random from Hrln i

e \/nintegers ai,...,a s, each chosen uniformly at random from the range [1,...,n].

The function % is defined by h(z) = (r(s(2)) + ay(y)) mod n.

We say that a set of random variables is k-wise independent if, for any subset of j < k random
variables from the set, the joint probability density function of the j random variables is the product
of the individual probability density functions of the random variables.

As in [20], we say that a family H,, of hash functions is (p,k)-universal, if for each 27 <
o<z e, ph G, € {1, .., n} § <k, it holds that, if the hash function h is drawn
uniformly at random from H,, ,,, then Pr[h(zy) = {1, ..., h(x;) = {;] < p/n’.

Let £ be an arbitrary constant and let j and d be large enough relative to {. We will use the
following properties of the hash functions with respect to a set § C [1,...,m], n < |S| < n!1/10,
The first two properties are proven in [20].

d,j

m,n

Property 8.1 Let Ei;{n(s) be the restriction of R

uniformly at random from Hrln . then s is “I-perfect” on S with probability at least 1 — n=t Ifs
s “I-perfect” on S then Ei;{n(s) is (1,+/n)-universal. (Hence, Eﬁ;{n(s) is (1,+/n)-universal with
probability 1 —n=".)

mduced by firing s € Hrln ai- If s is chosen

Property 3.2 Let f be drawn randomly from Hi N Then with probability at least 1 — n=" every
set f71(1)N S has size at most 2|S|//n.

We can now derive:

Property 3.3 Let Z be a subset of [1,...,n] and let ¢ be an integer in [1,...,1/n]. Suppose that
B < «/n. Let h be chosen randomly from R(rir;],n' (That is, let f, r, s, and aq, .. ., @/ be chosen as
described above.) The probability that 8 or more members of SN f~1(¢) are mapped to Z by h is at

most 2n~¢ + (2|S%ﬁ) (Inﬂ)ﬁ

Proof. By Property 3.2, with probability at least 1 — n=¢ every set f~'(i) N S has size at
most 2|S|//n. By Property 3.1, with probability at least 1 — n~*, the hash destinations are \/n-

wise independent. .

3.2 Thinning and deliver to target groups

We start out by running the “thinning” procedure from [17], which is based on the algorithm of
Anderson and Miller [2]. The procedure runs for O(lglgn) steps. During each step each sender
chooses a message uniformly at random from the set of messages that it has not yet sent successfully
and it sends the message to its destination with a certain probability. Let h = 32elglgn. We prove

further below the following lemma.

Lemma 3.1 With probability at least 1 — 2n=% (for any constant o), after the thinning proce-
dure from [17] terminates, there are at most k/h[cslglgn] undelivered messages destined for any

particular target group. (cs is a constant which must be sufficiently large; it is the constant ¢,

from [17].)
The proof of Lemma 3.1 will use the following lemma.

Lemma 3.2 With probability at least 1 — n=% (for any constant a), each target group of size k is

the destination of at most 4klglgn messages.

Proof. Consider a target group 7" and for each ¢ in the range 1 < ¢ < 3nlglg n let 2; be a random
variable that is 1 if the ¢th message has a destination in 7" and 0 otherwise. Let X = } . 2;. By
Property 3.1 of the the hash functions, Ei;{n(s) is (1, y/n)-universal (and, therefore, (1, 1)-universal)
with high probability. If this is the case, then the probability that any given z; is 1 is k/n, so
E(X)=3klglgn. If Ei;{n(s) is (1, y/n)-universal then the z;s are /n-wise independent, so using a
limited independence Chernoff bound (Theorem 1 of [36]), we find that Pr(X > E(X)(1+1/3)) <
e~E(X)/27 " This probability is sufficiently small that we can sum the failure probability over the
target groups. L]

In order to continue with the proof of Lemma 3.1 we need some notation. For every target
group T let S(T') denote the set containing all senders that have messages destined for target
group T'. We will say that a sender is bad if it has some message that has the same destination as

at least h other messages. We will use the following lemma.

Lemma 3.3 With probability at least 1 —n~% (for any constant a) every set S(T') contains at most

k/(2h%[c3lglg n]) bad senders.

Proof. This proof is similar to the proof of Claim 2 in [17]. We include it here for completeness
and also to demounstrate how the limited independence is handled. Let A’ = h/2. For a given
target group T let M(S(T)) denote the set of messages that are sent by senders in S(T'). We will
say that a message is ezternally bad with respect to a target group 7T if the message has the same
destination as at least i/ other messages that are not sent from senders in S(7T'). We will say that
a message is internally bad with respect to a target group 7T if it has the same destination as at

least h’ other messages that are sent from senders in S(T'). We wish to prove that with probability

at least 1 — n™* at most k/(2h*[c3lglgn]) of the messages in M(S(T)) are either externally or
internally bad.

First we consider externally bad messages. We will say that a processor P is ezxternally crowded
with respect to a target group T if there are at least A’ messages which are not in M(S(T)) and
have destination P. A set of b members of a target group are all externally crowded only if at
least bh' messages have destinations in the set. Property 3.1 of the hash functions tells us that
the destinations of the messages are \/n-wise independent. Therefore, as long as b < /n/h’ the
probability that there is a set of b members of a target group that are all externally crowded is at

most n~% (for any constant a)?, plus

)@

We can use Stirling’s approximation to show that for b = k/h’6 this quantity is at most (n/k)Q_k/h/5.
Therefore, with probability at least 1 — n™% — (71/16)2_"7/”5 every target group has at most k/h'®
processors which are externally crowded with respect the T'. Suppose that this is the case. Then
the probability that a message in M(.S(T')) chooses a destination which is externally crowded with
respect to T is at most #'~¢ and the expected number of messages in M (S(7')) that choose a desti-
nation which is externally crowded with respect to T is at most M(S(T))/h'®. Property 3.1 of the
hash functions tells us that the destinations of the messages are \/n-wise independent (with high
probability). Hence, we can use a limited independence Chernoff bound from Theorem 1 of [36]
to show that with probability at least 1 — exp(—|M(S(T))| /(12 x k%)) at most 2 |M(S(T))|/h"
messages in M(S(T)) choose a destination which is externally crowded with respect to T. Note
that as long as n is sufficiently large then 2 |M(S(T))|/h'® < k/(4h*[eslglgn]). Also, as long as
|M(S(T))| > k/(4h*[cslglgn]) and the constant ¢ (in the definition of k) is sufficiently large, the
sum of (n/k)27"° and (n/k)exp(—=|M(S(T))| / (12 x h'6)) is at most n=.

We now consider internally bad messages. We start by calculating an upper bound on the
probability that a message is internally bad. Lemma 3.2 tells us that with high probability at most
4klglg n messages are destined for any target group. Thus, with high probability, at most 4k1glg n
messages in M(S5(T)) are destined for the same target group as the given message. Property 3.1
of the hash functions tells us that the destinations of the messages are \/n-wise independent.

Therefore, the probability that the given message is internally bad is at most

h/
4klglgn <l> < o-h
h! k -

So the expected number of messages in M(S(T)) which are internally bad is at most | M (.S(T))[2~*.
In order to prove that with high probability the number of internally bad messages is not far

from the expectation we will use the following theorem of McDiarmid [29]. (The inequality is

2By Lemma 3.2, n~% is an upper bound on the probability that more than 4k lglg n messages are destined for any

target group.

a development of the “Azuma martingale inequality”; a similar formulation was also derived by

Bollobas in [3].)

Theorem 3.1 [McDiarmid] Let zy,...,2, be independent random variables, with x; taking
values in a set A; for each i. Suppose that the (measurable) function f : [[A; — R satisfies
|f(T) — f(@)| < ¢i whenever the vectors T and T' differ only in the ith coordinate. Let'Y be the

random variable f(x1,...,x,). Then for anyt > 0,
Pr([Y —E(Y)| > 1) < 2exp(—2t*/ T, ¢f).

If the hash functions hq, hy, and hz were chosen uniformly at random from the set of func-
tions from [1,...,m] to [1,...,n], the application of the bounded differences inequality would be
straightforward. We would take as the random variable z; the destination of the ith message
in M(S(T)). We would let Y be the random variable denoting the number of internally bad mes-
sages in M(S(T)). If we change the value of one of the z;s the value of Y would change by at
most A’ + 1. Plugging these values into the inequality, we would get a sufficiently small failure
probability.

However, since hq, hg, and h3 are in fact drawn from the family R the x;s are not independent

so we cannot apply Theorem 3.1 to them. Instead, we follow the aipproach used in the proof of
Lemma 6.1 in [20]. Consider the independent random variables aq, .. ., @ /5. As before, let Y be a
random variable denoting the number of internally bad messages in M(S(T)). Let Z be the set of
all destinations of messages in M (S(T')). (The size of Z is at most |M(S(T))|, which is at most
4k(lglg n)2 (with high probability), by Lemma 3.2.) Suppose that we change one of the a;s. By
Property 3.3 of the hash functions, the probability that 8 or more members of M(S(T')) change
destination is at most 2n~* + (6nlglgn/ﬁ) (ﬂlg;g—nﬁ)ﬁ. This probability is sufficiently small as
long as the constant 3 is sufficiently large. So suppose that at most 3 members of M(S(T)) change
destination. Each of those may make at most 1/ + 1 members of M(.S(T')) become internally bad.
Therefore, if we change one a; we change Y by at most (h’ + 1). Therefore, by Theorem 3.1 the
probability that Y > k/(4h*[c3lglgn]) is at most

2 (gt — BO)
(|M(S(T))| BN + 1)%)

exp

Since E(Y) < m (for big enough n) and, with high probability (by Lemma 3.2),

|M(S(T))| < 4k(lglg n)?, the probability is at most
2 exp(—k/(32h"[es 1glg n] *4(lglg n)’ B3 (K + 1)%)).

This quantity is at most %n_o‘ (k/n) as long as c is sufficiently large. This concludes the proof
of Lemma 3.3. .

The following lemma is proved in [17] (just after Lemma 3’). (The proof of the lemma uses the
fact that |S(T)| < 4klglgn, which is true with high probability, according to Lemma 3.2.)

10

Lemma 3.4 With probability at least 1 — n™° the number of messages destined for any target group

that start at good senders but are not delivered during the thinning procedure from [17] is at most

E/(2Rh[eslglgn]).

Proof of Lemma 8.1. We conclude that with probability at least 1—2n~% the number of undelivered
messages destined for any given target group after the thinning procedure terminates is at most
E/(hecslglgn]). =

After the “thinning” procedure from [17] terminates we will use the “spreading” procedure
from [17] to spread out the unfinished requests so that each processor has at most one unfinished
message to deliver. As part of the spreading procedure we will allocate one processor to do the
book-keeping associated with each memory request and we will ensure that all messages associated
with the request know the identity of this processor. During this procedure of our simulation the
three messages associated with a request may be sent to various processors but they will keep the
book-keeping processor informed about their whereabouts.

After the “spreading”, we will use the “deliver to target groups” procedure from [17] to deliver
the rest of the messages to their target groups in O(lglg n) steps. With probability at least 1 —n™¢
(for any constant o) every message will be in its target group at the end of the “deliver to target
group” procedure. Furthermore, each sender will have at most 2 undelivered messages to send and
(by Lemma 3.1), the number of unfinished messages in a target group will be less than k. At this
point we can sort the messages in the target groups by destination. After the sorting, each sender
will have at most one message to send.

We now wish to allocate a contiguous block of ¢3 processors from the appropriate target group
to each unfinished destination (for a sufficiently large constant ¢;). We wish to do the allocation
in such a way that all senders know which processors are allocated for their destination. We do
this as follows. If a destination is the destination of fewer than ¢y requests we simply deliver them.
Otherwise, we allocate ¢y processors for the destination. The processors allocated will be the first
¢9 processors with requests for that destination.

At this point we wish to send all but O(n27 1glg”) of the messages in any group to their final
destinations. We will say that a message is bad if its destination is also the destination of at least

c11glgn other messages. We will use the following lemma.

Lemma 3.5 With probability at least 1 — n~% (for any constant o) at most O(n2~118187) of the

messages in any group of messages are bad.

Proof. This proof is similar to the second part of the proof of Lemma 3.3. By Property 3.1 of the

hash functions, the destinations are y/n-wise independent with high probability. In this case, the

3nlglgn
c1 lglgn

this is at most (3e/cq)™ lelen which is at most 27118187 for ¢ > Ge. Therefore, the expected

number of bad messages in a group is at most en2~c118len,

probability that a given message is bad is at most (yn=e lelen By Stirling’s approximation,

11

We now use Theorem 3.1 (the bounded differences inequality) to prove that with high probability
the number of bad messages in a group is not much more than the expectation.

As in the case of Lemma 3.3, the bounded differences inequality would be straightforward if
the hash functions hq, ho, and h3z were chosen uniformly at random from the set of functions from
[1,...,m]to[l,...,n]. We would take as the random variable z; the destination of the ith message
and we would let Y be the random variable denoting the number of bad messages. If we change
the value of one of the x;s the value of ¥ would change by at most ¢;lglgn + 1. Therefore, we

would obtain the following inequality.

Pr(Y > 2E) < 2exp(—2E%/(en(eylglgn 4+ 1)%)).

However, since hqy, hs, and hg are in fact drawn from the family R

mms We again follow the ap-

proach used in the proof of Lemma 6.1 in [20]. Consider the independent random variables aq, . . ., a f-
Let Y be a random variable denoting the number of bad messages. If we change the value of
one of the a;s then, with high probability at most 6nlglg n/\/n messages get new destinations.
(This follows from Property 3.2 of the hash functions.) Each new destination could cause at most
c1lglgn + 1 messages to become bad. Thus, changing one of the a;s could change Y by at most
6y/nlglgn(cilglgn + 1). So, by the bounded differences inequality,

Pr(Y > 2E) <
2exp(—2E2/(v/n36n(lglg n)*(c1lglgn +1)°)) ,

which is sufficiently small. .

Given Lemma 3.5, it suffices to route ¢q lglg n messages to each destination. This can be done
in O(lglg n) steps since the messages are sorted by destination. At this point we have finished the
“thinning and deliver to target groups” procedure. The book-keeping processor associated with
every memory request now cancels the request if at least two of its messages were delivered. If the

request is canceled then the third message is deleted.

3.3 Divide into sub-problems and duplicate

Our goal is to divide the ocpc into lglg n/e sub-ocpcs, each of which has n’ = ne/lglgn proces-
sors. Each sub-ocpc will work on the sub-problem of delivering the messages corresponding to a
particular group of messages. For each sub-ocPC we wish to make lg?(n’) copies of the relevant
sub-problem, all of which will reside in its processors 1,...,n'/2.

We will use an approximate compaction tool to divide the problem into sub-problems and to

make copies of the problem. (For similar tools see [5, 15, 25, 26].) Given
e an n-OCPC in which at most s senders each have one message to send,

e a set of Os receivers which is known to all of the senders,

12

the (s, 3) approzimate compaction problem is to deliver all of the messages to the set of receivers
in such a way that each receiver receives at most one message.

The following lemma is from [17].

Lemma 3.6 For any positive constant a there is a positive constant c3 such that the (s, [eslglgn])
approzimate compaction problem can be solved in O(lglg n) communication steps with failure prob-
ability at most a~—Vs 4+ 57«

We proved in the previous subsection that, with high probability, when the “thinning and
deliver to target groups” procedure terminates, the number of undelivered messages is at most
3nlglgn2~cl8len Furthermore, every message is in the target group of its destination and each
processor will have at most one message left to send.

The number of unfinished target groups is at most the number of unfinished messages, which
is at most

3nlglgn2=a 8l </ /(21g%(n))k [c31glg n])

for a sufficiently large ¢;. Therefore, with high probability (by Lemma 3.6), we can compact
one message from the first processor in each unfinished target group to the first n'/(21g%(n')k?)
processors in the n-ocpc. Having done that, we can copy each of the unfinished target groups to
one of the first n//(21g?(n')k) target groups in the n-ocpc. Next, we can use doubling to make
lg?(n') copies of each unfinished target group. All of these copies will reside in the first n'/(2k)
target groups in the n-ocPpcC.

At this point, the entire problem is copied 1g*(n’) times into the first n’/(2k) target groups in the
n-ocpcC. These n'/(2k) target groups will form the first half of the processors in the first n’-processor
sub-ocPc. Qur objective is to use the first sub-ocpc to solve the sub-problem of delivering the
messages in the first group of messages. The sub-ocPc will do this by simply ignoring all messages
that are not in the first group of messages.

The lg%(n') copies of the entire problem can now be copied into the remaining lglgn/e — 1
sub-ocPcs. The jth sub-ocpc will ignore all messages that are not in the jth group of messages.

Our next goal is to allocate the processors n'/2,...,n" of each sub-ocpc such that for each
outstanding memory request (i.e., for each memory request which has the property that at most one
of its three messages was delivered during the previous procedure), we allocate lg?(n’) processors.
(These 1g?(n') processors will do the book-keeping concerning the request in the lg*(n’) copies of
the sub-problem.)

The allocation can be done in the same way that the problem was split and copied because the

number of remaining requests is at most 3nlglg n2c l8len,

3.4 Route messages for each sub-problem

Consider a particular copy of a particular sub-problem. Lemma 3.5 tells us that with high proba-

bility at most O(n2~ 18187} of the memory requests from the en memory requests associated with

13

this sub-problem remain. Although each processor has at most one message to send, there is a
book-keeping processor allocated to each memory request and each message knows the identity of
its book-keeping processor. Furthermore, there is a block of ¢; contiguous processors allocated to
each unfinished destination and each sender knows which processors are allocated to its destination.
For i € {1,2,3} we will say that a message is an “/-message” if it obtained its destination using
hash function s.

We now route messages according to the cg-collision access schedule from Section 3 of Diet-
zfelbinger and Meyer auf der Heide’s paper [7]. Each round of the access schedule is defined as
follows.

For:=1,2.3:

a. For all destinations d in parallel, repeat [cplg(2¢3)] times: Each i-message with destination d
that is not already waiting at one of the ¢ processors allocated to d picks a random processor
from those allocated to d and sends there. Each of the allocated processors will only accept

one message.

b. Each destination d now checks whether there are any other i-messages destined for d (that is,
whether there are any i-messages with destination d that are not at the allocated processors).
To do this, the first of the ¢; processors allocated to d sends to d. Also, any ¢-messages with
destination d that have not yet been successful in reaching one of the ¢y processors allocated
to d send to d. Then the first of the ¢y processors allocated to d tells d whether or not it had

a collision.

c. For each destination d, if all of the :-messages destined for d are at the processors allocated to d

then these messages are delivered. Otherwise, no requests are delivered.

d. The book-keeping processor associated with each memory request checks which of the messages
associated with the requests were delivered. If at least 2 of the messages associated with the

request have been delivered then the request is canceled and the third message is deleted.

Note that no destination receives more than 3¢ messages during the ¢o-collision access schedule

routing. We use the following lemma:

Lemma 8.7 During one round of the cy-collision access schedule routing procedure any processor
that is the destination of at most ¢y i-messages gets all of the i messages with probability at least 1/2
(and none of them with the remaining probability). Any processor that is the destination of more

than co i-messages recetves none of them.

Proof. If d is the destination of at most ¢y ¢-messages then the probability that one of them fails
to reach the allocated processors in £ = [¢;1g(2¢;)] attempts is at most ¢5(1 — 1/¢5)" < 1/2. =
In their analysis of the cy-collision access schedule routing procedure (as implemented on a

cy-collision pMM), Dietzfelbinger and Meyer auf der Heide define a hypergraph H = (V, E) for a

14

set of memory requests xq, ..., &, with vertex set V ={v,; |1 <r <3,1<t <n} and hyperedge
set B = {{v1 n,(a:)> V2,ho(wi)> V3, ha(er)) | 1 S 0 < ent

In light of Lemma 3.7, we can view the cg-collision access schedule routing as a process on H. In
each round, the process removes each node with degree at most ¢3 (i.e., the i-messages destined for
the processor are delivered) with probability at least 1/2. Then the process removes each hyperedge
that consists of only one node (i.e., memory requests are canceled if at least two of the messages
associated with the request are delivered).

Following Dietzfelbinger and Meyer auf der Heide, we will say that H is s-good if
1. The largest connected component in H has at most a = a(s)lgn nodes.
2. Every set A C V intersects fewer than |A| 4+ s hyperedges from E in at least 2 points.

Dietzfelbinger and Meyer auf der Heide prove the following lemma. (The proof presented in [7]
is based on the assumption that hy, hy, and hs are chosen uniformly at random from the set of
functions from [1,...,m] to [1,...,n]. However, the lemma is also true if hy, ho, and hg are chosen

randomly from Eiﬁn.)
Lemma 3.8 The probability that H is s-good is 1 — O(n™*).
We will prove the following lemma.

Lemma 3.9 Suppose that H is s-good for some positive constant s. Then the probability that any
particular memory request is satisfied after O(lglgn) rounds of routing according to the cy-collision

access schedule is at least 1/2.

Proof. Let H; denote the hypergraph obtained by applying t rounds of the ¢y-collision access
schedule routing process to H. Dietzfelbinger and Meyer auf der Heide have made the following

observation [7].

Observation 3.1 If H is s-good and A C 'V is a component of Hy for somet > 0, then A contains
at most 3|A|/(ca + 1) + 3s/(ca + 1) nodes of degree larger than c; in Hy.

We will use the following lemma.

Lemma 3.10 Suppose that H is s-good. Let r be an edge in a component of size { > s of Hy for
some t > 0. If cg > 23 then with probability at least 1 — exp(—{/54) the component of r in Hi4q

has size at most 5(/6.

Proof. Let b =3({+ s)/(c2+1). By Observation 3.1 and Lemma 3.7, the expected number of
nodes in the component of r in H;yq is at most {/24b/2. Using a Chernoff bound, we see that the
probability that there are at most 4/3({/2+b/2) < 5(/6 nodes is at least 1 —exp(—({/2+b/2)/27).

15

Using Lemma 3.10, we conclude that for some constant ¢4 > s, with probability at least 3/4,
O(lglgn) rounds of the cp-collision access schedule routing procedure reduce the size of the compo-
nent of a given memory request r to at most ¢4. We conclude the proof of Lemma 3.9 by observing
that as long as ¢3 > 3s + 2, O(1) rounds will, with probability at least 3/4, further reduce the

component to size 1. "

3.5 Combining problem copies and combining sub-problems

Let us focus our attention on the jth sub-problem. Let S; be the set of messages that were in
the sub-problem when it was created. Let S} be the subset containing all messages in 5; that are
delivered in at least lg?(n’)/9 copies of the cy-collision access schedule routing procedure.

Note that when the cy-collision access schedule routing procedure terminates the lg?(n’) proces-
sors per memory request that were allocated in the “divide and copy” procedure to do book-keeping
can inform all of the the messages in S; (in the first copy of the sub-problem) whether or not they
are in §7.

We will prove the following lemma.

Lemma 3.11 With probability at least 1 — n™% (for any positive constant) each set S} has the

following properties.

1. Each processor is the destination of at most 27¢; messages in S;«.

2. Fach memory request in the jth sub-problem will be satisfied if the messages in S ; are delivered.

If each set S} has the properties described in Lemma 3.11 (as it will, with high probability), then
we can satisfy all of the memory requests in O(lglg n) steps by routing the messages in § = (J; 5.
These messages form a 27¢qlglg n/e-relation, so we can use the routing algorithm in [17] to route
the messages.

To prove Lemma 3.11 we use the following lemma and the following observation.

Lemma 3.12 With probability at least 1 —n~% (for any constant o) every memory request in every
sub-problem is satisfied in at least 1g*(n')/3 of the 1g*(n') copies of the co-collision access schedule

routing procedure.

Proof. Suppose that every sub-problem is such that the corresponding hypergraph is s-good.
(Lemma 3.8 shows that this is so with high probability, as long as s is chosen to be sufficiently
large.) Consider a particular memory request in a particular sub-problem. Lemma 3.9 shows that
the probability that this request is satisfied in any given copy of the sub-problem is at least 1/2.
A Chernoff bound shows that with probability at least 1 — ne=18°(n)/54 t}o request is satisfied in
at least lgz(n’)/?) copies. The lemma follows by summing the failure probabilities over particular

memory requests. .

16

Observation 3.2 If x1, x5 and x3 are the three messages in a memory request that is satisfied in
at least £ copies of the cy-collision access schedule routing procedure then there is a pair of messages
from {xy, 29,23} such that both of the messages in the pair are satisfied in at least (/3 copies of the
procedure. Similarly, if 1 and x4 are the two messages in a memory request that is satisfied in at
least [copies of the cy-collision access schedule routing procedure then at least one of x1 and xy is

satisfied in at least (/2 copies of the procedure.

Proof of Lemma 8.11. The fact that (with high probability) each memory request in the jth sub-
problem will be satisfied if the messages in S} are delivered follows from Lemma 3.12 and from
Observation 3.2. To see that each processor is the destination of at most 27c; messages in S} note
that a message is a member of §7 only if it is delivered in at least lg*(n')/9 copies of the cy-collision
access schedule routing procedure. However, we proved in the previous section that each destination
will receive at most 3¢y messages in each copy of the procedure. Therefore, at most 27¢; messages

that have the same destination will be included in S;. This completes the proof of Lemma 3.11.

4 Construction and evaluation of the hash function

In the simulation algorithm we have assumed that a hash function h was chosen uniformly at
random from the family Ei;{n and is available to every processor for constant time evaluation.
When concurrent-read is available in the simulating model, a hash function in use can be kept in
the shared memory, and be read as necessary in constant time. The exclusive-read nature of the
ocPc model, together with the fact that the function h € Eiﬁn is represented by a polynomial
number of memory words, imply a more subtle situation. A straightforward implementation is to
keep a copy of the function & at each processor. However, this implies polynomial overheads in both
the time of preprocessing for distributing all copies, and in the space dedicated for this function at
each processor. In the remainder of this section we describe an efficient implementation in which
the function requires only a total of linear space, and its evaluation increases the simulation delay

by at most a constant factor.

4.1 The hash function

d,j

mn With a class whose functions h have similar
?

Our basic approach is: (i) replace the class R
properties, but can be represented in O(n°) space, where 1/2 < e < 1; the modified class exhibits
only nf-universality (rather than /n-universality as in Property 3.1), but this is enough for our
purpose; (ii) make O(n'~¢) copies of the selected function h; and (iii) make sure that at each
simulation step the number of processors that need to read a component of h is bounded by
O(n'=clglgn), an average of O(lglgn) per copy, thereby enable the use of an efficient lglg n-

relation algorithm for the read operation. (A similar approach of making duplicates to reduce

17

contention was used in [14], in implementing a perfect hash function on the QrQw praM.) To
implement the approach sketched above we first modify the definition of E;ir;{n as follows.

Let t = j/e. The function s from the family E;ir;{n is re-defined to be the tuple (s1,...,s;), with
the operation s(z) = (s1(z),...,s(2)), where s;, 1 < i < ¢, are chosen uniformly at random from
Hy,

holds for the new family of hash functions.

for an appropriately large constant d. The following lemma shows that Property 3.1 still

€
s

Lemma 4.1 Let(> 1 be arbitrary and let d and j be large enough relative to (. Let S C [1,...,m],
n < |8 < a0, If s is chosen randomly as described above then Pr[s is 1-perfect on S] is at least
1—n"

Proof. The probability that two given distinct points x,y € 5 will collide under s, i.e., that
s(z) = s(y), is at most (2/n°), since the s;’s are (2, d)-universal. The probability that any pair of

points from $§ will collide is therefore at most

(|S|) (2/n5)t < n22/10—j2j—1
) >

The lemma follows by taking j > ¢ + 22/10. .

The class of functions H from which r is taken is modified next.

nin

Siegel [35] defines a (p, €, d, h)-weak concentrator H as a bipartite graph on the sets of vertices
I (inputs) and O (outputs), where |I| = p, and |O| = p¢, that has outdegree d for each node in |I|,
and that has, for any & inputs, edges matching them one-by-one with some h outputs.

A (p,e,d, h)-weak concentrator H is used to construct a function F by storing d random numbers
from [0,...,p—1] at each node of O. On input ¢, F(i)is computed by evaluating a polynomial hash
function of degree d — 1 whose coefficients are determined by the numbers stored at the neighbors
of ¢ in O. Siegel showed that the family of hash functions F so defined is a (1, h)-universal family
of hash functions mapping [0,p— 1] — [0,p — 1].

Let H be a (n¢,¢€,d, nﬁl)—weak concentrator. Siegel showed that the Cartesian product G = H*
is a (07, €, dt, nﬁl)—weak concentrator. The graph G can therefore be used to construct a (1, nﬁl)—wise
independent family of hash functions mapping [1,...,77] to [1,...,n7].

The above was used by Siegel to provide a space-efficient construction of the hash function,
which turns out useful for our needs. To enable approximately uniform contention distribution we

will need the function to exhibit one more property.

Lemma 4.2 There exists a graph H that is (n<, €, d, nﬁl)-weak concentrator, and which also has the
property that every output of H has degree at most 2dn .

Proof. We use a probabilistic construction, as given in [35] for finding an (n¢,e€,d, nﬁl)—weak
concentrator. Suppose that each input of H chooses its d (distinct) neighbors uniformly at random.
Siegel proves that the probability that H is not a (n®, €, d, nﬁl)—weak concentrator is at most n~ (¢ =),
(As long as € is sufficiently small.) We can now use a Chernoff bound to show that the degree of

each output of H is sufficiently small as required. "

18

4.2 Constructing the hash function

The graph H from Lemma 4.2 can be constructed and be built into the machine when the machine
is built. Each of the n® inputs has d neighbors. A set of n!~¢ processors is selected and each
processor in the set is given the name of these dn® neighbors.

A new hash function % from the family E;i,’z{n is constructed in O(lgn) steps as follows:

(1) Select (appropriately at random) sq,..,s; and f and distribute to all processors.

(2) Each of the n? output nodes of G = H! chooses d' values in [0,..,n7 — 1]. A set of n'=7*
processors is selected for each given output node and each processor in the set is given the d*

values associated with the output node.

(3) The values a1, ..., a s are generated. /1 sets of \/n processors are selected and each processor

in a set 7 is given the value of a;.

Recall that it may be the case that a new function needs to be constructed (a “re-hash” opera-
tion), when the selected one does not satisfy the required properties. (This occurs with polynomially
small probability for each parallel step, and with high probability after a polynomial number of
steps.)

4.3 Evaluating the hash function

At each simulation step, the hash function is computed for all memory addresses in O(lglgn)

time, as described next. Let S be the set of 3nlglgn requests from [1,..,m]. Recall that h(z) =
(r(s(z)) + af(x)) mod n.

Each processor executes the following steps for each request a:
(1) Compute s1(z), ..., s¢(x).
(2) Compute the names of the neighbors of (s1(z),...,s:(z)) in G.

(3) Read the values corresponding to the neighbors of
(s1(x),...,s¢(2)) in G.

(4) Apply 7 to (s1(2), ..., s¢(x)).
(5) Compute f(z).

(6) Read ay(y.

(7) Compute r(s(2)) + a7 (-

The executions of Steps 1,4,5, and 7 are in constant time. The following lemma of Dietzfelbinger,

given in [23], is central to the analysis of the other steps.

19

Lemma 4.3 Let X4,..., X, be 0 — 1 valued, d-independent, equidistributed random variables. Let
Hn= E(Xl) Then; fO’f’ n 2> d/(2lu))

Pr (Zn:(X,'—,u) > /\) < a(%d)d/?

=1

where o 1s a constant that depends on d but not on n.

Claim 4.4 In Step 2, with high probability, for every y in [1,...,n] (i.e., for every input of H)
there are at most

O(n'=¢1glgn) pairs (i,z) such that v € S and s;(z) = y.

Proof. Note that the set of values s;(z):1<a < m is d-independent. Following Kruskal,
Rudolph, and Snir [23] we use Lemma 4.3. Fix a y and ¢ and let X3 be a 0-1 random vari-
able which is 1 if and only if s; maps the b’th member of S to y. p is 1/n. Let A be |S|/n°. Then
the probability that s; maps more than 2A to y is O(n_d/z(l_ﬁ)). Choose d large enough to sum
over all 7 and y. "

We conclude that at most O(n'~“lglg n) processors want to read the information about input

y, and so we have a “target group O(lglg n) relation”. The requests can be routed using [17].

1—7e

Claim 4.5 In Step 3, with high probability, for every output y of G there are at most O(n lglgn)

values in S such that (s1(z),...,s{(2)) is a neighbor of y in G.

Proof. Fix y = (y1,..,y1). Let L; denote the neighbors of y; in H. Note that |L;| < 2dn= . If
s(z) has a neighbor y in G then s;(z)is in L;, for 1 << t.

The probability of this event is at most (2d/n®)t. Let Xj be a 0-1 random variable which is 1
if and only if the b-th member x of S has s(z) mapped to y in G. Apply Lemma 4.3: p is at most
(2d/n<")t by Lemma 4.2; let X be |§|(2d/n¢)t. The probability that there are more than such
values 2 is at most an~(d/2)(1-je) .

Given the claim, we have a “target group O(lglg n) relation”. The requests can be routed using
[17].

It remains to analyze Step 6. By Property 3.2, with probability at least 1 — n~

@ each group

needs to be read by at most 64/nlglg n of the requests, so we have a “target group 61glg n relation”.

The requests can be routed using [17].

5 Conclusions

In this paper we have described a work-optimal algorithm which simulates an nlglg n-processor
EREW PRAM on an n-processor OCPC with O(lglg n) expected delay. The probability that the delay
is longer than this is at most n™ for any constant a.

It would be interesting to determine whether this is the fastest possible work-optimal simulation.

It would also be interesting to discover how much delay is required in order to simulate a CRCW

20

PRAM. We have recently derived an algorithm that simulates an n-processor CRCW PRAM step
on an n-processor OCPC in time O(lgk + lglg n) with high probability, where & is the maximum
memory contention of the CRCW step.

The simulation algorithm assumes that &k is known. This assumption can be removed by aug-
menting the ocpc model to include a single bus which can be used to synchronize all of the
processors: each processor can broadcast a ‘1’ bit and every processor can determine whether or
not any processor is broadcasting a ‘1’ at any given time.

We note that the lgk term in the simulation algorithm is provably necessary, as implied by an
Qlg k) expected time lower bound for broadcasting the value of a bit to k processors on a QRCW
PRAM (and hence on an ERCW), by Gibbons, Matias and Ramachandran (see [14]).

Evidently, the performance of the CRCw simulation depends on the maximum contention. A
model that accounts for memory contention was recently proposed in [13]. In this model the run
time of each step is a function of the memory contention encountered at this step. Thus, in the
sub-model of siMD-QrQW(log) PRAM, a step in which the maximum memory contention is k is
assumed to take lg k time units.

The crcw simulation implies that an n-processor sSIMD-QRQW(log) PRAM algorithm can be sim-
ulated on an n-processor 0CPC, augmented with a bus, with delay O(lglgn) with high probability.
We note that the siMD-QrQw(log) PRAM is strictly stronger than the EREW PRAM.

References

[1] H. Alt, T. Hagerup, K. Mehlhorn and F.P. Preparata, Deterministic Simulation of Idealized
Parallel Computers on More Realistic Ones. SIAM Journal of Computing 16 (1987) 808-835.

[2] R.J. Anderson and G.L. Miller, Optical Communication for Pointer Based Algorithms, Techni-
cal Report CRI 88-14, Computer Science Department, University of Southern California, Los
Angeles, CA 90089-0782 USA, 1988.

[3] B. Bollobds, Martingales, Isoperimetric Inequalities and Random Graphs, in Combinatorics
(eds A. Hajnal, L. Lovész, and V. T. Sé6s), Collog. Math. Soc. Jdnos Bolyai 52 (North Holland
1988) 113-139.

[4] J.L. Carter and M.N. Wegman, Universal Classes of Hash Functions, Journal of Computer and
Systems Sciences 18 (1979) 143-154.

[5] B.S. Chlebus, K. Diks, T. Hagerup, and T. Radzik, New Simulations between CRCW PRAMs,
Proc. Foundations of Computation Theory T , Lecture Notes in Computer Science 380
(Springer-Verlag 1989) 95-104.

[6] M. Dietzfelbinger and F. Meyer auf der Heide, How to Distribute a Dictionary in a Complete
Network, Proceedings of the ACM Symposium On Theory of Computing 22 (1990) 117-127.

21

[7]

[11]

[12]

[14]

[19]

M. Dietzfelbinger and F. Meyer auf der Heide, Simple, Efficient Shared Memory Simulations,
Proceedings of the ACM Symposium On Parallel Algorithms and Architectures 5 (1993) 110
119.

M.M. Eshaghian, Parallel Computing with Optical Interconnects, PhD thesis, USC 1988.

M.M. Eshaghian, Parallel Algorithms for Image Processing on OMC, IEEE Transactions on
Computers, 40(7) (1991) 827-833.

M.M. Eshaghian and V.K.P. Kumar, Optical Arrays for Parallel Processing, Proc. Second
Annual Parallel Processing Symposium (1988) 58-71.

A.V. Gerbessiotis and L.G. Valiant, Direct Bulk-Synchronous Parallel Algorithms, Proceedings
of the Scandinavian Workshop on Algorithm Theory 3 (1992).

M. Geréb-Graus and T. Tsantilas, Efficient Optical Communication in Parallel Computers,
Proceedings of the ACM Symposium On Parallel Algorithms and Architectures 4 (1992) 41-48.

P.B. Gibbons, Y. Matias, and V. L. Ramachandran. The QRQW PRAM: Accounting for
contention in parallel algorithms. Proceedings of the ACM-SIAM Symposium On Discrete Al-
gorithms 5 (1994) 638-648.

P.B. Gibbons, Y. Matias, and V. L. Ramachandran. Efficient Low-Contention Parallel Al-
gorithms, Proceedings of the ACM Symposium On Parallel Algorithms and Architectures 6
(1994) 236-247.

J. Gil and Y. Matias, Fast Hashing on a PRAM - Designing by Expectation, Proceedings of
the ACM-SIAM Symposium On Discrete Algorithms 2 (1991) 271-280.

J. Gil, Y. Matias, and U. Vishkin. Towards a Theory of Nearly Constant Time Parallel Algo-
rithms, Proceedings of the IEEE Symposium on Foundations of Computer Science 32 (1991)
698-710.

L.A. Goldberg, M. Jerrum, T. Leighton and S. Rao, Doubly Logarithmic Communication
Algorithms for Optical Communication Parallel Computers, Pre-print, 1994. (A preliminary
version of this paper appeared in Proceedings of the ACM Symposium On Parallel Algorithms
and Architectures 5 (1993).)

L.A. Goldberg, M. Jerrum and P.D. MacKenzie, An Q(+/1glgn) Lower Bound for Routing in
Optical Networks, Proceedings of the ACM Symposium On Parallel Algorithms and Architec-
tures 6 (1994).

J. JaJa. An Introduction to Parallel Algorithms. (Addison-Wesley, 1992).

22

[20] R.M. Karp, M. Luby and F. Meyer auf der Heide, Efficient PRAM Simulation on a Distributed
Memory Machine, Pre-print, 1994. (A preliminary version of this paper appeared in Proceedings
of the ACM Symposium On Theory of Computing 24 (1992) 318-326.)

[21] A.R. Karlin and E. Upfal, Parallel Hashing — an Efficient Implementation of Shared Memory,
Proceedings of the ACM Symposium On Theory of Computing 18 (1986) 160-168.

[22] R.M. Karp and V. Ramachandran, Parallel Algorithms for Shared-Memory Machines, Hand-
book of Theoretical Computer Science, Volume A, (J. van Leeuwen, editor, Elsevier, 1990)
869-941.

[23] C.P. Kruskal, L. Rudolph, and M. Snir, A Complexity Theory of Efficient Parallel Algorithms,
Theoretical Computer Science, 71 (1990) 95-132.

[24] F.T. Leighton, Methods for Message Routing in Parallel Machines, Proceedings of the ACM
Symposium On Theory of Computing 24 (1992) 77-96.

[25] Y. Matias, Highly Parallel Randomized Algorithmics. PhD thesis, Tel Aviv University, Israel,
1992.

[26] Y. Matias and U. Vishkin, Converting High Probability into Nearly-Constant Time — with
Applications to Parallel Hashing, Proceedings of the ACM Symposium On Theory of Computing
23 (1991) 307-316.

[27] F. Meyer auf der Heide, C. Scheiderler, and V. Stemann, Fast simple dictionaries and shared

memory simulation on distributed memory machines; upper and lower bounds, Pre-print 1994.

[28] P.D. MacKenzie, C.G. Plaxton, and R. Rajaraman, On Contention Resolution Protocols and
Associated Probabilistic Phenomena, Proceedings of the ACM Symposium On Theory of Com-
puting 26 (1994) To appear.

[29] C. McDiarmid, On the Method of Bounded Differences, Surveys in Combinatorics, London
Math. Soc. Lecture Notes Series 141 (Cambridge Univ. Press, 1989) 148-188.

[30] W.F. McColl. General Purpose Parallel Computing, in Lectures on Parallel Computation,
Proc. 1991 ALCOM Spring School on Parallel Computation, Edited by A.M. Gibbons and
P. Spirakis, (Cambridge University Press 1993) 337-391.

[31] K. Mehlhorn and U. Vishkin. Randomized and deterministic simulations of PRAMs by parallel

machines with restricted granularity of parallel memories. Acta Informatica, 21:339-374, 1984.

[32] A.G. Ranade, How to Emulate Shared Memory, Journal of Computer and Systems Sciences
42 (1991) 307-326.

23

[33] S.B. Rao, Properties of an Interconnection Architecture Based on Wavelength Division Multi-
plexing, Technical Report TR-92-009-3-0054-2, NEC Research Institute, 4 Independence Way,
Princeton, NJ 08540 USA, 1992.

[34] J.H. Reif, editor, A Synthesis of Parallel Algorithms (Morgan-Kaufmann, 1993).

[35] A. Siegel, On Universal Classes of Fast High Performance Hash Functions, Their Time-Space
Tradeoff, and Their Applications, Proceedings of the IEEE Symposium on Foundations of
Computer Science 30 (1989) 20-25.

[36] J.P. Schmidt, A. Siegel and A. Srinivasan, Chernoff-Hoeffding Bounds for Applications with
Limited Independence, Pre-print, 1994. (A preliminary version of this paper appeared in Pro-
ceedings of the ACM-SIAM Symposium On Discrete Algorithms (1993).

[37] E. Upfal, Efficient Schemes for Parallel Communications, Journal of the ACM 31 (1984) 507
517.

[38] E. Upfal, A Probabilistic Relation Between Desirable and Feasible Models of Parallel Compu-
tation, Proceedings of the ACM Symposium On Theory of Computing 16 (1984) 258-265.

[39] E. Upfal, A. Wigderson, How to Share Memory in a Distributed System, Journal of the ACM
34 (1987) 116-127.

[40] L.G. Valiant, General Purpose Parallel Architectures, Chapter 18 of Handbook of Theoretical
Computer Science, Edited by J. van Leeuwen (Elsevier 1990).

24

