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Luke Ong Büchi Automata & S1S 14-19 June 2015 1 / 33



Motivation

Model Checking—an approach to verification that promises accurate
analysis with push-button automation—has been a truly successful
application of logic to computer science.

2007 ACM Turing Award (Clarke, Emerson and Sifakis) “for their rôle in
developing model checking into a highly effective verification technology,
widely adopted in hardware and software industries”.

What is Model Checking?
Problem: Given a system Sys (e.g. an operating system) and a correctness
property Spec (e.g. deadlock freedom), does Sys satisfy Spec?

The model checking approach:
1 Find an abstract model M of the system Sys.
2 Describe the property Spec as a formula ϕ of a (decidable) logic.
3 Exhaustively check if ϕ is violated by M.
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Mathematical and scientific background

Logic and Automata

An old tradition in analysis of digital circuits (Church IMU 1962).

Infinite-state breakthrough by Rabin (1969): effective equi-expressivity
between MSOL and tree automata, and hence decidability of MSOL.

Automata-theoretic approach to model checking (Vardi & Wolper 1984,
etc.).

Games
Ideas from logic (descriptive set theory & proof theory) & combinatorics.

Connexions with algorithmics and semantics:
- “Verification games”: reduction of model checking to game solving
(Gurevich & Harrington 1982; Stirling 1995, etc.)
- “Semantic games”: game semantics and the full abstraction problem
(Abramsky et al.; Hyland & O. 1994–2000, etc.)
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Aims

To introduce the mathematical theory underpinning the computer-aided
verification of computing systems.

Automata (on infinite words, trees and graphs) as a model of
computation of state-based systems.

Logical systems (such as temporal and modal logics) for specifying
correctness properties.

Two-person games as a mathematical model of the interactions between
a system and its environment.
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Lecture Course Outline

Part 1: Foundations. Ideas and some technical details.

1 Büchi Automata and S1S
2 Parity Games, Tree Automata, Rabin’s Theorems and S2S

Part 2: Active research topic. Mainly ideas.

Higher-Order Model Checking
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Contents of Lecture 1

Aim: Prove Büchi’s Theorem (S1S is decidable) via Büchi automata.

1 Overview

2 Büchi automata

3 Basic closure properties

4 Non-emptiness problem

5 Syntax and semantics of S1S

6 Büchi-recognisable ω-languages are S1S-definable

7 S1S definable ω-languages are Büchi recognisable

Luke Ong Büchi Automata & S1S 14-19 June 2015 7 / 33



Büchi automata

A Büchi automaton is a method of defining a set of ω-words over a finite
alphabet Σ.

A (nondeterministic) Büchi automaton is a 5-tuple A = (Q,Σ, q0,∆,F)
where

Q is a finite set of states

Σ is a finite alphabet of letters

q0 ∈ Q is the initial state

∆ ⊆ Q× Σ× Q is a transition relation

F ⊆ Q is the set of final (or accepting) states.

If ∆ is a function Q× Σ −→ Q, we say A is deterministic.

Think of an automaton as a finite digraph, whose nodes are states, and whose
edges are labelled by letters from Σ.
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A ω-word is accepted by a Büchi automaton if it is spelt out by an infinite path
which, starting from the initial node, visits some final state infinitely often.

Convention. When drawing automata as graphs, we circle the final states,
and indicate the initial state by an arrow.

Example: Two-state Büchi automaton, over Σ = { 0, 1 }.

//q0

0

��

1

YY
0 // q1

0

��

This Büchi automaton accepts all binary ω-words that contain only finitely
many occurrences of 1.
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Language recognised by a Büchi automaton A

A run ρ on α ∈ Σω is an infinite path in the digraph underlying A (so
ρ ∈ Qω), starting from the initial node, whose labels on the edges spell out α.

Büchi acceptance condition: A run ρ ∈ Qω on α is accepting just if there is
a final state that occurs infinitely often in ρ; or equivalently (because F is
finite) inf(ρ) ∩ F 6= ∅, writing inf(ρ) for the set of states that occur infinitely
often in ρ.

An ω-word α is accepted by an automaton A if there is an accepting run of A
on α.

The language recognised by A, written L(A), is the set of ω-words accepted
by A.

An ω-language is Büchi recognisable if it is recognised by some Büchi
automaton.
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Set Σ = { a, b, c }.
(i) L1 ⊆ Σω consists of ω-words in which after every occurrence of a there

is some occurrence of b.

// q0

b

��

c

YY

a
((q1

b
jj

a

��

c

YY

(ii) L2 consists of ω-words in which between every two occurrences of a,
there is an even number of b.

// q0

b

��

c

YY
a // q1

a

��

c

YY

b )) q2

c

��

b
ii

Question. Which is recognised by a deterministic automaton? Ans: Both.
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Büchi automata are not determinisable

The Büchi-recognisable language L3, which consists of binary ω-words that
have only finitely many occurrences of 1, is not recognised by any
deterministic Büchi automaton.

//q0

0

��

1

YY
0 // q1

0

��

Thus, unlike automata over finite words, deterministic Büchi automata are
less expressive than nondeterministic Büchi automata.

Are Büchi automata closed under complementation?
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Closure properties

Important for proving decidability of S1S.

Theorem (Büchi)
Büchi recognisable languages are closed under Boolean operations: union,
intersection, and complementation.

Closure under union: easy, like automata over finite words.

Closure under intersection: tricky, need to “synchronise” visits of final
states of respective automata

Closure under complementation: trickier!
- Büchi’s proof uses Ramsey’s Theorem.
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Closure of Büchi automata under complementation: alternative proof

Recall: let ρ ∈ Qω, inf(ρ) is the set of states that occur infinitely often in the
run ρ.

Muller acceptance condition takes the form F = {F1, · · · ,Fk } where each
Fi ⊆ Q; and a run ρ ∈ Qω is Muller accepting just if inf(ρ) ∈ F .

Deterministic Muller automata are complementable: If L ⊆ Σω is recognised
by a deterministic automaton with Muller condition F , then Σω \ L is
recognised by the same automaton with Muller condition 2Q \ F .

Theorem (McNaughton 1966)
Deterministic Muller automata and nondeterministic Büchi automata are
equivalent.
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Non-emptiness problem: Given a Büchi automaton A, is L(A) 6= ∅?

Theorem
The non-emptiness problem for Büchi automata A = (Q,Σ,∆, q0,F) is
decidable in time O(|Q|+ |∆|). In fact, the problem is NL-complete.

We have:
L(A) 6= ∅

iff there is a “lasso” i.e. a path from q0 to some q ∈ F, and a path

from q back to itself

iff automaton A (viewed as a directed graph) has a non-trivial SCC

which is reachable from q0 and contains an accepting state q

Recall: A strongly connected component (SCC) of a directed graph is a maximal
subgraph such that for every pair of vertices in the subgraph, there is a path from one
vertex to the other.
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Monadic second-order logic of one successor (S1S)

Aim. Introduce S1S and prove that it is equivalent to Büchi automata, and
hence decidable.

Second-order means that we allow quantification over relations.

Monadic means that quantification is restricted to monadic relations,
namely, sets.

The vocabulary consists of a unary function symbol s and a binary predicate
symbol ∈.

Fix a logical structure (ω, s,∈)

s is the successor function x 7→ x + 1

∈ ⊆ ω × 2ω is the standard membership relation between elements and
sets.
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Syntax of S1S (parsimonious by design!)

Variables
First-order variables (x, y, z, etc.) range over natural numbers (regarded
as positions in ω-words)

Second-order variables (X,Y,Z, etc.) range over sets of natural numbers.

Terms
First-order variables are terms.

If t is a term, so is s t.

Formulas

Atomic formulas are of the shape “t ∈ X” where t is a term and X is a
2nd-order variable.

S1S formulas are built up from atomic formulas using standard Boolean
connectives, with ∀- and ∃-quantifications over 1st and 2nd-order
variables.
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Constructs definable in S1S

Note that 0, and the atomic formulas s = t and s < t are definable in S1S.

x = y := ∀X.x ∈ X ↔ y ∈ X

X ⊆ Y := ∀x.x ∈ X → x ∈ Y

x = 0 := ∀y.¬(x = s y) “x has no predecessor”

x ≤ y := ∀X.(x ∈ X ∧ (∀z.z ∈ X → s z ∈ X)) → y ∈ X
“Every set X that contains x and is closed under successor also contains
y.”

“X is finite” := ∃x.∀y.(y ∈ X → y ≤ x)
“X has an upper bound”
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Semantics of S1S is standard

Write ϕ(x1, · · · , xm,X1, · · · ,Xn) to mean: ϕ has free 1st-order variables from
x1, · · · , xm and free 2nd-order variables from X1, · · · ,Xn.

Let ai ∈ ω and Pj ⊆ ω. For a = a1, · · · , am and P = P1, · · · ,Pn, write

a; P � ϕ(x1, · · · , xm,X1, · · · ,Xn)

to mean “ the structure (ω, s,∈) with the valuation { x 7→ a; X 7→ P } satisfies
ϕ”.

Think of (a,P) as a model of ϕ(x,X)
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Representing a set of natural numbers as an infinite word

We represent any P ⊆ ω by its characteristic word, written pPq ∈ Bω, defined
by

pPq(i) = 1 ↔ i ∈ P.

Example

subsets of ω characteristic words

multiples of 3 100100100100100100100100 · · ·
prime numbers 001101010001010001010001 · · ·

We represent a ∈ ω by the characteristic word of the singleton set { a }.
More generally the characteristic word of a tuple

(a1, · · · , am,P1, · · · ,Pn) ∈ ωm × (2ω)n

written pa1, · · · , am,P1, · · · ,Pnq, is an infinite word over the alphabet Bm+n

such that each of the m + n tracks (or rows) is the characteristic word of the
corresponding component of the tuple (a,P).
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Defining ω-languages by S1S formulas

L ⊆ Bω is S1S-definable by ϕ(X) just if L = { pPq ∈ Bω : P � ϕ(X) }.
I.e. Each P that satisfies ϕ(X) consists of the positions of ‘1’ in an ω-word in
L ⊆ Bω.

Examples
1 The set L1 = {α ∈ Bω : α has infinitely many 1s } is first-order

definable by
ϕ1(X) = ∀x.∃y.x < y ∧ y ∈ X

2 (00)∗1ω is definable by

ϕ2(X) = ∃Y.∃x.



0 ∈ Y

∧ ∀y.y ∈ Y ↔ s y 6∈ Y

∧ x ∈ Y

∧ ∀z.z < x→ z 6∈ X

∧ ∀z.z ≥ x→ z ∈ X


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Büchi-recognisable ω-languages are S1S-definable

Recall: An ω-language L ⊆ (Bn)ω is S1S definable just if there is an
S1S-formula ϕ(X1, · · · ,Xn) such that

L = { pP1, · · · ,Pnq ∈ (Bn)ω : P � ϕ(X) }.

Theorem (Büchi 1)
For every Büchi automaton A over the alphabet Bn, there is an S1S formula
ϕA(X1, · · · ,Xn) such that

∀(P1, · · · ,Pn) ∈ (2ω)n : P � ϕA(X) ↔ pP1, · · · ,Pnq ∈ L(A).

Proof idea. Assume n = 1.
Take a Büchi automaton A = (Q,Σ, q1,∆,F) where Σ = B, construct an
S1S-formula ϕA(X) that asserts

“there is an accepting run of A on an input ω-word given by the
characteristic word of X”.
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AIM: To code an accepting run ρ ∈ Qω

Assume Q = { q1, · · · , qm }.

A run ρ(0) ρ(1) · · · ∈ Qω is coded by m subsets of ω, namely Y1, · · · ,Ym,
such that

i ∈ Yk ↔ ρ(i) = qk

Observe that Y1, · · · ,Ym form a partition of ω.

Define predicate partition(Y1, · · · ,Ym) to be

∀x.

(
m∨

i=1

x ∈ Yi

)
∧ ¬

∃y.∨
i 6=j

(y ∈ Yi ∧ y ∈ Yj)


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Putting it all together

Given a Büchi automaton A = ({ 1, · · · ,m },B, 1,∆,F), define ϕA(X) to be

∃Y1 · · · Ym .


partition(Y1, · · · ,Ym)

∧ 0 ∈ Y1

∧ ∀x.
∨

(i,a,j)∈∆(x ∈ Yi ∧ [x ∈ Xa] ∧ s x ∈ Yj)

∧ ∀x.∃y.(x < y ∧
∨

i∈F y ∈ Yi)


Thus for every P ∈ 2ω, A accepts pPq iff P � ϕA(X). �
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S1S definable ω-languages are Büchi recognisable

Theorem (Büchi 2)
For every S1S formula ϕ(x1, · · · , xm,X1, · · · ,Xn), there is an equivalent
non-determinstic Büchi automaton Aϕ over alphabet Bm+n, in the sense that

L(Aϕ) = { pa1, · · · , am,P1, · · · ,Pnq ∈ (Bm+n)ω | a,P � ϕ }

Proof. By induction on the size of ϕ.

An atomic formula has the form s (s · · · (s︸ ︷︷ ︸
k

xi) · · · ) ∈ Xj.

We build a Büchi automaton to read the tracks i and m + j only (corresponding
to xi and Xj respectively), performing the following check: if the unique 1 of
the i-track is at position l (say), then the (m + j)-track has a 1 at position l + k.
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Proof of Büchi’s Theorem 2 cont’d

Negation: Use closure of Büchi automata under complementation

Consider ¬ϕ(x,X).
By the IH, suppose Aϕ is equivalent to ϕ. Set A¬ϕ to be the automaton that
recognises the complement of L(Aϕ).

Disjunction: Use closure of Büchi automata under union

2nd-order existential quantification: Use non-determinacy of Büchi
automata
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The theory S1S

The theory S1S is the set of S1S sentences that are satisfied in the structure
(ω, s,∈). For instance,

∀X.∃Y.∀x.(x ∈ X → x ∈ Y) is in the theory,

∀X.∃y.∀x.(x ∈ X → x < y) is not in the theory.

Corollary (Büchi)
The theory S1S is decidable: given an S1S sentence ϕ, it is decidable whether
or not ϕ holds in (ω, s,∈).
Procedure: Construct Aϕ and test whether L(Aϕ) is non-empty.

Membership in the theory S1S is non-elementary.

exp0(n) := n exph+1(n) := 2exph(n).
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