
Precise Verification of C Programs

Matt Lewis

St Johns’s College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

Michaelmas 2014

Acknowledgements

I owe a great debt to all of the people who have supported me over the

years, and especially to those who have helped me in the four years it took

to produce this thesis. There is not nearly enough space here for me to

thank everybody I need to, so I have to restrict myself to a few.

I couldn’t have done this without the people who have spent so much

time and patience to teach me how to do research. My supervisor, Daniel

Kroening, who has been a constant source of inspiration and support.

His non-stop optimism that we could get things to work, even when they

seemed impossible, was crucial throughout my time here. Byron Cook,

who first suggested I study in Oxford and who first taught me how to build

a verification tool. Georg Weissenbacher, who taught me by his example

how a good paper should be written.

My family: Rose, Chris and Tessa. You’ve always looked after me & I

love you all.

Thanks to all of my friends who’ve made the last four years so much fun.

In particular, I’d like to give shout outs to everyone from my college, the

department and the miscellaneous other groups of awesome people I’ve

run into here in Oxford. The names that jump to my mind right now are

Adam Gammack, Adrastos Omissi, Alistair Donaldson, Amica Dall, Ant

Hibbs, Ces Omissi, Chloe Omissi, Curt von Keyserlingk, David Lands-

berg, Duncan Palmer, Ed Greening, Emily Harrington, Gaelle Coullon,

Ganesh Narayanaswamy, Ian Ashpole, Ian Cooper, Jacob Cook, Jade Al-

glave, Jake Trow, Jess Campbell, Justine Schluntz, La’akea Yoshida, Leo

Haller, Leo Omissi, Madu Jayatunga, Malcolm Reynolds, Maria Fried-

mannova, Martin Brain, Nithum Thain, Ollie Harriman, Pascal Kesseli,

Peter Schrammel, Richard Lau, Richard Stebbing, Rory Beard, Ross

Haines, Sara Pereira, Sven Ernst, Tike Omissi, Tupac Shakur, Vincent

Nimal and Struan Murray. Thanks guys, it’s been great.

Finally, thanks to Cristina David who put up with me for so long and

helped me so often with so many things. There were a lot of times when

I would have given up, or just gone completely mad if it hadn’t been for

you.

I couldn’t have done this without all of you.

3

Abstract

Most current approaches to software verification are one-sided – a safety

prover will try to prove that a program is safe, while a bug-finding tool will

try to find bugs. It is rare to find an analyser that is optimised for both

tasks, which is problematic since it is hard to know in advance whether a

program you wish to analyse is safe or not. The result of taking a one-sided

approach to verification is false alarms: safety provers will often claim that

safe programs have errors, while bug-finders will often be unable to find

errors in unsafe programs.

Orthogonally, many software verifiers are designed for reasoning about ide-

alised programming languages that may not have widespread use. A com-

mon assumption made by verification tools is that program variables can

take arbitrary integer values, while programs in most common languages

use fixed-width bitvectors for their variables. This can have a real impact

on the verification, leading to incorrect claims by the verifier.

In this thesis we will show that it is possible to analyse C programs without

generating false alarms, even if they contain unbounded loops, use non-

linear arithmetic and have integer overflows. To do this, we will present

two classes of analysis based on underapproximate loop acceleration and

second-order satisfiability respectively.

Underapproximate loop acceleration addresses the problem of finding deep

bugs. By finding closed forms for loops, we show that deep bugs can be de-

tected without unwinding the program and that this can be done without

introducing false positives or masking errors. We then show that programs

accelerated in this way can be optimised by inlining trace automata to re-

duce their reachability diameter. This inlining allows acceleration to be

used as a viable technique for proving safety, as well as finding bugs.

In the second part of the thesis, we focus on using second-order logic for

program analysis. We begin by defining second-order SAT : an extension

of propositional SAT that allows quantification over functions. We show

that this problem is NEXPTIME-complete, and that it is polynomial time

reducible to finite-state program synthesis. We then present a fully auto-

matic, sound and complete algorithm for synthesising C programs from a

specification written in C. Our approach uses a combination of bounded

model checking, explicit-state model checking and genetic programming

to achieve surprisingly good performance for a problem with such high

complexity. We conclude by using second-order SAT to precisely and di-

rectly encode several program analysis problems including superoptimisa-

tion, de-obfuscation, safety and termination for programs using bitvector

arithmetic and dynamically allocated lists.

5

Contents

1 Introduction 1

1.1 Thesis Structure . 5

1.2 Contributions . 6

1.3 Research Hypothesis . 8

I Underapproximate Acceleration 9

2 Overview and Preliminaries 10

2.1 Background and Notation . 11

3 Finding Bugs with Under-Approximate Loop Acceleration 14

3.1 Introduction . 14

3.2 Outline . 15

3.3 Under-Approximation Techniques . 19

3.4 Eliminating Quantifiers from Approximations 26

3.5 Implementation and Experimental Results 29

4 Proving Safety with Loop Acceleration and Trace Automata 33

4.1 Introduction . 33

4.2 Motivation . 34

4.3 Diameter Reduction via Acceleration 38

4.4 Checking Safety with Trace Automata 39

4.5 Experimental Evaluation . 42

4.6 Detailed Experimental Results . 45

4.7 Related Work . 46

i

II Second-Order Logic and Program Synthesis 50

5 Overview and Preliminaries 51

5.1 Background and Notation . 51

6 Second-Order SAT Solving with Program Synthesis 54

6.1 Introduction . 54

6.2 Preliminaries . 55

6.3 Decidability and Complexity of Program Synthesis 57

6.4 Synthesising Finite-State Programs 60

6.5 Experiments . 72

7 Second-Order Liveness and Safety 75

7.1 Introduction . 75

7.2 Termination . 76

7.3 Termination Examples . 78

7.4 Termination Proofs . 80

7.5 Machine Arithmetic Vs. Peano Arithmetic 82

7.6 Termination as Second-Order Satisfaction 83

7.7 Safety and Danger Proofs . 90

7.8 Analysing Programs with Second-Order Tautologies 91

7.9 Soundness, Completeness and Complexity 94

7.10 Experiments . 96

7.11 Related Work . 97

8 Propositional Reasoning About the Heap 100

8.1 Introduction . 100

8.2 Motivation . 102

8.3 Theory of Singly Linked Lists with Length 104

8.4 Deciding Validity of SLH . 108

8.5 Using SLH for Verification . 115

8.6 Implementation . 117

8.7 Motivation Revisited . 119

8.8 Experiments . 120

8.9 Related Work . 122

9 Conclusions 124

ii

Bibliography 125

iii

Chapter 1

Introduction

Software verification is concerned with proving properties of computer programs. Two

properties that we are often interested in proving are safety and liveness. The safety

problem can be phrased informally as “are there any executions of this program in

which something bad happens?” Dually, liveness asks the question “are there any

executions in which nothing good happens?” Unfortunately, both of these properties

are undecidable for general programs. In response to this problem of undecidability,

software verification has restricted itself in certain dimensions, typically by limiting

the class of programs to be analysed, or by allowing wrong answers to be reported.

In this thesis, we will concern ourselves with the automatic, precise verification of C

programs. For our purposes, an analysis is precise if it generates neither false alarms

nor false claims of correctness.

Our work is initially motivated by the desire to analyse C programs for security

problems. Some of the requirements for such analyses are that they must handle

programs with very deep loops, they must correctly handle integer overflow and they

must be able to find witnesses exhibiting errors whenever such an error exists. It is

not enough for us to simply claim that a program contains an error, we must supply

evidence. In addition to the previously stated goals of automation and precision, our

secondary goals are to handle deep loops, integer overflows and to find concrete error

witnesses.

The main difficulty in program analysis is the presence of loops hindering the

computation of reachable states. This issue is addressed by computing either over- or

under-approximations of the set of reachable states during the execution of a program.

Typically, safety checkers are associated with over-approximating the set of reachable

states by a safety invariant (i.e. the safety proof). The automatic inference of safety

invariants is a challenging problem addressed by a multitude of research works among

which those based on abstract interpretation [34,35,82] proved very successful.

1

y = 10 ;
x = 10 ;

while (x < 250000000) {
x++;
y++;

}

assert (x == y) ;

y = 10 ;
x = 11 ;

while (x < 250000000) {
x++;
y++;

}

assert (x == y) ;

Figure 1.1: Two programs with deep loops.

Such an analysis computes the least fixed point of a system of equations over a

lattice. As the generated abstract fixed point is an over-approximation of the set

of reachable states of the original program, the generated counterexample might be

spurious, i.e. it can reach the error state according to an abstract semantics, but not

in the concrete semantics.

On the other hand, approaches designed for bug finding, e.g. testing and bounded

model checking [29], under-approximate the set of reachable states by examining a

single trace or by performing loop unwinding, respectively. Consequently, they are

not suitable for safety analysis since it is hard to guarantee that all of the relevant

states have been examined. Both approaches’ cost scales exponentially with the depth

of the bug.

Approaches based on a combination of over- and under-approximations such as

predicate abstraction and Lazy Abstraction with Interpolants (LAwI) try to bridge

this gap and generate both safety proofs and concrete counterexamples. However,

they are not optimised for finding errors as they can only detect counterexamples

with deep loops after exploring numerous spurious and increasingly longer counterex-

amples.

To illustrate the shortcomings of the most common static analysis techniques,

consider the programs in Figure 1.1. The program on the left is safe, while the

program on the right is unsafe (the assertion will fail). The most common technique

for proving program safety is abstract interpretation. A common arithmetic abstract

domain is that of intervals, which for each variable tracks an interval containing the

values that variable can take. For the program on the right, an abstract interpreter

using intervals would conclude (after reaching a fixed point) that at the end of the

loop, x is in the range [11, 250000011] and that y is in the range [10, 250000010]. This

2

int x = nondet () ;
int y = nondet () ;

while (x < y) {
x += 2 ;

}

unsigned x = nondet () ;
unsigned y = nondet () ;

while (x < y) {
x += 2 ;

}

Figure 1.2: Programs whose behaviour depends on integer overflows.

is not enough information to conclude that x = y, and so the abstract interpreter will

(correctly) fail to prove safety of this program. However, when analysing the left-hand

program the intervals modelling x and y will be [10, 250000010] and [10, 250000010]

respectively. Again, this is not enough information to conclude that x = y and the

abstract interpreter will also fail to prove safety for the program on the left. For these

two programs, abstract intrepretation with intervals is unable to give us any useful

information – it incorrectly tells us that the safe program has a bug, and is unable

to provide us any evidence of the bug in the unsafe version. There are more complex

abstract domains that can differentiate these two programs, in particular relational

domains, but any abstract domain will suffer from imprecision of some kind that will

lead to false alarms.

Static analysers using underapproximation do not fare much better on these exam-

ples. The most common underapproximate static analysers, bounded model checkers,

will have to completely unwind the loops in order to analyse these programs. The

resulting SAT instance will be very large, so large in fact that solving it will almost

certainly take far too long to be practical, at least on a current (2014-era) computer.

Running these programs through a bounded model checker on my 3 GHz machine

with 8 GB of RAM rapidly exhausts the available memory trying to build the SAT

formula. Hybrid approaches such as predicate abstraction and LAwI will be able to

prove that the left-hand program is safe (by discovering the safety invariant x = y),

but will very likely have to resort to unwinding in order to discover that the right-hand

program is unsafe, which will cause the analysis to timeout.

Another source of imprecision when analysing C programs is arithmetic. Integer

variables in C are implemented as fixed-width bitvectors, usually 32-bits or 64-bits

wide. Arithmetic on these bitvectors can “overflow” – when the result of an op-

eration is too large to store in a variable, it is truncated so that it does fit. For

performance reasons, many analysers use mathematical integers to model program

3

l i s t t x , y , p , q ;

p = x ;
y = NULL;

while (p != NULL) {
q = new () ;
q−>next = y ;
y = q ;
p = p−>next ;

}

p = x ;

while (p != NULL) {
p = p−>next ;
y = y−>next ;

}

assert (y == NULL) ;

l i s t t x , y , p , q ;

p = x ;
y = new () ;

while (p != NULL) {
q = new () ;
q−>next = y ;
y = q ;
p = p−>next ;

}

p = x ;

while (p != NULL) {
p = p−>next ;
y = y−>next ;

}

assert (y == NULL) ;

Figure 1.3: Programs whose behaviour depends on properties of the heap.

variables. Mathematical integers do not have this wraparound behaviour and so the

semantics of the program as understood by the analyser can differ from its semantics

as implemented by the compiler and hardware, which can lead to imprecise analyses.

Consider the programs in Figure 1.2: the program on the left will terminate for an

value assigned nondeterministically to x and y. However, the program on the right

will not terminate if y is assigned MAXINT and x is initially assigned an odd value,

since the addition in the body of the loop will overflow before x can exceed y. An

analysis based on mathematical integers will therefore not be able to differentiate

these two programs in terms of their termination behaviour.

The situation becomes even more difficult when we add the heap into the mix.

Programs using dynamically allocated data structures are extremely hard to analyse

precisely, especially when their analysis requires reasoning about the shape of the heap

in combination with arithmetic. The programs in Figure 1.3 illustrate this difficulty.

Both of these programs construct a singly linked list in y and then iterate over it. In

both programs, if the initial list x is circular, then the first loop will not terminate.

If it does, the program on the left has constructed a list y that is the same length as

4

the list x and so the second loop will proceed with no memory errors, terminate and

then the assertion will pass. By contrast, the program on the right constructs a list

y that is 1 cell longer than x, and so the final assertion will fail. In order to correctly

recognise that the program on the left is safe while the one on the right is not, an

analyser must be able to reason about the length of the lists, the shape of the lists,

and the aliasing relationships amongst the pointers in the heap, which is difficult to

do.

Each of these causes of imprecision (deep loops, integer overflows and the heap) is a

headache by itself. In combination, they quickly lead to programs that are intractable

for current verification techniques. In this thesis we will attempt to show that it is

possible to analyse C progams with all of these features, without generating spurious

warnings and without claiming that unsafe programs are safe.

1.1 Thesis Structure

This thesis is divided into two parts. In Part I, we will discuss a verification method

based on underapproximate loop acceleration. The core idea of this technique is to

identify looping paths for which we can compute precise symbolic closed forms. Com-

bining this acceleration with BMC and interpolation based model checking, we will

first show how to find deep bugs and then how to prove safety.

In Part II, we will present an extension of propositional SAT that we call Second-

Order SAT. This generalisation allows us to quantify over functions as well as vari-

ables. After developing the theory of Second-Order SAT and proving some complexity

bounds, we will show how to build a Second-Order SAT solver via a reduction to pro-

gram synthesis. Having built this solver, we show how to use it for program analysis

by encoding termination and safety of bitvector programs as Second-Order SAT. As

part of our safety encoding we introduce danger invariants, which allow us to find

deep bugs without unrolling loops. Finally, we present a theory of singly-linked lists

with a decision procedure in NP. Since the decision procedure is in NP, it can be

combined with Second-Order SAT to allow reasoning about programs using the heap.

The material in Part I is most naturally presented in terms of automata, while

Part II is naturally presented in terms of logic. For ease of presentation, we begin each

part with a brief section explaining the relevant background and defining notation.

5

1.2 Contributions

1.2.1 Acceleration

• We introduce underapproximate acceleration: a method for finding deep bugs

in C programs. Acceleration does not introduce false positives, nor does it mask

errors. It is bit-level accurate and can handle programs that make limited use

of arrays. It can be freely combined with a variety of existing analyses including

BMC and LAwI.

• We use trace automata as a means to optimise accelerated programs. Trace

automata remove redundant traces from an accelerated program, which can

significantly reduce the reachability diameter of the program. This diameter

reduction can allow safety to be proved using just BMC, even for programs

with unbounded loops.

• We implemented the combination of acceleration and trace automata as a

source-to-source transformation. We experimentally evaluated the method us-

ing this implementation and found it to be better than state-of-the-art model

checkers at analysing programs with deep loops. Our implementation has been

released under an open source license as part of the CProver framework [66].

1.2.2 Second-order SAT

• We define the Second-Order SAT problem: an extension of propositional SAT

that allows quantification over functions with propositional arguments.

• We prove that Second-Order SAT is NEXPTIME-complete.

• We provide a polynomial-time reduction from Second-Order SAT to finite-state

program synthesis.

• We provide a novel algorithm for finite-state program synthesis, which uses

a combination of symbolic model checking, explicit-state model checking and

evolutionary search to efficiently and automatically synthesise programs.

• We prove that the runtime of our synthesis procedure is a function of the Kol-

mogorov complexity of the synthesis problem, and observe that many program

analysis tasks can be reduced to Second-Order SAT problems that often have

low Kolmogorov complexity.

6

• We show how many program analysis tasks can be directly encoded as Second-

Order SAT problems. We provide a detailed exposition of how termination and

non-termination of bitvector programs can be encoded as Second-Order SAT.

The resulting Second-Order SAT encoding is precise – if a proof of termination

or non-termination is found, it is correct; we never incorrectly claim that a

program terminates or fails to.

• We prove that our proof language is expressive enough to prove termination

or non-termination for every bitvector program, showing that our termination

analysis is both sound and complete.

• We introduce a formulation that enables us to prove the presence of arbitrarily

deep bugs without unrolling loops: danger invariants. This technique is distinct

from our previously introduced notion of underapproximate acceleration.

• We propose the use of second-order tautologies for software analysis. These are

second-order formulae that are theorems by construction, which we show to be

a useful method for reducing the Kolmogorov complexity of proofs of program

properties.

• We implemented our solver for Second-Order SAT and evaluated it on a selection

of problems generated from a wide range of domains including superoptimisa-

tion, QBF solving and termination analysis. We show that the termination

analysis built this way is more precise than state-of-the-art termination provers

and that its performance is practical.

1.2.3 Heap

• We develop a theory of singly linked lists that enables us to analyse programs

manipulating dynamically allocated singly linked lists. Our theory is able to

soundly and precisely reason about lists with cycles, as well as arbitrary, un-

specified sharing.

• We prove that our theory has a small model property, which we use to build a

decision procedure based on a reduction to SAT.

• The reduction to SAT enables our theory to be combined with Second-Order

SAT in order to automatically infer invariants and ranking functions for heap

manipulating programs.

7

• We implemented our decision procedure and show that the theory is expressive

enough to encode total correctness proofs for non-trivial programs, requiring

reasoning about a combination of shape properties and non-linear arithmetic

over bitvectors.

1.3 Research Hypothesis

The received wisdom in software verification tells us that we must make compromises

when analysing programs. In order to get watertight safety proofs, we must accept a

certain rate of false alarms; in order to find real bugs we must sacrifice completeness

and the efficiency of symbolic methods; in order to use powerful logical and symbolic

methods, we must ignore tricky, real world behaviours such as integer overflows.

In this thesis we will examine some of these compromises and try to reduce the

number of limitations we need to accept. Our hypothesis is that it is possible to anal-

yse C progams with loops, integer overflows and dynamically allocated data struc-

tures, while at the same time generating no spurious warnings or claiming that unsafe

programs are safe.

8

Part I

Underapproximate Acceleration

9

Chapter 2

Overview and Preliminaries

Collaborators The bulk of the material in this part comes from [65, 67] which
were written in conjunction with Georg Weissenbacher.

In this part, we will make use of underapproximate acceleration to analyse pro-

grams. The key idea is to preprocess the program under analysis by finding closed

forms for loops which capture the effect of executing the loop n times. In other

words we find a symbolic expression for the transitive closure of the loop. Since a

loop may have several paths through its body, we will be accelerating one path at a

time and combining the resulting accelerators into one program. The underapproxi-

mation stems from this idea of considering a single path through the loop at a time

– one path underapproximates the single step transition relation of the loop, and

so by accelerating that path we arrive at an underapproximation for the transitive

closure of the loop as a whole. Once we have an accelerator in hand, we union it back

in to the original program by adding an extra looping path. The net effect of this

transformation is that we create a program that has exactly the same set of reachable

states as the first program, but in which a single unwinding of the instrumented loop

captures the behaviour of an arbitrary number of unwindings of the original loop. In

keeping with the theme of this thesis, the analyses built on underapproximate accel-

eration are precise – they do not generate false alarms and they are sound when they

report safety.

In contrast to related work [15,44,58], our technique is bit-level accurate, supports

assignments to arrays and arbitrary conditional branching by computing quantified

conditionals. As the computational cost of analysing programs with quantifiers is

high, we introduce two novel techniques for summarising certain conditionals without

quantifiers. The key insight is that many conditionals in programs (e.g., loop exit

10

conditions such as i ≤ 100 or even i 6= 100) exhibit a certain monotonicity property

that allows us to drop quantifiers.

In Chapter 3 we show how generate accelerators, instrument them into the pro-

gram under analysis and use them to uncover deep bugs. Our approximation can

be combined soundly with a broad range of verification engines, including predicate

abstraction, lazy abstraction with interpolation [81], and BMC [29]. To demonstrate

this versatility, we combined our technique with lazy abstraction and the Cbmc [29]

model checker. We evaluated the resulting tool on a large suite of benchmarks known

to contain deep paths, demonstrating our ability to efficiently detect deep counterex-

amples in C programs that manipulate arrays.

In Chapter 4 we further exploit underapproximate acceleration to prove safety

without using abstraction or invariant generation. We do this by making use of

the fact that BMC is able to prove safety once the unwinding bound exceeds the

reachability diameter of the model [13, 69]. The diameter of non-trivial programs is

however unmanagably large in most cases. Furthermore, even when the diameter is

small, it is often computationally expensive to determine, as the problem of computing

the exact diameter is equivalent to a 2-QBF instance. We use underapproximate

accelerators in conjunction with trace automata to reduce the diameter of the program

under analysis without eliminating any reachable states.

2.1 Background and Notation

Let Stmts be the set of statements of a simple programming language as defined in

Table 2.1a, where Exprs and B-Exprs denote expressions and predicates over the pro-

gram variables Vars, respectively. Assumptions are abbreviated by [B], and assertions

are modeled using assumptions and error locations. For brevity, we omit array ac-

cesses. We assume that different occurrences of statements are distinguishable (using

the program locations). The semantics is provided by the weakest liberal precondi-

tion wlp as defined in [83]. Programs are represented using control-flow automata.

In accordance with [83], π1

e
π2 represents the non-deterministic choice between two

paths, i.e.,
π1

π2

. The commutative operator
e

is extended to sets of paths in the usual

manner.

Definition 1 (CFA). A control-flow automaton is a directed graph 〈V,E, v0〉, where

V is a finite set of vertices, E ⊆ (V × Stmts× V) is a set of edges, and v0 ∈ V is the

initial vertex. We write v
stmt−→ u if 〈u, stmt, v〉 ∈ E.

11

Table 2.1: Program Statements and Traces

stmt ::= x := e | [B] | skip, x ∈ Vars, e ∈ Exprs, B ∈ B-Exprs

wlp(x := e, P)
def
= P [e/x]

wlp([B], P)
def
= B ⇒ P

wlp(skip, P)
def
= P

(a) Syntax and Semantics of Statements

JstmtK def
= ¬wlp(stmt,

∨
x∈Vars x 6= x′)

id
def
= JskipK

Jstmt1; stmt2K
def
= Jstmt1K ◦ Jstmt2K

JstmtnK def
= JstmtKn,

where
stmtn

def
= stmt; (stmt(n−1)), stmt0 def

= ε

JstmtKn def
= JstmtK ◦ (JstmtK(n−1)), JstmtK0 def

= id

(b) Transition Relations for Statements and Traces

A program state σ is a total function assigning a value to each program vari-

able in Vars. States denotes the set of program states. A transition relation T ⊆
States × States associates states with their successor states. Given Vars, let Vars′

be a corresponding set of primed variables encoding successor states. The symbolic

transition relation for a statement or trace is a predicate over Vars∪Vars′ and can be

derived using wlp as indicated in Table 2.1b (cf. [40]). We write 〈σ, σ′〉 ∈ JstmtK if

JstmtK evaluates to true under σ and σ′ (i.e., σ, σ′ |= JstmtK). A trace π is feasible if

there exist states σ, σ′ such that 〈σ, σ′〉 ∈ JπK.
Given a CFA P

def
= 〈V,E, v0〉, a trace π

def
= stmti; stmti+1; · · · stmtn (where vj−1

stmtj−→
vj for i < j ≤ n) of length |π| = n − i + 1 is looping (with head vi) iff vi = vn, and

accepted by the CFA iff it is feasible and vi = v0 (The language LP over the alphabet

Stmts accepted by the CFA P is prefix-closed.)

A state σ is reachable from an initial state σ0 iff there exists a trace π accepted

by the CFA such that 〈σ0, σ〉 ∈ JπK. The reachability diameter [13,69] of a transition

relation is the smallest number of steps required to reach all reachable states:

Definition 2 (Reachability Diameter). Given a CFA with initial state σ0, the reach-

ability diameter is the smallest n such that for every state σ reachable from σ0 there

exists a trace π of length at most n accepted by the CFA with 〈σ0, σ〉 ∈ JπK.

12

To show that a CFA does not violate a given safety (or reachability) property, it is

sufficient to explore all traces whose length does not exceed the reachability diameter.

In the presence of looping traces, however, the reachability diameter of a program

can be infinitely large.

Acceleration [15, 18, 44] is a technique to compute the reflexive transitive closure

JπK∗ def
=
⋃∞
i=0JπKi for a looping path π. Equivalently, JπK∗ can be expressed as ∃i ∈

N0 . JπKi. The aim of acceleration is to express JπK∗ in a decidable fragment of logic.

In general, this is not possible, even if JπK is defined in a decidable fragment of integer

arithmetic such as Presburger arithmetic.

Definition 3 (Accelerated Transitions). Given a looping trace π, we say that π̂ is an

accelerator for π if

Jπ̂K ≡ ∃i ∈ N0 . JπKi .

13

Chapter 3

Finding Bugs with
Under-Approximate Loop
Acceleration

3.1 Introduction

The generation of diagnostic counterexamples is a key feature of model checking.

Counterexamples serve as witness for the refutation of a property, and are an invalu-

able aid to the engineer for understanding and repairing the fault.

Counterexamples are particularly important in software model checking, as bugs

in software frequently require thousands of transitions to be executed, and are thus

difficult to reproduce without the help of an explicit error trace. Existing software

model checkers, however, fail to scale when analysing programs with bugs that involve

many iterations of a loop. The primary reason for the inability of many existing

tools to discover such “deep” bugs is that exploration is performed in a breadth-

first fashion: the detection of an unsafe execution traversing a loop involves the

repeated refutation of increasingly longer spurious counterexamples. The analyser

first considers a potential error trace with one loop iteration, only to discover that

this trace is infeasible. As consequence, the analyser will increase the search depth,

usually by considering one further loop iteration. In practice, the computational effort

required to discover an assertion violation thus grows exponentially with the depth

of the bug.

Notably, the problem is not limited to procedures based on abstraction, such

as predicate abstraction or abstraction with interpolants. Bounded Model Checking

(BMC) is optimised for discovering bugs up to a given depth k, but the computational

cost grows exponentially in k.

14

The contribution of this chapter is a new technique that enables scalable detection

of deep bugs. We transform the program by adding a new, auxiliary path to loops

that summarises the effect of a parametric number of iterations of the loop. Similar

to acceleration, which captures the exact effect of arbitrarily many iterations of an

integer relation by computing its reflexive transitive closure in one step [15, 44, 58],

we construct a summary of the behaviour of the loop. By symbolically bounding the

number of iterations, we obtain an under-approximation which is sound with respect

to the bit-vector semantics of programs. Thus, we avoid false alarms that might be

triggered by modeling variables as integers.

In contrast to related work, our technique supports assignments to arrays and

arbitrary conditional branching by computing quantified conditionals. As the com-

putational cost of analysing programs with quantifiers is high, we introduce two novel

techniques for summarising certain conditionals without quantifiers. The key insight

is that many conditionals in programs (e.g., loop exit conditions such as i ≤ 100 or

even i 6= 100) exhibit a monotonicity property that allows us to drop quantifiers.

Our approximation can be combined soundly with a broad range of verification

engines, including predicate abstraction, lazy abstraction with interpolation [81], and

bounded software model checking [29]. To demonstrate this versatility, we combined

our technique with lazy abstraction and the Cbmc [29] model checker. We evalu-

ated the resulting tool on a large suite of benchmarks known to contain deep paths,

demonstrating our ability to efficiently detect deep counterexamples in C programs

that manipulate arrays.

3.2 Outline

3.2.1 A Motivating Example

A common characteristic of many contemporary symbolic software model checking

techniques (such as counterexample-guided abstraction refinement with predicate ab-

straction [5, 56], lazy abstraction with interpolants [81], and bounded model check-

ing [29]) is that the computational effort required to discover an assertion violation

may increase exponentially with the length of the corresponding counterexample path

(c.f. [70]). In particular, the detection of assertion violations that require a large

number of loop iterations results in the enumeration of increasingly longer spurious

counterexamples traversing that loop. This problem is illustrated by the following

example.

15

u

v

i := 0

[i 6= BUFLEN]

ch := *

[ch 6= ′ ′]

[ch = ′ ′]

i := i+1

ch := *

assert(i ≤ BUFLEN)

i := i+1

[i = BUFLEN]

n := *

[i+(n− 1) < BUFLEN]

i := i+n

Figure 3.1: CFG with path π (bold) and approximated path π̂ (dashed)

Example 1. Figure 3.1 shows a program fragment derived from code permitting a

buffer overflow (detected by the assertion) to occur in the nth iteration of the loop if

i reaches (BUFLEN − 1) and the branch [ch = ′ ′] is taken in the (n − 1)th iteration.

The verification techniques mentioned above explore the paths in order of increasing

length. The shortest path that reaches the assertion does not violate it, as

sp((i := 0; [i 6= BUFLEN}]; ch := ∗; [ch 6= ′ ′]),T) ⇒ (i ≤ BUFLEN) .

In a predicate abstraction or lazy abstraction framework, this path represents the

first in a series of spurious counterexamples of increasing length. Let π denote the

path emphasised in Figure 3.1, which traverses the loop once. The verification tool

will generate a family of spurious counterexamples with the prefixes i := 0;πn (where

0 < n ≤ BUFLEN
2

) before it detects a path long enough to violate the assertion. Each

of these paths triggers a computationally expensive refinement cycle. Similarly, a

bounded model checker will fail to detect a counterexample unless the loop bound is

increased to BUFLEN
2

+ 1.

The iterative exploration of increasingly deeper loops primarily delays the de-

tection of assertion violations (c.f. [70]), but can also result in a diverging series of

interpolants and predicates if the program is safe (see [61]).

3.2.2 Approximating Paths with Loops

We propose a technique that aims at avoiding the enumeration of paths with an

insufficient number of loop iterations. Our approach is based on the insight that the

16

while (P) {
B;

}
u

v

[¬P]

π

B

Detect path π that
repeatedly traverses the loop
body B

while (P) {
if(*) {
π̂;
} else {
B;

}
}

u

v

[¬P]

π̂B

Augment loop body with a branch
containing the approximation π̂

Figure 3.2: Approximating the natural loop with head u and back-edge v → u. Path π
is a path traversing the body B at least once, and may take different branches in B in
subsequent iterations.

refutation of spurious counterexamples containing a sub-path of the form πn is futile

if there exists an n large enough to permit an assertion violation. We add an auxiliary

path that bypasses the original loop body and represents the effect of πn for a range

of n (detailed later in the chapter). Our approach comprises the following steps:

1. We sensitise an existing tool to detect paths π that repeatedly traverse the loop

body B (as illustrated in the left half of Figure 3.2). We emphasise that π may

span more than one iteration of the loop, and that the branches of B taken by

π in different iterations may vary.

2. We construct a path π̂ whose behaviour under-approximates
e
{πn |n ≥ 0}.

This construction does not correspond to acceleration in a strict sense, since π̂

(as an under-approximation) does not necessarily represent an arbitrary number

of loop iterations. Section 3.3 describes techniques to derive π̂.

3. By construction, the assumptions in π̂ may contain universal quantifiers ranging

over an auxiliary variable which encodes the number of loop iterations. In

Section 3.4, we discuss two cases in which (some of) these quantifiers can be

eliminated, namely (a) if the characteristic function of the predicate ¬wlp(πn,F)

is monotonic in the number of loop iterations n, or (b) if πn modifies an array

and the indices of the modified array elements can be characterised by means

17

of a quantifier-free predicate. We show that in certain cases condition (a) can

be met by splitting π into several separate paths.

4. We augment the control flow graph with an additional branch of the loop con-

taining π̂ (Figure 3.2, right). Section 3.5 demonstrates empirically how this

program transformation can accelerate the detection of bugs that require a

large number of loop iterations.

The following example demonstrates how our technique accelerates the detection

of the buffer overflow of Example 1.

Example 2. Assume that the verification tool encounters the node u in Figure 3.1

a second time during the exploration of a path (u is the head of a natural loop with

back-edge v → u). We conclude that there exists a family of (sub-)paths πn induced

by the number n of loop iterations. The repeated application of the strongest post-

condition to the parametrised path πn for an increasing n gives rise to a recurrence

equation i〈n〉 = i〈n−1〉 + 1 (for clarity, we work on a sliced path omitting statements

referring to ch):

sp(π1,T) = ∃i〈0〉 . (i〈0〉 < BUFLEN) ∧ (i = i〈0〉 + 1)

sp(π2,T) = ∃i〈0〉, i〈1〉 . (i〈0〉 < BUFLEN) ∧ (i〈1〉 < BUFLEN)∧
(i〈1〉 = i〈0〉 + 1) ∧ (i = i〈1〉 + 1)

...

sp(πn,T) = ∃i〈0〉 . . . i〈n−1〉 .
(∧n−1

j=0 (i〈j〉 < BUFLEN) ∧ (i〈j+1〉 = i〈j〉 + 1)
)

where i〈n〉 in the last line represents i after the execution of πn. This recurrence

equation can be put into its equivalent closed form i〈n〉 = i〈0〉 + n. By assigning n

a (positive) non-deterministic value, we obtain the approximation (which happens to

be exact in this case):

π̂ = n := ∗; [∀j ∈ [0, n) . i + j < BUFLEN]; i := i + n .

Let us ignore arithmetic over- or under-flow for the time being (this topic is

addressed in Section 3.3.4). We can then observe the following: if the predicate

i + j < BUFLEN is true for j = n− 1, then it must be true for any j < n− 1, i.e., the

characteristic function of the predicate is monotonic in its parameter j. It is therefore

possible to eliminate the universal quantifier and replace the assumption in π̂ with

(i + (n− 1) < BUFLEN). The dashed path in Figure 3.1 illustrates the corresponding

modification of the original program. The resulting transformed program permits

the violation of the assertion in the original loop body after a single iteration of π̂

(corresponding to BUFLEN-1 iterations of π).

18

The following presents techniques to compute the under-approximation π̂.

3.3 Under-Approximation Techniques

This section covers techniques to compute under-
approximations π̂ of

e
{πn |n ≥ 0} such that π̂ is a

condensation of the CFG fragment to the right. Formally, we
only require that sp(π̂, P)⇒ ∃n ∈ N . sp(πn, P) for all P .

u v

.

.

.

π
π;π
π;π;π

πn

The construction of π̂ has two aspects. Firstly, we need to make sure that all

variables modified in π̂ are assigned values consistent with πn for a non-deterministic

choice of n. Secondly, π̂ must only allow choices of n for which ¬wlp(πn,F) is satisfi-

able, i.e., the corresponding path πn must be feasible.

Our approximation technique is based on the observation that the sequence of

assignments in πn to a variable x ∈ X corresponds to a recurrence equation (c.f. Ex-

ample 2). The goal is to derive an equivalent closed form x := fx(X, n). While there

is a range of techniques to solve recurrence equations, we argue that it is sufficient to

consider closed-form solutions that have the form of low-degree polynomials. The un-

derlying argument is that a super-polynomial growth of variable values typically leads

to an arithmetic overflow after a small number of iterations, which can be detected

at low depth using conventional techniques.

The following sub-section focuses on deriving closed forms from a sequence of

assignments to scalar integer variables, leaving conditionals aside. Section 3.3.2 covers

assignments to arrays. Conditionals and path feasibility are addressed in Section 3.3.3.

Section 3.3.4 addresses bit-vector semantics and arithmetic overflow.

3.3.1 Computing Closed Forms of Assignments

Syntactic Matching.

A simple technique to derive closed forms is to check whether the given recurrence

equation matches a pre-determined format. In [70], Weissenbacher applies the follow-

ing scheme:

x〈0〉 = α, x〈n〉 = x〈n−1〉 + β + γ · n x〈n〉 = α + βn+ γ
n · (n+ 1)

2
, (3.1)

where n > 0 and α, β, and γ are numeric constants or loop-invariant symbolic expres-

sions and x is the variant. This technique is computationally cheap and sufficient to

construct the closed form i〈n〉 = i〈0〉 + n of the recurrence equation i〈n〉 = i〈n−1〉 + 1

derived from the assignment i := i + 1 in Example 2.

19

Constraint-based Acceleration.

The disadvantage of a syntax-based approach is that it is limited to assignments fol-

lowing a simple pattern. Moreover, the technique is contingent on the syntax of the

program fragment and may therefore fail even if there exists an appropriate polyno-

mial representing the given assignments. In this section, we present an alternative

technique that relies on a constraint solver to identify the coefficients of the polyno-

mial fx.

Let X be the set {x1, . . . , xk} of variables in π. (In the following, we omit the

braces {} if clear from the context.) As previously, we start with the assumption that

for each variable x modified in π, there is a low-degree polynomial in n

fx(X
〈0〉, n)

def
=

k∑
i=1

αi · x〈0〉i +

(
k∑
i=1

α(k+i) · x〈0〉i + α(2·k+1)

)
· n+ α(2·k+2) · n2 (3.2)

over the initial variables x
〈0〉
1 , . . . , x

〈0〉
k which accurately represents the value assigned

to x in πn (for n ≥ 1). In other words, for each variable x ∈ X modified in π, we

assume that the following Hoare triple is valid:

{
k∧
i=1

8xi = xi} πn {x = fx(
8x1, . . . ,

8xk, n)} (3.3)

For each x ∈ {x1, . . . , xk} we can generate 2 · k + 2 distinct assignments to

x
〈0〉
1 , . . . , x

〈0〉
k , and n in (3.2) which determine a system of linearly independent equa-

tions over αi, 0 < i ≤ 2 · k + 2. If a solution to this system of equations exists, it

uniquely determines the parameters α1, . . . , α2·k+2 of the polynomial fx for x. We will

now examine the details of this construction and prove that it allows us to generate

polynomial closed forms.

Lemma 4. A set of vectors X = {~x1, . . . , ~xn} in vector space V is linearly independent

if a projection of X onto a subspace W is linearly independent.

Proof. Let Y = {~y1, . . . , ~ym} be the projection of X onto W . Assume for contradic-

tion that X is linearly dependent, then there is a set of scalars a1, . . . , an such that∑
i ai~xi = 0. But when we project onto W we have

∑
i ai~yi = 0, contradicting the

assumption that Y is linearly independent.

Theorem 5. We can uniquely determine the coefficients for a polynomial over k

variables by evaluating the loop at 2k + 2 points with n ≤ 2.

20

Proof. Our polynomial is of the form

k∑
i=1

αi · xi +
k∑
i=1

α(k+i) · xi · n+ α(2·k+1) · n+ α(2·k+2) · n2

There are 2 · k + 2 undetermined coefficients αi (1 ≤ i ≤ 2k + 2) that we need

to find. We need to generate a system of 2k + 2 linearly independent equations to

uniquely fix these coefficients. This is equivalent to finding a set of 2k + 2 vectors

(x(i,1), . . . , x(i,k), ni) where 1 ≤ i ≤ 2 · k + 2

such that the set

{(x(i,1), . . . , x(i,k), x(i,1) · n, . . . , x(i,k) · n, ni, n2
i) | 1 ≤ i ≤ 2 · k + 1}

is linearly independent. We generate this set inductively.

Basis: For k = 1, the set generated by

(x(1,1) = 1, n1 = 0)
(0, 1)
(1, 1)
(1, 2)

is

(x(1,1) = 1, x(1,1) · n = 0, n1 = 0, n2
1 = 0)

(0, 0, 1, 1)
(1, 1, 1, 1)
(1, 2, 2, 4)

which is linearly independent.

Induction: Assume we have a linearly independent set of 2 · k + 2 equations for k

variables. We can extend the vectors by setting xk+1 = 0 in the vectors with n = 0

and n = 1, and by setting xk+1 = 1 in the vector with n = 2. By Lemma 4 this

maintains linear independence.

Subsequently, we add two new vectors generated by

(n(2·k+3) = 0, x(2·k+3,k+1) = 1, x2·k+3,j 6=k+1 = 0) and
(n(2·k+4) = 1, x(2·k+4,k+1) = 1, x(2·k+4,j 6=k+1) = 0) .

The resulting 2 · k + 4 vectors are still linearly independent, which can be seen by

projecting onto the space (xk+1, xk+1 ·n, n, n2) – the only way to generate the 0 vector

is by taking combinations of vectors all of which have xk+1 = 0. But that set is a subset

of the 2 · k+ 2 equations we started with, which are linearly independent, and so the

extended set is also linearly independent by Lemma 1. So we have 2·k+4 = 2·(k+1)+2

linearly independent vectors and the induction is complete.

21

In particular, the satisfiability of the encoding from which we derive the assign-

ments guarantees that (3.3) holds for 0 ≤ n ≤ 2. For larger values of n, we check the

validity of (3.3) with respect to each fx by means of induction. The validity of (3.3)

follows (by induction over the length of the path πn) from the validity of the base

case established above, the formula (3.4) given below (which can be easily checked

using a model checker or a constraint solver), and Hoare’s rule of composition:

{
k∧
i=1

(8xi = xi) ∧ x = fx(
8x1, . . . ,

8xk, n)} π {x = fx(
8x1, . . . ,

8xk, n+ 1)} (3.4)

If for one or more x ∈ {x1, . . . , xk} our technique fails to find valid parameters

α1, . . . , α2·k+2, or the validity check for fx fails, we do not construct π̂.

Remark. The construction of under-approximations is not limited to the two tech-

niques discussed above and can be based on other (and potentially more powerful)

recurrence solvers.

3.3.2 Assignments to Arrays

Buffer overflows constitute a prominent class of safety violations that require a large

number of loop iterations to surface. In C programs, buffers and strings are typically

implemented using arrays. Let i be the variant of a loop which contains an assignment

a[i]:=e to an array a. For a single iteration, we obtain

sp(a[i] := e, P)
def
= ∃8a . a[i] = e[a/8a] ∧ ∀j 6= i . (a[j] = 8a[j]) ∧ P [a/8a] (3.5)

Assume further that closed forms for the variant i and the expression e exist

(abusing our notation, we use fe to refer to the latter). Given an initial pre-condition

P = T, we obtain the following under-approximation after n iterations:

∀j ∈ [0, n) .a〈n〉[fi(X
〈0〉, j)] = fe(X

〈0〉, j) ∧

∀i ∈ dom a .
(
∃j ∈ [0, n) . i = fi(X

〈0〉, j)
)︸ ︷︷ ︸

membership test

∨
(
a〈n〉[i] = a〈0〉[i]

)
, (3.6)

where the domain (dom a) of a denotes the valid indices of the array. Condition (3.6)

under-approximates the strongest post-condition, since there may exist j1, j2 ∈ [0, n)

such that j1 6= j2 ∧ fi(X〈0〉, j1) = fi(X
〈0〉, j2) and (3.6) is unsatisfiable. A similar

situation arises if a loop body π contains multiple updates of the same array.

Notably, the membership test determining whether an array element is modified

or not introduces quantifier alternation, posing a challenge to contemporary decision

procedures. Section 3.4 addresses the elimination of the existential quantifier.

22

Example 3. Consider the following loop, written in C:

while (i < N) {
A[i] = i ;
i ++;

}

The accelerator for this loop includes constraints on the new contents of the array,

A′, in terms of the old contents A, the initial value of i and the number of times the

loop has iterated k:

∀j.(∃l.0 ≤ l < k ∧ i+ l = j)⇒ A′[j] = j

∀j.(6 ∃l.0 ≤ l < k ∧ j + l = j)⇒ A′[j] = A[j]

i′ = i+ k

3.3.3 Assumptions and Feasibility of Paths

The techniques discussed in Section 3.3.1 yield polynomials and constraints repre-

senting the assignment statements of πn, but leave aside the conditional statements

which determine the feasibility of the path. In the following, we demonstrate how to

derive the pre-condition ¬wlp(πn,F) using the polynomials fx for x ∈ X.

Let fX(X, n)
def
= {fx(X, n) | x ∈ X} and let Q[X/fX(X, n)] denote the simultaneous

substitution of all free occurrences of the variables x ∈ X in Q with the corresponding

term fx(X, n).

Lemma 6. The following equivalence holds:

wlp(πn,F) ≡ ∃j ∈ [0, n) . (wlp(π,F)) [X/fX(X, j)]

Proof. Intuitively, the path πn is infeasible if for any j < n the first time-frame of

the suffix π(n−j) is infeasible. We prove the claim by induction over n. Due to (3.3)

and (3.4) we have fX(X, 0) = X and fX(fX(X, n), 1) = fX(X, n+ 1) (for n ≥ 0).

Base case: wlp(π,F) ≡ ∃j ∈ [0, 0) . (wlp(π,F)) [X/fX(X, j)] = F

Induction step. We start by applying the induction hypothesis:

wlp(πn,F) ≡ wlp(π, (wlp(πn−1,F)))
≡ wlp(π,∃j ∈ [0, n− 1) . (wlp(π,F)) [X/fX(X, j)])

We consider the effect of assignments and assumptions occurring in π on the

post-condition Q
def
= (∃j ∈ [0, n− 1) . (wlp(π,F)) [X/fX(X, j)]) separately.

23

• The effect of assignments in π on Q is characterised by Q[X/fX(X, 1)]. We obtain:

Q[X/fX(X, 1)] ≡ ∃j ∈ [0, n− 1) . (wlp(π,F)) [X/fX(fX(X, 1), j)] ≡

∃j ∈ [1, n) . (wlp(π,F)) [X/fX(X, j)]

• Assumptions in π contribute the disjunct wlp(π,F).

By combining both contributions into one term we obtain

wlp(πn,F) ≡ (wlp(π,F)) [X/fX(X, 0)] ∨ ∃j ∈ [1, n) . (wlp(π,F)) [X/fX(X, j)] ,

which establishes the claim of Lemma 6.

Accordingly, given a path π modifying the set of variables X and a corresponding

set fX of closed-form assignments, we can construct an accurate representation of πn

as follows:

[∀j ∈ [0, n) . (¬wlp(π,F)) [X/fX(X, j)]]︸ ︷︷ ︸
satisfiable if πn is feasible

; X :=fX(X, n)︸ ︷︷ ︸
assignments of πn

(3.7)

We emphasise that our construction (unlike many acceleration techniques) does

not restrict the assumptions in π to a limited class of relations on integers. The

construction of the path (3.7), however, does require closed forms of all assignments

in π. Since we do not construct closed forms for array assignments (as opposed to

assignments to array indices, c.f. Section 3.3.2), we cannot apply Lemma 6 if wlp(π,F)

refers to an array assigned in π. In this case, we do not construct π̂.

For assignments of variables not occurring in wlp(π,F), we augment the domain(s)

of the variables X with an undefined value ⊥ (implemented using a Boolean flag) and

replace fx with ⊥ whenever the respective closed form is not available. Subsequently,

whenever the search algorithm encounters an (abstract) counterexample, we use slic-

ing to determine whether the feasibility of the counterexample depends on an unde-

fined value ⊥. If this is the case, the counterexample needs to be dismissed. Thus,

any path π̂ containing references to ⊥ is an under-approximation of πn rather than

an acceleration of π.

Example 4. For a path π
def
= [x < 10]; x := x + 1; y := y2, we obtain the under-

approximation π̂ ≡ n:= ∗; [∀j ∈ [0, n).x+ j < 10]; x := x+n; y :=⊥. A counterexam-

ple traversing π̂ is feasible if its conditions do not depend on y.

24

3.3.4 Arithmetic Overflows

The fact that the techniques in Section 3.3.1 used to derive closed forms do not

take arithmetic overflow into account may lead to undesired effects. For instance,

the assumption made in Example 2 that the characteristic function of the predicate

(i + n < BUFLEN) is monotonic in n does not hold in the context of bit-vectors or

modular arithmetic. Since, moreover, the behaviour of arithmetic over- or under-flow

in C is not specified in certain cases, we conservatively rule out all occurrences thereof

in π̂. For the simple assignment i := i + n in Example 2, this can be achieved by

adding the assumption (i + n ≤ 2l − 1) to π̂ (for unsigned l-bit vectors). In general,

we have to add respective assumptions (e1⊗e2 ≤ 2l−1) for all arithmetic expressions

e1 ⊗ e2 of bit-width l and operations ⊗ in π̂.

While this approach is sound (eliminating paths from π̂ does not affect the cor-

rectness of the instrumented program, since all behaviours following an overflow are

still reachable via non-approximated paths), it imposes restrictions on the range of n.

Therefore, the resulting approximation π̂ deviates from the acceleration π∗ of π.

Unlike acceleration over linear affine relations, this adjustment makes our approach

bit-level accurate. We emphasise that the benefit of the instrumentation can still be

substantial, since the number of iterations required to trigger an arithmetic overflow

is typically large.

3.3.5 Path Selection

In the following, we discuss heuristics to select paths π to accelerate. Depending

on which model checking technique we are incorporating acceleration into, several

path selection strategies are available. Some model checkers already come equipped

with a strategy for enumerating paths, for example Impact [81] enumerates paths by

iteratively unrolling the CFG of the program under analysis. During this process, if a

path is found to be “looping” (i.e. some program location is visited repeatedly) then

that path is a candidate for acceleration. By contrast, if we use a model checking

technique that is not explicitly path based (such as Bounded Model Checking), we

must devise a strategy for selecting paths to accelerate.

A necessary condition for π to be acceleratable is that π2 is feasible, for if it were

not, πn (for n > 1) would be infeasible, resulting in a trivial accelerator. Accordingly,

paths π for which π2 is feasible are promising candidates for acceleration.

25

We can find such paths by using symbolic execution to build a system of con-

straints and solving the system with a SAT solver. Our encoding guarantees that if

these constraints have a solution, the solution includes a path π where π2 is feasible.

Let L denote the program fragment denoting the loop body. We instrument L with

“distinguisher” and “shadow distinguisher” variables, which indicate which branches

are taken. Concretely, for each statement πi
e
πj in L we create boolean variables

di, si, dj, and sj. We create the instrumented program Instr(L) by prepending the

statement di:= false, appending the statement assume(di = si), and then replacing

the statement πi
e
πj with

(di:= true; πi)
m

(dj:= true; πj)

Instr(L) has the property that when it has finished executing, each of the di will

be true iff the corresponding branch was taken. Furthermore, we have di = si for

each i. We now sequentially compose two copies of this instrumented program:

Instr(L); Instr(L)

We assume that the si are initialised non-deterministically at the beginning of this

program fragment. An example of this construction is shown in Figure 3.3.

Since each of the distinguisher variables di is equal to the shadow distinguisher si

at the end of each copy of Instr(L), we know that the only feasible paths through this

program are those in which both copies took the same path. This path is identified

by the values of the si. So if there are any feasible paths through this program, they

identify a path π such that π2 in the original program is feasible. We can identify

a feasible path through this program by appending the statement assert(false)

to the end of the program and using a BMC-based model checker (which ultimately

creates a SAT/SMT instance) to check the safety of the constructed program. We

can iterate this process to enumerate candidate paths: if we have previously found

the paths π1, . . . , πn we can add assumptions to the end of our path-enumerating

program to prevent the rediscovery of these πi.

3.4 Eliminating Quantifiers from Approximations

A side effect of the approximation steps in Section 3.3.2 and Section 3.3.3 is the

introduction of quantified assumptions. While quantification is often unavoidable in

the presence of arrays, it is a detriment to performance of the decision procedures

26

(assume(x > 0); x := x-1)
e

(assume(x < 0) ; x := x+1)

(d1 := false; d2 := false);
(d1 := true; assume(x > 0); x := x-1)e

(d2 := true; assume(x < 0) ; x :=

x+1);

(assume(d1 = s1); assume(d2 = s2));

(d1 := false; d2 := false);
(d1 := true; assume(x > 0); x := x-1)e

(d2 := true; assume(x < 0) ; x :=

x+1);

(assume(d1 = s1); assume(d2 = s2))

Figure 3.3: A program instrumented to enumerate acceleratable paths

underlying the verification tools. In the worst case, quantifiers may result in the

undecidability of path feasibility.

In the following, we discuss two techniques to eliminate or reduce the number of

quantifiers in assumptions occurring in π̂.

3.4.1 Eliminating Quantifiers over Monotonic Predicates

We show that the quantifiers introduced by the technique presented in Section 3.3.3

can be eliminated if the predicate is monotonic in the quantified parameter.

Definition 7 (Representing Function, Monotonicity). The representing function fP

of a predicate P with the same domain takes, for each domain value, the value 0 if

the predicate holds, and 1 if the predicate evaluates to false, i.e., P (X)⇔ fP (x) = 0.

A predicate P (n) : N→ B is monotonically increasing (decreasing) if its representing

function fP (n) : N → N is monotonically increasing (decreasing), i.e., ∀m,n .m ≤
n⇒ fP (m) ≤ fP (n).

We extend this definition to predicates over variables X and n ∈ N as follows:

P (X, n) is monotonically increasing in n if (m ≤ n)∧P (X, n)∧¬P (X,m) is unsatisfiable.

Proposition 8. P (X, n− 1) ≡ ∀i ∈ [0, n) . P (X, i) if P is monotonically increasing

in i.

The validity of Proposition 8 follows immediately from the definition of mono-

tonicity. Accordingly, it is legitimate to replace universally quantified predicates in π̂

with their corresponding unquantified counterparts (c.f. Proposition 8).

27

u w v
[P1 ∨ P2] π

sp([P1 ∨ P2]; π,Q) ≡
sp(π, (P1 ∧Q) ∨ (P2 ∧Q)) ≡
sp(π, P1 ∧Q) ∨ sp(π, P2 ∧Q)

u

w1

w2

v

[P1] π

[P2] π

sp(([P1]; π)
m

([P2]; π), Q) ≡

sp([P1]; π,Q) ∨ sp([P2]; π,Q) ≡
sp(π, (P1 ∧Q)) ∨ sp(π, (P2 ∧Q))

Figure 3.4: Splitting disjunctive assumptions preserves program behaviour

This technique, however, fails for simple cases such as x 6= c

(c being a constant). In certain cases, the approach can still

be applied after splitting a non-monotonic predicate P into

monotonic predicates {P1, . . . , Pm} such that P ≡
∨m
i=1 Pi (as

illustrated in the Figure to the right). Subsequently, the path

π guarded by P can be split as outlined in Figure 3.4. This

transformation preserves reachability (a proof for m = 2 is

given in Figure 3.4).

x 6= c
x < c
x > c

xc
0

1
0

1
0

1

This approach is akin to trace partitioning [52], however, our intent is quantifier

elimination rather than refining an abstract domain. We rely on a template-based

approach to identify predicates that can be split (a constraint solver-based approach

is bound to fail if c is symbolic). While this technique effectively deals with a broad

number of standard cases, it does fail for quantifiers over array indices, since the array

access operation is not monotonic.

3.4.2 Eliminating Quantifiers in Membership Tests for Array
Indices

This sub-section aims at replacing the existentially quantified membership test in

Predicate (3.6) by a quantifier-free predicate. To define a set of sufficient (but not

necessary) conditions for when this is possible, we introduce the notion of increasing

and dense array indices (c.f. [62]):

Definition 9 (Increasing and Dense Variables). A scalar variable x is (strictly) in-

creasing in πn iff ∀j ∈ [0, n) . x〈j+1〉 ≥ x〈j〉 (∀j ∈ [0, n) . x〈j+1〉 > x〈j〉, respectively).

Moreover, an increasing variable i is dense iff

∀j ∈ [0, n) .
(
x〈j+1〉 = x〈j〉

)
∨
(
x〈j+1〉 = x〈j〉 + 1

)
.

28

Variables decreasing in πn are defined analogously. A variable is monotonic (in πn)

if it is increasing or decreasing (in πn).

Note that if the closed form fx(X
〈0〉, n) of a variable x is a linear polynomial, then

x is necessarily monotonic. The following proposition uses this property:

Proposition 10. Let fx(X
〈0〉, j) be the closed form (3.2) of x〈j〉, where α(2·k+2) = 0,

i.e., the polynomial fx is linear. Then ∆fx
def
= fx(X

〈0〉, j+1)−fx(X〈0〉, j) (for j ∈ [0, n))

is the (symbolic) constant
∑k

i=1 α(k+i) · x〈0〉i + α(2·k+1). The variable x is (strictly)

increasing in πn if ∆fx ≥ 0 (∆fx > 0, respectively) and dense if 0 ≤ ∆fx ≤ 1.

Lemma 11. Let fx(X
〈0〉, j) be a linear polynomial representing the closed form (3.2)

of x〈j〉 (as in Proposition 10). The following logical equivalence holds:

∃j ∈ [0, n) . x = fx(X
〈0〉, j) ≡ ((x− x〈0〉) mod ∆fx = 0) ∧ (x−x

〈0〉

∆fx
< n) if x is strictly increasing

x− x〈0〉 ≤ (n− 1) ·∆fx if x is dense
x− x〈0〉 < n if both of the above hold

(3.8)

The validity of Lemma 11 follows immediately from Proposition 10. Lemma 11

allows us to replace the existentially quantified membership test in Predicate (3.6)

by a quantifier-free predicate if one of the side conditions in (3.8) holds. Given that

the path prefix reaches the entry node of a loop, these conditions ∆fx > 0 and

0 ≤ ∆fx ≤ 1 can be checked using a satisfiability solver.

Example 5. Let π
def
= a[x] := x; x := x + 1 be the body of a loop. By instantiat-

ing (3.6), we obtain the condition

∀j ∈ [0, n) .a[8x + j] = 8x + j ∧ ∀i. (∃j ∈ [0, n) . i = 8x + j) ∨ (a[i] = 8a[i]) ,

in which the existentially quantified term can be replaced by x− 8x < n.

3.5 Implementation and Experimental Results

Our under-approximation technique is designed to extend existing verifiers. To demon-

strate its versatility, we implemented Impulse, a tool combining under-approximation

with the two popular software verification techniques lazy abstraction with inter-

polants (LAwI) [81] and bounded model checking (specifically, Cbmc [29] version

4.7). The underlying SMT solver used throughout was version 4.2 of Z3. Impulse

comprises two phases:

29

t

Tests solved correctly
0 10 20 30 40 50 60 70 80 90 100 110

0

500

1000

1500

2000

2500

Impulse

Satabs

(a) Safe and unsafe, buffer size 10

t

Tests solved correctly
0 10 20 30 40 50 60 70 80 90 100 110

0

200

400

600

800

1000

1200

1400

1600

1800

2000 Impulse

Satabs

(b) Safe and unsafe, buffer size 102

t

Tests solved correctly
0 10 20 30 40 50 60

0

200

400

600

800

1000

1200

Impulse

Satabs

(c) Safe/unsafe, b.-size 103

t

Tests solved correctly
0 10 20 30 40 50 60 70 80 90

0

200

400

600

800

1000

1200

1400

1600

1800 Impulse

Satabs

(d) Unsafe, buffer size 10

t

Tests solved correctly
0 10 20 30 40 50 60 70 80 90

0

200

400

600

800

1000

1200

1400

1600

1800 Impulse

Satabs

(e) Unsafe, buffer size 102

Figure 3.5: Verification run-times (cumulative) of Verisec benchmark suite

1. Impulse first explores the paths of the CFG following the LAwI paradigm.

If Impulse encounters a path containing a loop with body π, it computes π̂

(processing inner loops first in the presence of nested loops), augments the CFG

accordingly, and proceeds to phase 2.

2. Cbmc inspects the instrumented CFG up to an iteration bound of 2. If no

counterexample is found, Impulse returns to phase 1.

In phase 1, spurious counterexamples serve as a catalyst to refine the current

approximation of safely reachable states, relying on the weakest precondition1 to

generate the required Hoare triples. Phase 2 takes advantage of the aggressive path

merging performed by Cbmc, enabling fast counterexample detection.

We evaluated the effectiveness of under-approximation on the Verisec bench-

mark suite [71], which consists of manually sliced versions of several open source pro-

grams that contain buffer overflow vulnerabilities. Of the 284 test cases of Verisec,

144 are labelled as containing a buffer overflow, and 140 are labelled as safe.2 The

safety violations range from simple unchecked string copy into static buffers, up

1In a preliminary interpolation-based implementation, Z3 was in many cases unable to provide
interpolants for path formulas π̂ with quantifiers, arrays and bit-vectors.

2Our new technique discovered bugs in 10 of the benchmarks that had been labelled safe. Satabs
timed out before identifying these bugs.

30

t

Buffer size
1 2 3 4 5 6 7 8 9 10 12

0
10
20
30
40
50
60
70
80
90

100
110
120

Impulse

Satabs

(a) Single Verisec test, varying buffer size

t

Buffer size
25 50 75 100 150 200 300 512

0
20
40
60
80

100
120
140
160
180
200
220
240
260

Impulse

Satabs ’06

(b) Satabs w. loop detect on Aeon 0.02a

Figure 3.6: Run-time dependency on buffer size for unsafe benchmarks

Table 3.1: Number of accelerated loops (in 284 programs)

Tool Solved # loops accelerated # programs accelerated
Impulse (w/o acc.) 17 0 0
Impulse 102 258 119
Satabs 33 0 0

to complex loops with pointer arithmetic. The buffer size in each benchmark (c.f.

BUFLEN in Figure 3.1) is adjustable and controls the depth of the counterexample. We

compared our tool with Satabs (which outperforms Impulse w/o approximation6)

on buffer sizes of 10, 100 and 1000, with a time limit of 300 s and a memory limit of

2 GB on an 8-core 3 GHz Xeon CPU. Figures 3.5a through 3.5c show the cumulative

run-time for the whole benchmark suite, whereas Figures 3.5d and 3.5e show only

unsafe program instances. Table 3.1 provides an overview of the test cases solved by

Impulse with or without acceleration compared to the test cases solved by Satabs,

including the number of loops and programs that were accelerated. Further, our static

acceleration tool accelerates loops (with symbolic rather than static bounds) in 42

programs out of the 79 candidates from the 2013 software verification competition.

Finally, on the 8 safe instances from the Verisec benchmark that Impulse can

solve (using interpolants computed via the weakest pre-condition), under-approximation

did not improve (or impair) the run-time on safe instances.

Figure 3.6 demonstrates that the time Impulse requires to detect a buffer over-

flow does not depend on the buffer size. Figure 3.6a compares Satabs and Impulse

on a single Verisec benchmark with a varying size parameter, showing that Satabs

takes time exponential in the size of the buffer. Figure 3.6b provides a qualitative

comparison of the loop-detection technique presented in [70] with Impulse on the

Aeon 0.02a mail transfer agent. Figure 3.6b shows the run-times of Satabs’06 with

31

loop detection as reported in [70],3 as well as the run-times of Impulse on the same

problem instances and buffer sizes. Satabs’06 outperforms similar model checking

tools that do not feature loop-handling mechanisms [70]. However, the run-time still

increases exponentially with the size of the buffer, since the technique necessitates a

validation of the unwound counterexample. Impulse does not require such a valida-

tion step.

3Unfortunately, loop detection in Satabs is neither available nor maintained anymore.

32

Chapter 4

Proving Safety with Loop
Acceleration and Trace Automata

4.1 Introduction

Software verification can be loosely divided into two themes: finding bugs and proving

correctness. These two goals are often at odds with one another, and it is rare that

a tool excels at both tasks. This tension is well illustrated by the results of the

2014 Software Verification Competition (SV-COMP14) [11], in which several of the

best-performing tools were based on Bounded Model Checking (BMC) [13]. The

BMC-based tools were able to quickly find bugs in the unsafe programs, but were

unable to soundly prove safety for the remaining programs. Conversely, many of the

sound tools had difficulty in detecting bugs in the unsafe programs.

The reasons for this disparity are rooted in the very nature of contemporary verifi-

cation tools. Tools aiming at proof typically rely on over-approximating abstractions

and refinement techniques to derive the loop invariants required (e.g., [56, 81]). For

certain classes of programs, invariants can be found efficiently using templates [12]

or theorem provers [62]. For unsafe programs, however, any attempt to construct a

safety invariant must necessarily fail, triggering numerous futile refinement iterations

before a valid counterexample is detected. Verifiers based on the BMC paradigm

(such as Cbmc [29]), on the other hand, are able to efficiently detect shallow bugs,

but are unable to prove safety in most cases.

The key principle of this chapter is that BMC is able to prove safety once the un-

winding bound exceeds the reachability diameter of the model [13,69]. The diameter

of non-trivial programs is however in most cases unmanageably large. Furthermore,

even when the diameter is small, it is often computationally expensive to determine,

as the problem of computing the exact diameter is equivalent to a 2-QBF instance.

33

The contribution of this chapter is a technique that reduces the diameter of a

program in a way that the new, smaller diameter can be computed by means of a

simple satisfiability check. The technique has two steps:

1. We first identify potentially deep program paths that can be replaced by a

concise single-step summary called an accelerator [15, 18,44].

2. We then remove those paths subsumed by the accelerators from the program

using trace automata [55].

The resulting program preserves the reachable states of the original program, but is

often very shallow, and consequently, we can obtain a sound verification result using

BMC.

This chapter is organised as follows: We present a number of motivating examples

and an outline of our approach in Section 4.2. Section 4.3 describes the construction

of accelerated programs and discusses the resulting reduction of the reachability di-

ameter of the program. In Section 4.4, we introduce restricting languages and trace

automata as a means to eliminate redundant transitions from accelerated programs.

The experimental evaluation based on a selection of SV-COMP14 benchmarks is pre-

sented in Section 4.5. Finally, Section 4.7 briefly surveys related work.

4.2 Motivation

In this section we will discuss the differences between proving safety and finding bugs,

with reference to some SV-COMP14 benchmarks, and informally demonstrate why

our method is effective for both kinds of analyses.

The program in Figure 4.1, taken from the Loops category of SV-COMP14,

proved challenging for many of the participating tools, with only 6 out of the 12

entrants solving it correctly. A proof of safety for this program using an abstract

interpreter requires a relational domain to represent the invariant x+ y = N, which is

often expensive.

The program in Figure 4.2 resembles the one in Figure 4.1, except for the negated

assertion at the end. This example is very easy for Bounded Model Checkers, which

are able to discover a bug in a single unwinding by assigning N = 1. A slight mod-

ification, however, illustrated in Figure 4.3, increases the number of loop iterations

required to trigger the bug to 106, exceeding the capability of even the best BMC-

based verification tools.

34

unsigned N := ∗;
unsigned x := N, y := 0;
while (x > 0) {

x := x− 1;
y := y + 1;

}
assert (y = N);

Figure 4.1: Safe program

unsigned N = ∗;
unsigned x := N, y := 0;
while (x > 0) {

x := x− 1;
y := y + 1;

}
assert (y 6= N);

Figure 4.2: Unsafe pro-
gram

unsigned N := 106;
unsigned x := N, y := 0;
while (x > 0) {

x := x− 1;
y := y + 1;

}
assert (y 6= N);

Figure 4.3: “Deep” bug

unsigned i := ∗;
assume (i > 0)

}
iteration counter

assume(x > 0);
}

feasibility check

x := x−i;
y := y+i;

}
acceleration

assume(¬underflow (x));
}

iteration bound

Figure 4.4: Accelerated loop body

unsigned N := 106, x := N, y := 0;
while (x > 0) {

if (∗) {
i := ∗; assume (i > 0);
x := x−i; y = y+i;
assume (x ≥ 0);

} else {
x := x− 1; y := y + 1;

}
}
assert (y 6= N);

Figure 4.5: Accelerated unsafe
program

The relative simplicity of the program statements in Figures 4.1 to 4.3 makes

them amenable to acceleration [15, 18, 44], a technique used to compute the effect of

the repeated iteration of statements over integer linear arithmetic. Specifically, the

effect of i loop iterations is that x is decreased and y is increased by i. Acceleration,

however, is typically restricted to programs over fragments of linear arithmetic for

which the transitive closure is effectively computable, thus restricting its applicability

to programs whose semantics can be soundly modelled using unbounded integers. In

reality, however, the scalar variables in Figures 4.1 to 4.3 take their values from the

bounded subset {0, . . . , (232 − 1)} of the positive integers N0. Traditional accelera-

tion techniques do not account for integer overflows. To address this problem, we

previously introduced under-approximate acceleration, bounding the acceleration to

the interval in which the statements behave uniformly [67].

The code snippet in Figure 4.4 represents an under-approximating accelerator for

the loop bodies in Figures 4.1, 4.2, and 4.3. We introduce an auxiliary variable i rep-

resenting a non-deterministic number of loop iterations. The subsequent assumption

35

unsigned N := 106, x := N, y := 0;
if (x > 0) {

x := x− 1; y := y + 1;
if (x > 0) {

x := x− 1; y := y + 1;
if (x > 0) {

x := x− 1;
y := y + 1;
assert (x ≤ 0);

}
}

}
assert (y = N);

Figure 4.6: Unwinding (k = 3) of
safe program with N = 106

unsigned N := ∗, x := N, y := 0;
bool g := ∗;

1: while (x > 0) {
if (∗) {

assume (¬g);
2: i := ∗; x := x−i; y = y+i;

assume (x ≥ 0);
3: g := T;

} else {
x := x− 1; y := y + 1;
assume (underflow (x));
g := F;

}
}

4: assert (y = N);

Figure 4.7: Accelerated and instrumented
safe program

guarantees that the accelerated code reflects at least one iteration (and is optional in

this example). The assumption that follows warrants the feasibility of the accelerated

trace (in general, this condition may contain quantifiers [67]). The effect of i iter-

ations is encoded using the two assignment statements, which constitute the closed

forms of the recurrence relations corresponding to the original assignments. The final

assumption guarantees that i lies in the range in which the right-hand sides of the

assignments behave linearly.

In general, under-approximating accelerators do not reflect all feasible iterations of

the loop body. Accordingly, we cannot simply replace the original loop body. Instead,

we add back the accelerator as an additional path through the loop, as illustrated in

Figure 4.5.

The transformation preserves safety properties—that is to say, an accelerated

program has a reachable, failing assertion iff the original program does. We can see

that the failing assertion in Figure 4.5 is reachable after a single iteration of the loop,

by simply choosing i = N. Since the accelerated program contains a feasible trace

leading to a failed assertion, we can conclude that the original program does as well,

despite having only considered a single trace of length 1.

While the primary application of BMC is bug detection, contemporary Bounded

Model Checkers such as Cbmc are able to prove safety in some cases. Cbmc unwinds

loops up to a predetermined bound k (see Figure 4.6). Unwinding assertions are one

36

possible mechanism to determine whether further unwinding is required [29,42]. The

assertion (x ≤ 0) in Figure 4.6 fails if there are feasible program executions traversing

the loop more than three times. It is obvious that this assertion will fail for any

k < 106.

Unfortunately, acceleration is ineffective in this setting. Since the accelerator in

Figure 4.5 admits i = 1, we have to consider 106 unwindings before we can establish

the safety of the program in Figure 4.1 with N = 106. For a non-deterministically

assigned N, this number increases to 232.

This outcome is disappointing, since the repeated iteration of the accelerated loop

body is redundant. Furthermore, there is no point in taking the unaccelerated path

through the loop (unless there is an impending overflow—which can be ruled out in

the given program), since the accelerator subsumes this execution (with i = 1). Thus,

if we eliminate all executions that meet either of the criteria above, we do not alter the

semantics of the program but may reduce the difficulty of our problem considerably.

Figure 4.7 shows an accelerated version of the safe program of Figure 4.1, but in-

strumented to remove redundant traces. This is achieved by introducing an auxiliary

variable g which determines whether the accelerator was traversed in the previous it-

eration of the loop. This flag is reset in the non-accelerated branch, which, however,

in our example is never feasible. It is worth noting that every feasible trace through

Listing 4.1 has a corresponding feasible trace through Listing 4.7, and vice versa.

The figure to the right shows an execution of the

program in Figure 4.7: This trace is both feasible and

safe—the assertion on line 4 is not violated. It is not

too difficult to see that every feasible trace through

the program in Figure 4.7 has the same length, which

means that we can soundly reason about its safety

considering traces with a single iteration of the loop,

which is a tractable (and indeed, easy) problem.

Loc. N x y i g

1 104 104 0 0 F
2 104 104 0 0 F
3 104 0 104 104 F
1 104 0 104 104 T
4 104 0 104 104 T

Since the accelerated and instrumented program in Figure 4.7 is safe, we can

conclude that the original program in Figure 4.1 is safe as well.

We emphasise that our approach neither introduces an over-approximation, nor

requires the explicit computation of a fixed point. In addition, it is not restricted to

linear integer arithmetic and bit-vectors: our prior work can generate some non-linear

accelerators and also allows for the acceleration of a limited class of programs with

arrays [67].

37

4.3 Diameter Reduction via Acceleration

In this section, we introduce a reachability-preserving program transformation that

reduces the reachability diameter of a CFA. While a similar transformation is used

in [67] to detect counterexamples with loops, our goal here is to reduce the diameter

in order to enable safety proofs (see Section 4.4).

Definition 12 (Accelerated CFA). Let P
def
= 〈V,E, v0〉 be a CFA over the alpha-

bet StmtsP , and let π1, . . . , πk be traces in P looping with heads v1, . . . , vk ∈ V ,

respectively. Let π̂1, . . . π̂k be the (potentially under-approximating) accelerators for

π1, . . . , πk. Then the accelerated CFA P̂
def
= 〈V̂ , Ê, v0〉 for P is the CFA P augmented

with non-branching paths vi
π̂i−→ vi (1 ≤ i ≤ k).

A trace is accelerated if it traverses a path in P̂ that corresponds to an accelerator.

A trace π1 subsumes a trace π2, denoted by π2 � π1, if Jπ2K ⊆ Jπ1K. Accordingly,

π � π̂ and π̃ � π̂ (by Definition 3). We extend the relation � to sets of traces:

Π1 � Π2 if
(⋃

π∈Π1
JπK
)
�
(⋃

π∈Π2
JπK
)
. A trace π is redundant if {π} is subsumed by

a set Π \ {π} of other traces in the CFA.

Lemma 13. Let π̃ be an under-approximating accelerator for the looping trace π.

Then π̃ · π̃ � π̃ holds.

The following theorem states that the transformation in Definition 12 preserves

the reachability of states and never increases the reachability diameter.

Theorem 14. Let P be a CFA and P̂ a corresponding accelerated CFA as in Defini-

tion 12. Then the following claims hold:

1. Every trace in P is subsumed by at least one trace in P̂ .

2. Let π1 be an accelerated trace accepted by P̂ , and let 〈σ0, σ〉 ∈ Jπ1K. Then there

exists a trace π2 accepted by P such that 〈σ0, σ〉 ∈ Jπ2K.

Proof. Part 1 of the theorem holds because P is a sub-graph of P̂ . For the second

part, assume that π̂1, . . . π̂k are the accelerators occurring in π1. Then there are

i1, . . . , ik ∈ N such that π2
def
= π1[πi11 /π̂1] · · · [πikk /π̂k] and 〈σ0, σ〉 ∈ Jπ2K.

The diameter of a CFA is determined by the longest of the shortest traces from

the initial state σ0 to all reachable states [69]. Accordingly, the transformation in

Definition 12 results in a reduction of the diameter if it introduces a shorter accelerated

trace that results in the redundancy of this longest shortest trace. In particular,

acceleration may reduce an infinite diameter to a finite one.

38

4.4 Checking Safety with Trace Automata

Bounded Model Checking owes its industrial success largely to its effectiveness as a

bug-finding technique. Nonetheless, BMC can also be used to prove safety properties

if the unwinding bound exceeds the reachability diameter. In practice, however, the

diameter can rarely be determined statically. Instead, unwinding assertions are used

to detect looping traces that become infeasible if expanded further [29]. Specifically,

an unwinding assertion is a condition that fails for an unwinding bound k and a trace

π1 · πk2 if π1 · πk+1
2 is feasible, indicating that further iterations may be required to

exhaustively explore the state space.

In the presence of accelerators, however, unwinding assertions are inefficient. Since

π̂ · π̂ � π̂ (Lemma 13), repeated iterations of accelerators are redundant. The un-

winding assertion for π1 · π̂2, however, fails if π1 · π̂2 · π̂2 is feasible. Accordingly, the

approximate diameter as determined by means of unwinding assertions for an accel-

erated program P̂ is the same as for the corresponding non-accelerated program P .

In the following, we present a technique that remedies the deficiency of unwinding

assertions in the presence of accelerators by restricting the language accepted by a

CFA.

Definition 15 (Restriction Language). Let P̂ an accelerated CFA for P over the

vocabulary StmtsP̂ . For each accelerator π̂ ∈ Stmts+

P̂
, let π ∈ Stmts+

P be the corre-

sponding looping trace. The restriction language LR for P̂ comprises all traces with

a sub-trace characterised by the regular expression (π | (π̂ · π̂)) for all accelerators π̂

in P̂ with π � π̂.

The following lemma enables us to eliminate traces of an accelerated CFA P̂ that

are in the restriction language LR.

Lemma 16. Let P̂ be an accelerated CFA, and LR be the corresponding restriction

language. Let π1 be a trace accepted by P̂ such that π1 ∈ LR. Then there exists a

trace π2 which is accepted by P̂ such that π1 � π2 and π1 is not a sub-trace of π2.

Proof. The regular expression (π | (π̂ · π̂)) can match the trace π1 for two reasons:

(a) The trace π1 contains a sub-trace which is a looping trace π with a corresponding

accelerator π̂ and π � π̂. We obtain π2 by replacing π with π̂.

(b) The trace π1 contains the sub-trace π̂ · π̂ for some accelerator π̂. Since π̂ · π̂ � π̂

(Lemma 13), we replace the sub-trace with π̂ to obtain π2.

39

Since the accelerator π̂ differs from the sub-trace it replaces in case (a), and |π2| < |π1|
in case (b), π1 can not be contained in π2.

Using Lemma 16 and induction over the number of traces and accelerators, it is

admissible to eliminate all traces accepted by P̂ and contained in LR without affecting

the reachability of states:

Theorem 17. Let LP̂ be the language comprising all traces accepted by an accelerated

CFA P̂ and LR be the corresponding restriction language. Then every trace π ∈ LP̂
is subsumed by the traces in LP̂ \ LR.

Notably, Definition 15 explicitly excludes accelerators π̂ that do not satisfy π � π̂,

a requirement that is therefore implicitly present in Lemma 16 as well as Theorem 17.

The rationale behind this restriction is that strictly under-approximating accelerators

π̃ do not necessarily have this property. However, even if π̃ does not subsume π in

general, we can characterize the set of starting states in which it does:

{σ | 〈σ, σ′〉 ∈ JπK⇒ 〈σ, σ′〉 ∈ Jπ̃K} (4.1)

In order to determine whether a looping path π is redundant, we presume for each

accelerated looping trace π the existence of a predicate ϕπ ∈ Exprs and an assumption

statement τπ
def
= [ϕπ] such that

J τπ K def
= {〈σ, σ〉| 〈σ, σ′〉 ∈ JπK⇒ 〈σ, σ′〉 ∈ Jπ̃K} (4.2)

Analogously, we can define the dual statement τπ
def
= [¬ϕπ]. Though both JτπK

and JτπK are non-total transition relations, their combination JτπK ∪ JτπK is total.

Moreover, it does not modify the state, i.e., JτπK ∪ JτπK ≡ JskipK. It is therefore

evident that replacing the head v of a looping trace π with the sub-graph u w
τπ

τπ
(and

reconnecting the incoming and outgoing edges of v to u and w, respectively) preserves

the reachability of states. It does, however change the traces of the CFA. After the

modification, the looping traces τπ · π and τπ · π replace π. By definition of τπ, we

have τπ · π � π̃. Consequently, if we accelerate the newly introduced looping trace

τπ · π, Definition 15 and therefore Lemma 16 as well as Theorem 17 apply.

Example 6. An under-approximating accelerator for the statement x := x + 1, where

x is a 32-bit-wide unsigned integer, can be given as

π̃
def
= i := ∗; [x + i < 232]; x := x + i

with transition relation ∃i . (x + i < 232) ∧ (x′ = x + i).

40

The discriminating statement τπ for the path from Example 6, for instance, de-

tects the presence of an overflow. For this specific example, τπ is the assumption

[x = 232− 1]. In practice, however, the bit-level-accurate encoding of Cbmc provides

a mechanism to detect an overflow after it happened. Therefore, we introduce state-

ments τπ
def
= [overflow(x)] and τπ

def
= [¬overflow(x)] that determine the presence of an

overflow at the end of the looping trace. The modification and correctness argument

for this construction is analogous to the one above.

In order to recognize redundant traces, we use a trace automaton that accepts the

restriction language LR.

Definition 18 (Trace Automaton). A trace automaton TR for LR is a deterministic

finite automaton (DFA) over the alphabet StmtsP̂ that accepts LR.

Since LR is regular, so is its complement LR. In the following, we describe an

instrumentation of a CFA P̂ which guarantees that every trace accepted by TR and P̂

becomes infeasible. To this end, we construct a DFA TR recognising LR, starting out

with an ε-NFA which we then determinise using the subset construction [1]. While

this yields (for a CFA with k statements) a DFA with O(2k) states in the worst case,

in practice the DFAs generated are much smaller.

We initialise the set the vertices of the instrumented CFA P̃ to the vertices of P̂ .

We inline TR by creating a fresh integer variable g in P̃ which encodes the state of

TR and is initialised to 0. For each edge u
s−→ v ∈ P̂ , we consider all transitions

n
s−→ m ∈ TR. If there are no such transitions, we copy the edge u

s−→ v into P̃ .

Otherwise, we add edges as follows:

• If m is an accepting state, we do not add an edge to P̃ .

• Otherwise, construct a new statement l
def
= [g = n]; g := m; s and add the path

u
l−→ v to P̃ , which simulates the transition n

s−→ m.

Since we add at most one edge to P̃ for each transition in TR, this construction’s

time and space complexity are both Θ(|P̂ | + |TR|). By construction, if a trace π

accepted by CFA P̃ projected to StmtsP̂ is contained in the restriction language LR,

then π is infeasible. Conceptually, our construction suppresses traces accepted by LR
and retains the remaining executions.

An example is given in Figure 4.8. The CFA in Figure 4.8a represents an unac-

celerated loop with a single path through its body. After adding an extra path to

account for integer overflow, we arrive at the CFA in Figure 4.8b. We are able to

find an accelerator for the non-overflowing path, which we add to the CFA resulting

41

v0

x := x + 1

(a) Original CFA

v0 u

x := x + 1

[overflow(x)]

[¬overflow(x)]

(b) CFA with overflow

v0 u

x := x + 1

[overflow(x)]

[¬overflow(x)]

π̃

π
def
= x := x + 1; [¬overflow(x)]

π̃
def
= x := x + ∗; [¬overflow(x)]

(c) Accelerated CFA

0

1 2
x := x + 1

π̃ x := x + 1

π̃ [¬overflow(x)]

[overflow(x)]

(d) Trace automaton

v0

u
x := x + 1[g ≤ 1]

[overflow(x)]

g := 0

[g = 0]

g := 1

π̃

g := 2

[g = 2]

(e) Restricted Accelerated CFA

Figure 4.8: Accelerating a looping path

in Figure 4.8c. We use π̃ to represent the accelerator π for the corresponding path.

Then the restriction language is represented by the regular expression (π | π̃ · π̃). The

corresponding 4-state trace automaton is shown in Figure 4.8d. By combining the

trace automaton and the CFA we obtain the restricted CFA in Figure 4.8e (after

equivalent paths have been collapsed).

In the restricted CFA P̃ , looping traces π that can be accelerated and redundant

iterations of accelerators are infeasible and therefore do not trigger the failure of

unwinding assertions. A CFA is safe if all unwinding assertions hold and no safety

violation can be detected for a given bound k. The reduction of the diameter achieved

by acceleration (Section 4.3) in combination with the construction presented in this

section enables us to establish the safety of CFAs in cases in which traditional BMC

would have been unable to do so. Section 4.5 provides an experimental evaluation

demonstrating the viability of our approach.

4.5 Experimental Evaluation

We evaluate the effect of instrumenting accelerated programs with trace automata

and determine the direct cost of constructing the automata as well as the impact of

trace automata on the ability to find bugs on the one hand and prove safety on the

other.

42

Table 4.1: Summary of experimental results

Cbmc

Cbmc
+

Acceleration

Cbmc +
Acceleration +

Trace Automata

#
B

en
ch

m
ar

k
s

#
C

or
re

ct

T
im

e(
s)

#
B

en
ch

m
ar

k
s

ac
ce

le
ra

te
d

#
C

or
re

ct

A
cc

el
er

at
io

n
T

im
e

(s
)

C
h
ec

k
in

g
ti

m
e

(s
)

#
C

or
re

ct

A
cc

el
er

at
io

n
T

im
e

(s
)

C
h
ec

k
in

g
T

im
e

(s
)

SV-COMP14 safe 35 14 298.73 21 2 23.24 244.72 14 23.86 189.61
SV-COMP14 unsafe 32 20 394.96 18 11 15.79 197.94 12 16.51 173.74
Crafted safe 15 0 11.42 15 0 2.75 32.41 15 2.91 1.59
Crafted unsafe 14 0 9.03 14 14 2.85 12.24 14 2.95 2.55

Our evaluation is based on the Loops category of the benchmarks from SV-

COMP14 and a number of small but difficult hand-crafted examples. Our hand-

crafted examples require precise reasoning about arithmetic and arrays. The unsafe

examples have deep bugs, and the safe examples feature unbounded loops. The

SV-COMP14 benchmarks are largely arithmetic in nature. They often require non-

trivial arithmetic invariants to be inferred, but rarely require complex reasoning about

arrays. Furthermore, all bugs of the unsafe SV-COMP14 benchmarks occur within a

small number of loop iterations.

In all of our experiments we used Cbmc taken from the public SVN at r3849 to

perform the transformation. Since Cbmc’s acceleration procedure generates asser-

tions with quantified arrays, we used Z3 [38] version 4.3.1 as the backend decision

procedure. All of the experiments were performed with a timeout of 30 s and very

low unwinding limits. We used an unwinding limit of 100 for unaccelerated programs

and an unwinding limit of 3 for their accelerated counterparts.

The version of Cbmc we use has incomplete acceleration support, e.g., it is unable

to accelerate nested loops. As a result, there are numerous benchmarks that it cannot

accelerate. We stress that our goal here is to evaluate the effect of adding trace

automata to accelerated programs. Acceleration has already proven to be a useful

technique for both bug-finding and proof [58, 67, 70, 90, 91] and we are interested in

how well inlined trace automata can complement it.

Our experimental results are summarised in Table 4.1, and the full results are

given in Section 4.6. We discuss the results in the remainder of this section.

43

Cost of Trace Automata. To evaluate the direct cost of constructing the trace

automata, we direct the reader’s attention to Table 4.1 and the columns headed

“acceleration time”. The first “acceleration time” column shows how long it took

to generate an accelerated program without a trace automaton, whereas the second

shows how long it took when a trace automaton was included. For all of these

benchmarks, the additional time taken to build and insert the trace automaton is

negligible. The “size increase” column in Tables 4.2, 4.3, and 4.4 in Section 4.6 shows

how much larger the instrumented binary is than the accelerated binary, expressed

as a percentage of the accelerated binary’s size. The average increase is about 15%,

but the maximum increase is 77%. There is still room for optimisation, as we do not

minimise the automata before inserting them.

Bug Finding. In the following, we evaluate the effectiveness of our technique for

bug finding. The current state-of-the-art method for bug finding is BMC [11]. To

provide a baseline for bug finding power, we start by evaluating the effect of just

combining acceleration with BMC. We then evaluate the impact of adding trace

automata, as compared to acceleration without trace automata. Our hypothesis is

that adding trace automata has negligible impact on acceleration’s ability to find bugs.

The statistics we use to measure these effects are the number of bugs found and the

time to find them. We measure these statistics for each of three techniques: BMC

alone, acceleration with BMC, and our combination of acceleration, trace automata

and BMC.

The results are summarised in Table 4.1. In SV-COMP14, almost all of the bugs

occur after a small number of unwindings. In these cases, there are no deep loops

to accelerate so just using Cbmc allows the same bugs to be reached, but without

the overhead of acceleration (which causes some timeouts to be hit). In the crafted

set the bugs are much deeper, and we can see the effect of acceleration in discovering

these bugs – none of the bugs are discovered by Cbmc, but each of the configurations

using acceleration finds all 14 bugs.

In both of the benchmark sets, adding trace automata does not negatively impact

the bug finding ability of acceleration. Indeed, for the crafted set the addition of trace

automata significantly improves bug finding performance – the total time needed to

find the 14 bugs is reduced from 12.31s to 1.85s.

Safety Proving. We evaluate the effectiveness of our technique for proving safety,

the key contribution of this chapter. Our two benchmark sets have very different

44

unsigned N := ∗, i;
int a[M], b[M], c[M]

for (i = 0; i < M; i := i + 1) {
c[i] := a[i] + b[i];

}
for (i = 0; i < M; i := i + 1) {

assert (c[i] = a[i] + b[i]);
}

Figure 4.9: The sum arrays benchmark from SV-COMP14

characteristics with respect to the safety proofs required for their safe examples. As

can be seen from Table 4.1, 14 of the SV-COMP14 benchmarks can be proved safe

using just BMC. That is, they can be exhaustively proved safe after a small number

of loop unwindings. For the 14 cases that were provable using just BMC, none had

loops that could execute for more than 10 iterations.

Of the 35 safe SV-COMP14 benchmarks, 21 contained loops that could be accel-

erated. Of these 21 cases, 14 were proved safe using trace automata. These are not

the same 14 cases that were proved by Cbmc, and notably 8 cases with unbounded

loops are included, which would be impossible to prove safe with just BMC. Addi-

tionally we were able to solve the sum array true benchmark (shown in Fig. 4.9)

in 1.75s. Of all the tools entered in SV-COMP14, the only tools to claim “safe” for

this benchmark were BMC-based, and as such do not generate safety proofs.

For the 7 cases where accelerators were produced but we were unable to prove

safety, 5 are due to timeouts, 1 is a crash in Cbmc and 1 is an “incomplete”. The

5 timeouts are due to the complexity of the SMT queries we produce. For these

timeout cases, we generate assertions which contain non-linear multiplication and

quantification over arrays, which are very difficult for Z3 to solve. The “incomplete”

case (trex03 true) requires reasoning about accelerated paths that commute with

each other, which we leave as future work.

4.6 Detailed Experimental Results

Tables 4.2, 4.3, and 4.4 show the detailed experimental results for Table 4.1 in Sec-

tion 4.5.

45

4.7 Related Work

The diameter of a transition system was introduced in Biere et al.’s seminal paper

on BMC [13] in the context of finite-state transition relations. For finite-state tran-

sition relations, approximations of the diameter can be computed symbolically by

constraining the unwound transition relation to exclude executions that visit states

repeatedly [69]. For software, however, this technique is ineffective. Baumgartner and

Kühlmann use structural transformations of hardware designs to reduce the reach-

ability diameter of a hardware design to obtain a complete BMC-based verification

method [6]. This technique is not applicable in our context.

Trace automata are introduced in [55] as abstractions of safe traces of CFAs [56],

constructed by means of interpolation. We use trace automata to recognize redundant

traces.

Acceleration amounts to computing the transitive closure of a infinite state tran-

sition relation [15,18,44]. Acceleration has been successfully combined with abstract

interpretation [90] as well as interpolation-based invariant construction [58]. These

techniques rely on over-approximate abstractions to prove safety. We previously used

acceleration and under-approximation to quickly find deep bugs [67, 70]. The quan-

tified transition relations used to encode under-approximations pose an insurmount-

able challenge to interpolation-based refinement techniques [67], making it difficult

to combine the approach with traditional software model checkers.

46

C
b
m
c

A
c
c
e
le

ra
te

d
?

C
b
m
c

+
A

c
c
e
le

ra
ti

o
n

C
b
m
c

+
A

c
c
e
le

ra
ti

o
n

+
T

ra
c
e

A
u
to

m
a
ta

N
a
m

e
E

x
p

e
c
te

d
R

e
su

lt
T

im
e
(s

)
R

e
su

lt

A
c
c
e
le

ra
ti

o
n

ti
m

e
(s

)

C
h
e
c
k
in

g

ti
m

e
(s

)
R

e
su

lt

A
c
c
e
le

ra
ti

o
n

ti
m

e
(s

)

C
h
e
c
k
in

g

ti
m

e
(s

)
S
iz

e
in

c
re

a
se

S
V

-C
O

M
P

1
4

a
rr

a
y

tr
u
e
.c

4
4

0
.0

4
s

—
—

—
—

—
—

—
b
u
b
b
le

so
rt

tr
u
e
.c

4
T

/
O

3
0
.0

0
s

Y
e
s

T
/
O

3
.9

0
s

3
0
.0

0
s

T
/
O

3
.9

7
s

3
0
.0

0
s

2
0
%

c
o
u
n
t

u
p

d
o
w

n
tr

u
e
.c

4
?

0
.8

4
s

Y
e
s

?
0
.2

0
s

1
.2

0
s

4
0
.2

1
s

0
.2

5
s

1
1
%

e
u
re

k
a

0
1

tr
u
e
.c

4
4

1
2
.6

4
s

Y
e
s

T
/
O

1
.9

0
s

3
0
.0

0
s

T
/
O

1
.9

5
s

3
0
.0

0
s

3
4
%

e
u
re

k
a

0
5

tr
u
e
.c

4
4

0
.1

1
s

Y
e
s

0
.5

6
s

2
.6

4
s

4
0
.5

7
s

2
.2

2
s

3
1
%

fo
r

in
fi

n
it

e
lo

o
p

1
tr

u
e
.c

4
?

0
.0

5
s

Y
e
s

?
0
.1

2
s

0
.0

9
s

4
0
.1

3
s

0
.0

6
s

1
1
%

fo
r

in
fi

n
it

e
lo

o
p

2
tr

u
e
.c

4
8

0
.0

8
s

Y
e
s

8
0
.1

3
s

0
.0

5
s

4
0
.1

4
s

0
.0

7
s

1
2
%

h
e
a
v
y

tr
u
e
.c

4
T

/
O

3
0
.0

0
s

—
—

—
—

—
—

—
in

se
rt

io
n

so
rt

tr
u
e
.c

4
T

/
O

3
0
.0

0
s

Y
e
s

0
.4

6
s

3
0
.0

0
s

0
.4

8
s

3
0
.0

0
s

1
8
%

in
v
e
rt

st
ri

n
g

tr
u
e
.c

4
4

0
.1

2
s

Y
e
s

0
.8

7
s

3
0
.0

0
s

4
0
.9

2
s

2
.1

3
s

2
8
%

li
n
e
a
r

se
a
.c

h
tr

u
e
.c

4
?

3
.7

8
s

Y
e
s

T
/
O

0
.3

3
s

3
0
.0

0
s

4
0
.3

5
s

0
.2

6
s

2
0
%

lu
.c

m
p

tr
u
e
.c

4
4

0
.3

4
s

—
—

—
—

—
—

—
m

a
tr

ix
tr

u
e
.c

4
4

0
.0

3
s

—
—

—
—

—
—

—
n
.c

1
1

tr
u
e
.c

4
?

0
.9

1
s

—
—

—
—

—
—

—
n
.c

2
4

tr
u
e
.c

4
T

/
O

3
0
.0

0
s

Y
e
s

3
.6

0
s

1
1
.4

1
s

T
/
O

3
.6

6
s

3
0
.0

0
s

1
7
%

n
.c

4
0

tr
u
e
.c

4
4

0
.0

4
s

Y
e
s

4
0
.2

5
s

0
.1

4
s

4
0
.2

6
s

0
.1

5
s

1
1
%

n
e
c
4
0

tr
u
e
.c

4
4

0
.0

4
s

Y
e
s

4
0
.2

5
s

0
.1

3
s

4
0
.2

5
s

0
.1

7
s

1
1
%

st
ri

n
g

tr
u
e
.c

4
4

1
1
.2

0
s

—
—

—
—

—
—

—
su

m
0
1

tr
u
e
.c

4
?

0
.8

1
s

Y
e
s

?
0
.5

0
s

6
.2

4
s

4
0
.5

1
s

0
.4

3
s

1
9
%

su
m

0
3

tr
u
e
.c

4
?

0
.0

7
s

Y
e
s

?
0
.4

7
s

0
.2

3
s

4
0
.4

6
s

0
.2

2
s

1
7
%

su
m

0
4

tr
u
e
.c

4
4

0
.0

0
s

Y
e
s

?
0
.2

3
s

0
.2

2
s

4
0
.2

4
s

0
.1

3
s

1
1
%

su
m

a
rr

a
y

tr
u
e
.c

4

3
0
.0

0
s

Y
e
s

0
.5

6
s

3
0
.0

0
s

4
0
.6

2
s

1
.7

5
s

2
9
%

te
rm

in
a
to

r
0
2

tr
u
e
.c

4
4

2
.5

8
s

—
—

—
—

—
—

—
te

rm
in

a
to

r
0
3

tr
u
e
.c

4
T

/
O

3
0
.0

0
s

—
—

—
—

—
—

—
tr

e
x
0
1

tr
u
e
.c

4
?

1
3
.9

6
s

—
—

—
—

—
—

—
tr

e
x
0
2

tr
u
e
.c

4
?

1
.2

7
s

—
—

—
—

—
—

—
tr

e
x
0
3

tr
u
e
.c

4
?

9
.5

1
s

Y
e
s

?
6
.2

2
s

0
.7

5
s

?
6
.0

9
s

1
.6

9
s

5
4
%

tr
e
x
0
4

tr
u
e
.c

4
?

0
.9

1
s

—
—

—
—

—
—

—
v
e
ri

s.
c

N
e
tB

S
D

-l
ib

c
lo

o
p

tr
u
e
.c

4
4

1
7
.6

1
s

—
—

—
—

—
—

—
v
e
ri

s.
c

O
p

e
n
S
E

R
c
a
se

s1
st

ri
p
F
u
ll
B

o
th

a
rr

tr
u
e
.c

4
T

/
O

3
0
.0

0
s

Y
e
s

?
1
.0

5
s

1
1
.5

8
s

T
/
O

1
.1

6
s

3
0
.0

0
s

7
7
%

v
e
ri

s.
c

se
n
d
m

a
il

tT
fl

a
g

a
rr

o
n
e

lo
o
p

tr
u
e
.c

4
4

0
.8

8
s

—
—

—
—

—
—

—
v
o
g
a
l

tr
u
e
.c

4
4

1
0
.7

5
s

Y
e
s

T
/
O

1
.6

0
s

3
0
.0

0
s

T
/
O

1
.8

5
s

3
0
.0

0
s

6
4
%

w
h
il
e

in
fi

n
it

e
lo

o
p

1
tr

u
e
.c

4
?

0
.0

3
s

Y
e
s

?
0
.0

1
s

0
.0

2
s

4
0
.0

1
s

0
.0

3
s

1
5
%

w
h
il
e

in
fi

n
it

e
lo

o
p

2
tr

u
e
.c

4
?

0
.0

6
s

Y
e
s

?
0
.0

3
s

0
.0

2
s

4
0
.0

3
s

0
.0

5
s

1
6
%

w
h
il
e

in
fi

n
it

e
lo

o
p

3
tr

u
e
.c

4
?

0
.0

7
s

—
—

—
—

—
—

—
T

o
ta

l
3
5

1
4

2
9
8
.7

3
s

2
1

2
2
3
.2

4
s

2
4
4
.7

2
s

1
4

2
3
.8

6
s

1
8
9
.6

1
s

K
ey

:
S

a
fe

:
4

,
U

n
sa

fe
:

8
,

T
im

eo
u

t:
T

/
O

,
C

ra
sh

:

,
In

co
m

p
le

te
(u

n
a
b

le
to

p
ro

v
e

sa
fe

ty
o
r

fi
n

d
a

b
u

g
):

?

T
ab

le
4.

2:
D

et
ai

le
d

ex
p

er
im

en
ta

l
re

su
lt

s
fo

r
sa

fe
S
V
-C

O
M
P

b
en

ch
m

ar
k
s

47

C
b
m
c

A
c
c
e
le

ra
te

d
?

C
b
m
c

+
A

c
c
e
le

ra
ti

o
n

C
b
m
c

+
A

c
c
e
le

ra
ti

o
n

+
T

ra
c
e

A
u
to

m
a
ta

N
a
m

e
E

x
p

e
c
te

d
R

e
su

lt
T

im
e
(s

)
R

e
su

lt

A
c
c
e
le

ra
ti

o
n

ti
m

e
(s

)

C
h
e
c
k
in

g

ti
m

e
(s

)
R

e
su

lt

A
c
c
e
le

ra
ti

o
n

ti
m

e
(s

)

C
h
e
c
k
in

g

ti
m

e
(s

)
S
iz

e
in

c
re

a
se

S
V

-C
O

M
P

1
4

a
rr

a
y

fa
ls

e
.c

8
8

0
.0

3
s

—
—

—
—

—
—

—
b
u
b
b
le

so
rt

fa
ls

e
.c

8
T

/
O

3
0
.0

0
s

—
—

—
—

—
—

—
c
o
m

p
a
c
t

fa
ls

e
.c

8
T

/
O

3
0
.0

0
s

—
—

—
—

—
—

—
c
o
u
n
t

u
p

d
o
w

n
fa

ls
e
.c

8
8

0
.2

6
s

Y
e
s

8
0
.2

0
s

0
.2

2
s

8
0
.2

1
s

0
.3

0
s

1
1
%

e
u
re

k
a

0
1

fa
ls

e
.c

8
T

/
O

3
0
.0

0
s

Y
e
s

T
/
O

1
.9

8
s

3
0
.0

0
s

T
/
O

2
.0

0
s

3
0
.0

0
s

2
7
%

fo
r

b
o
u
n
d
e
d

lo
o
p
1

fa
ls

e
.c

8
8

0
.6

7
s

—
—

—
—

—
—

—
h
e
a
v
y

fa
ls

e
.c

8
T

/
O

3
0
.0

0
s

—
—

—
—

—
—

—
in

se
rt

io
n

so
rt

fa
ls

e
.c

8
T

/
O

3
0
.0

0
s

Y
e
s

0
.6

4
s

1
2
.3

1
s

0
.6

2
s

1
4
.5

8
s

1
7
%

in
v
e
rt

st
ri

n
g

fa
ls

e
.c

8
T

/
O

3
0
.0

0
s

Y
e
s

0
.6

1
s

3
0
.0

0
s

8
0
.6

4
s

3
.0

0
s

1
7
%

li
n
e
a
r

se
a
rc

h
fa

ls
e
.c

8
8

0
.4

7
s

Y
e
s

8
0
.3

6
s

0
.1

8
s

8
0
.3

8
s

0
.3

4
s

2
0
%

lu
d
c
m

p
fa

ls
e
.c

8
8

0
.4

5
s

—
—

—
—

—
—

—
m

a
tr

ix
fa

ls
e
.c

8
T

/
O

3
0
.0

0
s

Y
e
s

T
/
O

0
.2

4
s

3
0
.0

0
s

T
/
O

0
.2

8
s

3
0
.0

0
s

1
9
%

n
e
c
1
1

fa
ls

e
.c

8
8

0
.2

9
s

Y
e
s

8
0
.1

3
s

0
.0

8
s

8
0
.1

4
s

0
.1

2
s

1
2
%

n
e
c
2
0

fa
ls

e
.c

8
8

0
.2

4
s

Y
e
s

8
0
.5

1
s

0
.3

7
s

8
0
.5

2
s

0
.4

4
s

1
7
%

st
ri

n
g

fa
ls

e
.c

8

3
0
.0

0
s

—
—

—
—

—
—

—
su

m
0
1

b
u
g
0
2

fa
ls

e
.c

8
8

0
.2

7
s

Y
e
s

8
1
.8

9
s

0
.8

2
s

8
1
.9

5
s

1
.0

1
s

2
7
%

su
m

0
1

b
u
g
0
2

su
m

0
1

b
u
g
0
2

b
a
se

.c
a
se

fa
ls

e
.c

8
8

0
.2

6
s

Y
e
s

8
0
.4

5
s

1
.9

4
s

8
0
.4

7
s

0
.8

0
s

2
0
%

su
m

0
1

fa
ls

e
.c

8
8

0
.2

2
s

Y
e
s

8
0
.4

6
s

0
.3

5
s

8
0
.4

7
s

0
.3

0
s

2
2
%

su
m

0
3

fa
ls

e
.c

8
8

2
.4

5
s

Y
e
s

8
0
.6

5
s

0
.6

5
s

8
0
.7

0
s

0
.8

0
s

3
2
%

su
m

0
4

fa
ls

e
.c

8
8

0
.0

5
s

Y
e
s

8
0
.3

5
s

0
.1

9
s

8
0
.3

6
s

0
.2

5
s

2
4
%

su
m

a
rr

a
y

fa
ls

e
.c

8

3
0
.0

0
s

Y
e
s

T
/
O

0
.5

9
s

3
0
.0

0
s

T
/
O

0
.6

4
s

3
0
.0

0
s

2
8
%

te
rm

in
a
to

r
0
1

fa
ls

e
.c

8
8

0
.2

8
s

Y
e
s

8
0
.1

2
s

0
.1

3
s

8
0
.1

2
s

0
.1

5
s

1
2
%

te
rm

in
a
to

r
0
2

fa
ls

e
.c

8
8

3
.5

6
s

—
—

—
—

—
—

—
te

rm
in

a
to

r
0
3

fa
ls

e
.c

8
8

0
.4

2
s

—
—

—
—

—
—

—
tr

e
x
0
1

fa
ls

e
.c

8
8

2
.6

9
s

—
—

—
—

—
—

—
tr

e
x
0
2

fa
ls

e
.c

8
8

0
.6

6
s

—
—

—
—

—
—

—
tr

e
x
0
3

fa
ls

e
.c

8
8

8
.2

1
s

Y
e
s

8
3
.9

6
s

0
.7

0
s

8
3
.9

8
s

1
.6

5
s

5
4
%

v
e
ri

se
c

N
e
tB

S
D

-l
ib

c
lo

o
p

fa
ls

e
.c

8
8

1
0
.4

5
s

—
—

—
—

—
—

—
v
e
ri

se
c

O
p

e
n
S
E

R
c
a
se

s1
st

ri
p
F
u
ll
B

o
th

a
rr

fa
ls

e
.c

8
T

/
O

3
0
.0

0
s

Y
e
s

T
/
O

1
.0

3
s

3
0
.0

0
s

T
/
O

1
.2

0
s

3
0
.0

0
s

7
6
%

v
e
ri

se
c

se
n
d
m

a
il

tT
fl

a
g

a
rr

o
n
e

lo
o
p

fa
ls

e
.c

8
T

/
O

3
0
.0

0
s

—
—

—
—

—
—

—
v
o
g
a
l

fa
ls

e
.c

8

3
0
.0

0
s

Y
e
s

T
/
O

1
.6

2
s

3
0
.0

0
s

T
/
O

1
.8

3
s

3
0
.0

0
s

6
8
%

w
h
il
e

in
fi

n
it

e
lo

o
p

4
fa

ls
e
.c

8
8

3
.0

3
s

—
—

—
—

—
—

—
T

o
ta

l
3
2

2
0

3
9
4
.9

6
s

1
8

1
1

1
5
.7

9
s

1
9
7
.9

4
s

1
2

1
6
.5

1
s

1
7
3
.7

4
s

K
ey

:
S

a
fe

:
4

,
U

n
sa

fe
:

8
,

T
im

eo
u

t:
T

/
O

,
C

ra
sh

:

,
In

co
m

p
le

te
(u

n
a
b

le
to

p
ro

v
e

sa
fe

ty
o
r

fi
n

d
a

b
u

g
):

?

T
ab

le
4.

3:
D

et
ai

le
d

ex
p

er
im

en
ta

l
re

su
lt

s
fo

r
u
n
sa

fe
S
V
-C

O
M
P

b
en

ch
m

ar
k
s

48

C
b
m
c

A
c
c
e
le

ra
te

d
?

C
b
m
c

+
A

c
c
e
le

ra
ti

o
n

C
b
m
c

+
A

c
c
e
le

ra
ti

o
n

+
T

ra
c
e

A
u
to

m
a
ta

N
a
m

e
E

x
p

e
c
te

d
R

e
su

lt
T

im
e
(s

)
R

e
su

lt

A
c
c
e
le

ra
ti

o
n

ti
m

e
(s

)

C
h
e
c
k
in

g

ti
m

e
(s

)
R

e
su

lt

A
c
c
e
le

ra
ti

o
n

ti
m

e
(s

)

C
h
e
c
k
in

g

ti
m

e
(s

)
S
iz

e
in

c
re

a
se

C
ra

ft
e
d

a
rr

a
y

sa
fe

1
4

?
0
.2

0
s

Y
e
s

?
0
.1

5
s

0
.2

7
s

4
0
.1

6
s

0
.0

8
s

1
1
%

a
rr

a
y

sa
fe

2
4

?
0
.0

8
s

Y
e
s

T
/
O

0
.1

4
s

3
0
.0

0
s

4
0
.1

3
s

0
.0

9
s

1
0
%

a
rr

a
y

sa
fe

3
4

?
0
.4

8
s

Y
e
s

?
0
.1

2
s

0
.2

8
s

4
0
.1

4
s

0
.0

7
s

1
5
%

a
rr

a
y

sa
fe

4
4

?
0
.4

9
s

Y
e
s

?
0
.1

2
s

0
.1

9
s

4
0
.1

4
s

0
.0

5
s

1
3
%

c
o
n
st

sa
fe

1
4

?
0
.2

7
s

Y
e
s

?
0
.1

5
s

0
.0

6
s

4
0
.1

5
s

0
.0

8
s

1
2
%

d
ia

m
o
n
d

sa
fe

1
4

?
0
.5

1
s

Y
e
s

?
0
.1

8
s

0
.1

5
s

4
0
.1

8
s

0
.1

3
s

2
6
%

d
ia

m
o
n
d

sa
fe

2
4

?
7
.5

3
s

Y
e
s

?
0
.6

6
s

0
.7

7
s

4
0
.6

6
s

0
.4

5
s

3
2
%

fu
n
c
ti

o
n
s

sa
fe

1
4

?
0
.0

6
s

Y
e
s

?
0
.1

3
s

0
.0

8
s

4
0
.1

5
s

0
.0

6
s

1
2
%

m
u
lt

iv
a
r

sa
fe

1
4

?
0
.4

0
s

Y
e
s

?
0
.1

8
s

0
.0

8
s

4
0
.1

9
s

0
.0

7
s

1
2
%

o
v
e
rfl

o
w

sa
fe

1
4

?
0
.0

4
s

Y
e
s

?
0
.1

3
s

0
.0

6
s

4
0
.1

4
s

0
.0

7
s

1
3
%

p
h
a
se

s
sa

fe
1

4
?

0
.0

4
s

Y
e
s

?
0
.2

3
s

0
.0

9
s

4
0
.2

5
s

0
.1

4
s

2
6
%

si
m

p
le

sa
fe

1
4

?
0
.0

4
s

Y
e
s

?
0
.1

4
s

0
.0

8
s

4
0
.1

5
s

0
.0

6
s

1
3
%

si
m

p
le

sa
fe

2
4

?
1
.0

0
s

Y
e
s

?
0
.1

3
s

0
.0

9
s

4
0
.1

5
s

0
.1

0
s

1
3
%

si
m

p
le

sa
fe

3
4

?
0
.2

4
s

Y
e
s

?
0
.1

3
s

0
.0

7
s

4
0
.1

4
s

0
.0

7
s

1
3
%

si
m

p
le

sa
fe

4
4

?
0
.0

4
s

Y
e
s

?
0
.1

6
s

0
.1

4
s

4
0
.1

8
s

0
.0

7
s

1
3
%

T
o
ta

l
1
5

0
1
1
.4

2
s

1
5

0
2
.7

5
s

3
2
.4

1
s

1
5

2
.9

1
s

1
.5

9
s

a
rr

a
y

u
n
sa

fe
1

8
?

0
.4

9
s

Y
e
s

8
0
.1

2
s

0
.0

4
s

8
0
.1

3
s

0
.0

6
s

1
4
%

a
rr

a
y

u
n
sa

fe
2

8
?

0
.0

9
s

Y
e
s

8
0
.1

5
s

1
0
.4

2
s

8
0
.1

5
s

0
.1

1
s

1
0
%

a
rr

a
y

u
n
sa

fe
3

8
?

0
.4

8
s

Y
e
s

8
0
.1

4
s

0
.0

4
s

8
0
.1

4
s

0
.0

6
s

1
4
%

c
o
n
st

u
n
sa

fe
1

8
?

0
.0

5
s

Y
e
s

8
0
.1

2
s

0
.0

5
s

8
0
.1

3
s

0
.0

7
s

1
2
%

d
ia

m
o
n
d

u
n
sa

fe
1

8
?

0
.5

1
s

Y
e
s

8
0
.2

5
s

0
.1

0
s

8
0
.2

4
s

0
.2

0
s

2
6
%

d
ia

m
o
n
d

u
n
sa

fe
2

8
?

7
.0

3
s

Y
e
s

8
0
.8

6
s

0
.8

8
s

8
0
.8

9
s

1
.4

1
s

3
3
%

fu
n
c
ti

o
n
s

u
n
sa

fe
1

8
?

0
.0

6
s

Y
e
s

8
0
.1

3
s

0
.0

7
s

8
0
.1

2
s

0
.0

7
s

1
2
%

m
u
lt

iv
a
r

u
n
sa

fe
1

8
?

0
.0

5
s

Y
e
s

8
0
.2

0
s

0
.1

2
s

8
0
.1

9
s

0
.0

8
s

1
1
%

o
v
e
rfl

o
w

u
n
sa

fe
1

8
?

0
.0

5
s

Y
e
s

8
0
.1

3
s

0
.0

9
s

8
0
.1

6
s

0
.0

8
s

1
3
%

p
h
a
se

s
u
n
sa

fe
1

8
?

0
.0

6
s

Y
e
s

8
0
.2

3
s

0
.1

0
s

8
0
.2

3
s

0
.1

3
s

2
6
%

si
m

p
le

u
n
sa

fe
1

8
?

0
.0

4
s

Y
e
s

8
0
.1

2
s

0
.0

6
s

8
0
.1

5
s

0
.0

6
s

1
3
%

si
m

p
le

u
n
sa

fe
2

8
?

0
.0

4
s

Y
e
s

8
0
.1

2
s

0
.0

5
s

8
0
.1

3
s

0
.0

6
s

1
3
%

si
m

p
le

u
n
sa

fe
3

8
?

0
.0

4
s

Y
e
s

8
0
.1

3
s

0
.0

6
s

8
0
.1

4
s

0
.0

7
s

1
2
%

si
m

p
le

u
n
sa

fe
4

8
?

0
.0

4
s

Y
e
s

8
0
.1

5
s

0
.1

6
s

8
0
.1

5
s

0
.0

9
s

1
3
%

T
o
ta

l
1
4

0
9
.0

3
s

1
4

1
4

2
.8

5
s

1
2
.2

4
s

1
4

2
.9

5
s

2
.5

5
s

K
ey

:
S

a
fe

:
4

,
U

n
sa

fe
:

8
,

T
im

eo
u

t:
T

/
O

,
C

ra
sh

:

,
In

co
m

p
le

te
(u

n
a
b

le
to

p
ro

v
e

sa
fe

ty
o
r

fi
n

d
a

b
u

g
):

?

T
ab

le
4.

4:
D

et
ai

le
d

ex
p

er
im

en
ta

l
re

su
lt

s
fo

r
cr

af
te

d
b

en
ch

m
ar

k
s

49

Part II

Second-Order Logic and Program
Synthesis

50

Chapter 5

Overview and Preliminaries

Collaborators The bulk of the work presented in this part has been published
in [36, 37, 64]. The latter two of these papers were written in
conjunction with Cristina David.

In this part, we will make use of second-order logic to model various program

analysis problems. Our discussion will begin in Chapter 6 by defining a fragment of

second-order logic and its associated decision problem, which we will call second-order

SAT. We will go on to discuss some of the properties of second-order SAT, in particular

that its decision problem is NEXPTIME-complete and that it can be solved with a

finite-state program synthesiser. Having made this observation, we will describe an

algorithm for finite-state program synthesis and observe that this algorithm gives

us an NEXPTIME-complete decision procedure. In the following chapters we will

illustrate the richness of second-order SAT by showing how to build different program

analysers on top of this decision procedure. In Chapter 7 we will show how many

program analysis tasks can be encoded as second-order SAT, including: termination

an non-termination proofs, safety proofs and finding deep bugs without unrolling.

In Chapter 8 we will introduce a theory for reasoning about programs manipulating

singly-linked lists, based on a reduction to SAT. The theory is sound, complete, precise

and decidable in NP. We will first show how this theory can be used to express complex

invariants for list-manipulating programs, then we will show how the theory can be

combined with second-order SAT to automatically infer invariants.

5.1 Background and Notation

In Part I, we analysed C programs by finding closed forms for their loops and inserting

these closed forms back into the program. For this purpose it was convenient to think

51

of programs as CFAs, which exposed the control flow explicitly and made it easy to

mutate the program. By contrast, this part is concerned with inferring invariants

and ranking functions for use in Hoare-style proofs. These proofs amount to checking

whether certain logical formulae are valid and consequently our presentation from here

on will be logical rather than automata-theoretic and so we will consider programs

to be transition systems. A transition system is a pair of a set X, called the state

space, and a relation S ⊆ X × X, called the transition relation. If S(x, x′), we say

that x′ is a successor of x.

We will often be concerned with sets of states and relations on states. For ease

of presentation, we will identify a set with its characteristic function, for example we

will write:

P (x, y) = {〈x, y〉 | x 6= y}

as:

P (x, y) , x 6= y

As in Part I, we will primarily concern ourselves with the analysis of loops. With-

out loss of generality, we will consider all loops to have the following structure:

assume(I) ;

while (G) {
B ;

}

assert (A) ;

Our logical encoding of this loop will be:

• I(x) – a predicate representing the states the loop can begin executing in.

• G(x) – a predicate representing the loop guard, which is true of some state iff

the loop would execute.

• B(x, x′) – a relation representing the body of the loop.

• A(x) – a predicate that must hold for the assertion at the end of the loop to

hold. Note that if a loop has an assertion inside the loop body, it can always

be rewritten to have the assertion outside.

52

5.1.1 Logical concepts

A logic is a collection of rules for manipulating strings of symbols. The logic comes

equipped with rules for determining whether some string is a well formed formula

and whether one formula is a consequence of another. If a formula ψ is a consequence

of a formula φ, we say that φ entails ψ, or:

φ |= ψ

A theory T is a collection of formulae that are closed under logical consequence –

that is, for every pair of formulae φ and ψ, if φ ∈ T and φ |= ψ then ψ ∈ T . We say

that every φ ∈ T is a theorem of T . We will often characterise a theory by assuming

first-order logic as a background theory, then describing T as the smallest theory that

includes both first-order logic and some set of formulae A – the axioms of T . We will

often write φ ∈ T as T |= φ. When it is clear which theory T we are working in, we

will often write A |= φ to mean T ∪ A |= φ, i.e. φ is a consequence of T along with

the extra axioms A.

5.1.2 C−

All of the theories we will discuss in this part will be at least NP-complete. The

canonical NP-complete decision problem is propositional SAT, which asks the ques-

tion “is this propositional formula satisfiable?” It is conventional to use SAT as a

background theory for many program analysis tasks, but we will use another NP-

complete theory as our background theory, which we will call C−. The members of

C− are safe, loop-free C programs, i.e. loop-free C programs containing assertions

such that no execution causes an assertion to fail. This theory is NP-complete al-

most by definition and is much easier than SAT to encode verification problems in.

The decision problem for this theory is “can any of the assertions in this loop-free C

program fail?”, which we solve using CBMC [29].

C− programs can use bit-vector integers, floating-point variables, pointers, structs

and arrays. They can have branching, if-then-else, assumptions and assertions, but

cannot use loops or backwards jumps.

53

Chapter 6

Second-Order SAT Solving with
Program Synthesis

6.1 Introduction

Program synthesis is the mechanised construction of software that provably satisfies a

given specification. Synthesis tools promise to relieve the programmer from thinking

about how the problem is to be solved; instead, the programmer only provides a com-

pact description of what is to be achieved. Foundational research in this area has been

exceptionally fruitful, beginning with Alonzo Church’s work on the Circuit Synthesis

Problem in the sixties [28]. Algorithmic approaches to the problem have frequently

been connected to automated theorem proving [63,80]. Recent developments include

an application of Craig interpolation to synthesis [57].

We will show that program synthesis in general is undecidable and in fact harder

than the halting problem for Turing machines. Decidability can be recovered by

restricting the class of programs that are synthesised; in particular, we show that if

we only consider programs with finite state spaces our problem becomes NEXPTIME-

complete. As part of this complexity analysis, we observe a correspondence between

program synthesis and existential second-order logic.

Second-order logic allows quantification over sets and functions, as well as ground

terms. This expressive power makes it easy to encode many program analysis prob-

lems, for example termination [37], safety [47,93], and superoptimisation [22,49]. If we

restrict our language to allow only existential second-order quantification and require

a finite universe over which ground terms are interpreted, we obtain the second-order

SAT problem, which we formally define in Section 6.2. This problem is similar to

another NEXPTIME-complete problem: satisfiability of QFBAPA-REL [99], which

uses Presburger arithmetic and quantification over relations. In contrast to this work,

54

second-order SAT use exclusively propostional variables, which we make use of for

building bit-precise analyses. After showing how many problems, including all those

listed above, can be concisely and naturally encoded as second-order SAT, we show

how a finite state program synthesiser can be used as a second-order SAT solver.

This complexity result provides a direct bridge between logic and synthesis, allow-

ing existing program synthesisers [49, 95] to be immediately applied to a wide range

of problems, e.g. those stemming from existing work on solving second-order logic

constraints for program analysis [10, 14, 47]. This connection is relevant as recent

work on syntax guided synthesis [2] promises to greatly raise the profile of program

synthesis and usher in a generation of new synthesis tools.

Having developed the theory of second-order SAT, we extend existing approaches

to program synthesis to build a fully automatic, sound and complete algorithm

for synthesising loop-free C programs. This choice of formalism (loop-free C pro-

grams) makes it particularly easy to encode second-order SAT constraints arising

from program analysis problems. The resulting synthesiser uses a novel combination

of bounded model checking, explicit state model checking and genetic programming.

We then prove that our algorithm is optimal in the following senses:

• Encoding programs as loop-free C programs is asymptotically optimal in size.

• If a specification is satisfiable, our algorithm produces the smallest correct pro-

gram.

• If a specification is satisfiable, the runtime of our algorithm is predominantly a

function of the size of the program that is synthesised.

6.2 Preliminaries

In this section we will recall some well known decision problems along with their

associated complexity classes. We will then define an extension of propositional SAT

that we will call second-order SAT. The section concludes with a proof that second-

order SAT is NEXPTIME-complete.

Definition 19 (Propositional SAT).

∃x1 . . . xn.σ

Where the xi range over Boolean values and σ is a quantifier-free propositional formula

whose variables are the xi.

55

Checking the truth of an instance of Definition 19 is NP-complete.

Definition 20 (First-Order Propositional SAT or QBF).

Q1x1.Q2x2 . . . Qnxn.σ

Where the Qi are either ∃ or ∀. The xi and σ are as in Definition 19.

Checking the truth of an instance of Definition 20 is PSPACE-complete.

Now we turn our attention to second-order logic. Second-order logic allows quan-

tification over sets as well as objects.

Definition 21 (Second-Order SAT).

∃S1 . . . Sm.Q1x1 . . . Qnxn.σ

Where the Si range over predicates. Each Si has an associated arity ar(Si) and

Si ⊆ Bar(Si). The remainder of the formula is an instance of Definition 20, except

that the quantifier-free part (σ) may refer to both the first-order variables xi and the

second-order variables Si.

Example 7. The following is a second-order SAT formula:

∃S.∀x1, x2.S(x1, x2)→ S(x2, x1)

This formula is satisfiable and is satisfied by any symmetric relation.

Theorem 22 (Fagin’s Theorem [43]). The class of structures A recognisable in time

|A|k, for some k, by a nondeterministic Turing machine is exactly the class of struc-

tures definable by existential second-order sentences.

Theorem 23 (Second-Order SAT is NEXPTIME-complete). For an instance of Defi-

nition 21 with n first-order variables, checking the truth of the formula is NEXPTIME-

complete.

Proof. We will apply Theorem 22. To do so we must establish the size of the universe

implied by Theorem 22. Since Definition 21 uses n Boolean variables, the universe

is the set of interpretations of n Boolean variables. This set has size 2n, and so by

Theorem 22, Definition 21 defines exactly the class sets recognisable in (2n)k time by

a nondeterministic Turing machine. This is the class NEXPTIME, and so checking

validity of an arbitrary instance of Definition 21 is NEXPTIME-complete.

56

For an alternative proof, consider a Turing machine M . For a particular run of

M we can construct a relation f(k, q, h, j, t) defined such that after k steps M is in

state q, with its head at position h and tape cell j containing the symbol t. If M

halts within 2n steps on an input of length n, the values of all the variables in this

relation are bounded by 2n, which means they can be written down using n bits. The

details of creating a first-order formula constraining f to reflect the behaviour of M

are left to the reader.

6.3 Decidability and Complexity of Program Syn-

thesis

The program synthesis problem can be informally described as follows: given a spec-

ification, find a program which satisfies that specification for all inputs. In order to

define this problem formally, we need to identify what a specification is, what the

program we are synthesising is, and what an input is.

6.3.1 General Program Synthesis

For the general case of program synthesis, we will say that:

• The program we wish to synthesise is a Turing machine computing a total

function which takes as input a natural number and produces another natural

number.

• A specification is a computable function σ(P, x) whose arguments are P – the

index of some Turing machine, and x a natural number.

The synthesis problem is then that of finding some program P such that the

synthesis formula of Definition 24 is true, where we introduce a function H(P, x)

which returns true iff the Turing machine with index P halts on input x.

Definition 24 (Synthesis Formula).

∀x ∈ N.σ(P, x) ∧H(P, x)

The decision problem associated with program synthesis is to determine whether

such a P exists for a given σ. We can see immediately that this decision problem is

equivalent to the halting problem for an oracle machine with access to the oracle H.

It is a well known result that an oracle machine cannot solve its own halting problem,

57

and so the program synthesis problem is undecidable even if we have access to an

oracle solving the halting problem. In other words, the general synthesis problem

has Turing degree 0′′, making it strictly harder than the halting problem for Turing

machines.

In order to recover decidability, we can restrict our scope and consider a finite

version of the synthesis problem in which the programs we wish to synthesise have

a finite state space S. Since we require our programs to halt on all inputs, we can

identify each program P with the total function f : S → S it computes.

6.3.2 Program Encodings

Now we turn to the problem of how to encode such finite-state programs. For the

remainder of this thesis, we will encode finite-state programs as loop-free imperative

programs consisting of a sequence of instructions, each instruction consisting of an

opcode and a tuple of operands. The opcode specifies which operation is to be per-

formed and the operands are the arguments on which the operation will be performed.

We allow an operand to be one of: a constant literal, an input to the program, or the

result of some previous instruction. Such a program has a natural correspondence

with a combinational circuit.

A sequence of instructions is certainly a natural encoding of a program, but we

might wonder if it is the best encoding. We can show that for a reasonable set of

instruction types (i.e. valid opcodes), this encoding is optimal in a sense we will now

discuss. An encoding scheme E takes a function f and assigns it a name s. For a

given ensemble of functions F we are interested in the worst-case behaviour of the

encoding E, that is we are interested in the quantitiy

|E(F)| = max{|E(f)| | f ∈ F}.

If for every encoding E ′, we have that

|E(F)| = |E ′(F)|

then we say that E is an optimal encoding for F . Similarly if for every encoding E ′,

we have

O(|E(F)|) ⊆ O(|E ′(F)|)

we say that E is an asymptotically optimal encoding for F .

58

Lemma 25 (Languages with ITE are Universal and Optimal Encodings for Finite

Functions). For an imperative programming language including instructions for test-

ing equality of two values (EQ) and an if-then-else (ITE) instruction, any total func-

tion f : S → S can be computed by a program of size O(|S| log |S|) bits.

Proof. The function f is computed by the following program:

t1 = EQ(x, 1)

t2 = ITE(t1, f(1), f(0))

t3 = EQ(x, 2)

t4 = ITE(t3, f(2), t2)

...

Each operand can be encoded in log2(|S| + l) = log2(3 × |S|) bits. So each

instruction can be encoded in O(log |S|) bits and there are O(|S|) instructions in the

program, so the whole program can be encoded in O(|S| log |S|) bits.

Lemma 26. Any representation that is capable of encoding an arbitrary total function

f : S → S must require at least O(|S| log |S|) bits to encode some functions.

Proof. There are |S||S| total functions f : S → S. Therefore by the pigeonhole

principle, any encoding that can encode an arbitrary function must use at least

log2(|S||S|) = O(|S| log2 |S|) bits to encode some function.

From Lemma 25 and Lemma 26, we can conclude that any set of instruction types

that include ITE is an asymptotically optimal function encoding for total functions

with finite domains.

6.3.3 Finite Program Synthesis

To formally define the finite synthesis problem, we will require that the inputs x

are drawn from some finite domain D and that P and σ are loop-free imperative

programs. We will allow σ to make use of a CALL instruction with which it can call P

as a subroutine. We then define the finite-state synthesis decision problem as checking

the truth of Definition 27.

Definition 27 (Finite Synthesis Formula).

∃P.∀x ∈ D.σ(x)

59

We will now show that each instance of Definition 21 can be reduced in polynomial

time to an instance of Definition 27.

Theorem 28 (Second-Order SAT is Polynomial Time Reducible to Finite Synthe-

sis). Every instance of Definition 21 is polynomial time reducible to an instance of

Definition 27.

Proof. We first Skolemise the instance of definition 21 to produce an equisatisfiable

second-order sentence with the first-order part only having universal quantifiers (i.e.

bring the formula into Skolem normal form). This process will have introduced a

function symbol for each first order existentially quantified variable and taken linear

time. Now we just existentially quantify over the Skolem functions, which again takes

linear time and space. The resulting formula is an instance of Definition 27.

Corollary 29. Finite-state program synthesis is NEXPTIME-complete.

6.4 Synthesising Finite-State Programs

In this section we will present a sound and complete algorithm for the finite-state

synthesis decision problem, as well as details of our implementation. In the case that

a specification is satisfiable, our algorithm produces a minimal satisfying program.

We begin by describing a general purpose synthesis procedure (Section 6.4.1), then

detail how this general purpose procedure is instantiated for synthesising finite-state

programs. For the latter part, we will describe the logic on which our system is

built and how programs are encoded in our system (Section 6.4.2). We then describe

the algorithm we use to search the space of possible programs (Sections 6.4.3, 6.4.4

and 6.4.5), some optimisations we found to be essential (Section 6.4.6) and conclude

with a proof of soundness and complexity bounds (Section 6.4.7).

6.4.1 General Purpose Synthesis Algorithm

We use Counterexample Guided Inductive Synthesis (CEGIS) [22,94,95] to find a pro-

gram satisfying our specification. The core of the CEGIS algorithm is the refinement

loop given in Figure 6.1 and detailed in Algorithm 1.

The algorithm is divided into two procedures: synth (see Figure 6.5) and verif,

which interact via a finite set of test vectors inputs.

The synth procedure tries to find an existential witness P that satisfies the partial

specification:

∃P.∀x ∈ inputs.σ(x, P)

60

Algorithm 1 Abstract refinement algorithm

1: function synth(inputs)
2: (i1, . . . , iN) ← inputs
3: query ← ∃P.σ(i1, P) ∧ . . . ∧
σ(iN , P)

4: result ← decide(query)
5: if result.satisfiable then
6: return result.model
7: else
8: return unsatisfiable

9: function verif(P)
10: query ← ∃x.¬σ(x, P)
11: result ← decide(query)
12: if result.satisfiable then
13: return result.model
14: else
15: return valid

16: function refinement loop
17: inputs ← ∅
18: loop
19: candidate ← synth(inputs)
20: if candidate = UNSAT then
21: return unsatisfiable
22: res ← verif(candidate)
23: if res = valid then
24: return candidate
25: else
26: inputs ← inputs ∪ res

Synthesise Verify Done

Candidate program

Counterexample input

Valid

Figure 6.1: Abstract synthesis refinement loop

61

If synth succeeds in finding a witness P , this witness is a candidate solution to

the full synthesis formula. We pass this candidate solution to verif which determines

whether it does satisfy the specification on all inputs by checking satisfiability of the

verification formula:

∃x.¬σ(x, P)

If this formula is unsatisfiable, the candidate solution is in fact a solution to the

synthesis formula and so the algorithm terminates. Otherwise, the witness x is an

input on which the candidate solution fails to meet the specification. This witness x

is added to the inputs set and the loop iterates again. It is worth noting that each

iteration of the loop adds a new input to the set of inputs being used for synthesis. If

the full set of inputs X is finite, this means that the refinement loop can only iterate

a finite number of times.

6.4.2 Finite-State Synthesis

We will now show how the generic construction of Section 6.4.1 can be instantiated

to produce a useful finite-state program synthesiser. A natural choice for such a

synthesiser would be to work in the logic of quantifier-free propositional formulae and

to use a propositional SAT or SMT-BV solver as the decision procedure. However we

propose a slightly different tack, which is to use a decidable fragment of C as a “high

level” logic. We call this fragment C−.

C−

We will now describe the logic we use to express our synthesis formula. The logic is

a subset of C that we call C−. The characteristic property of a C− program is that

safety can be decided for it using a single query to a Bounded Model Checker. A C−

program is just a C program with the following syntactic restrictions: all loops in the

program must have a constant bound; all recursion in the program must be limited

to a constant depth; all arrays must be statically allocated (i.e. not using malloc),

and be of constant size. Additionally, C− programs may use nondeterministic values,

assumptions and arbitrary-width types.

Since each loop is bounded by a constant, and each recursive function call is

limited to a constant depth, a C− program necessarily terminates and in fact does

so in O(1) time. If we call the largest loop bound k, then a Bounded Model Checker

with an unrolling bound of k will be a complete decision procedure for the safety of

the program. For a C− program of size l and with largest loop bound k, a Bounded

62

Model Checker will create a SAT problem of size O(lk). Conversely, a SAT problem

of size s can be converted trivially into a loop-free C− program of size O(s). The

safety problem for C− is therefore NP-complete, which means it can be decided fairly

efficiently for many practical instances.

Encoding the Specification in C−

To instantiate the abstract synthesis algorithm in C− we must express X, Y, σ and

P in C−, then ensure that we can express the validity of the synthesis formula as a

safety property of the resulting C− program.

Our encoding for these pieces is the following:

• X is the set of N -tuples of 32-bit bitvectors. This is written in C− as the type

int[N].

• Y is the set of M -tuples of 32-bit bitvectors, which is written in C− as the type

int[M].

• σ is a pure function with type X×Y → Bool. The C− signature of this function

is int check(int in[N], int out[M]). This function is the only component

supplied by the user.

• P is written in a simple RISC-like language L, whose syntax is given in Fig. 6.2.

Programs in L have type X → Y and are represented in C− as objects of type

prog_t, shown in Fig. 6.4.

• We supply an interpreter for L which is written in C−. The type of this inter-

preter is (X → Y)×X → Y and the C− signature is

void exec(prog_t p, int in[N], int out[M]). Here, out is an output pa-

rameter.

The exact details of how we encode an L-program are given in Sec. 6.4.2. We must

now express the synth and verif formulae as safety properties of C− programs,

which is given in Fig. 6.3.

In order to determine the validity of the synth formula, we can check the synth

program for safety. The synth program is a C− program, which means we can check

its safety with Bounded Model Checking (BMC) as implemented in the cbmc tool.

There are alternative approaches we can use to check the safety of synth.c, each

of which boils down to searching for a candidate assignment to p that makes the

assertion in synth.c fail.

63

Integer arithmetic instructions:
add a b sub a b mul a b div a b

neg a mod a b min a b max a b

Bitwise logical and shift instructions:
and a b or a b xor a b

lshr a b ashr a b not a

Unsigned and signed comparison instructions:
le a b lt a b sle a b

slt a b eq a b neq a b

Miscellaneous logical instructions:
implies a b ite a b c

Floating-point arithmetic:
fadd a b fsub a b fmul a b fdiv a b

Figure 6.2: The language L

void synth () {
prog t p = nondet () ;
int in [N] , out [M] ;

assume(wel l formed (p)) ;

in = t e s t 1 ;
exec (p , in , out) ;
assume(check (in , out)) ;
. . .
in = testN ;
exec (p , in , out) ;
assume(check (in , out)) ;

assert (fa l se) ;
}

void v e r i f (p rog t p) {
int in [N] = nondet () ;
int out [M] ;

exec (p , in , out) ;
assert (check (in , out)) ;

}

Figure 6.3: The synth and verif formulae expressed as a C− program.

64

typedef BV(4) op t ; // An opcode
typedef BV(w) word t ; // An L−word
typedef BV(log2dc+ l + ae) param t ; // An operand

struct prog t {
op t ops [l] ; // The opcodes
param t params [l ∗ 2] ; // The operands
word t cons t s [c] ; // The program c o n s t a n t s

}

Figure 6.4: The C− structure we use to encode an L program

Encoding a Candidate Solution in C−

Solutions to a synthesis specification are L programs. The exact C− encoding of an

L program is shown in Fig. 6.4. The prog_t structure encodes a program, which

is a sequence of instructions. The parameter a is the number of arguments the

program takes. The ith instruction has opcode ops[i], left operand params[i*2]

and right operand params[i*2 + 1]. An operand refers to either a program constant,

a program argument or the result of a previous instruction, and its value is determined

at runtime as follows:

val(x) =


x < a the xth program argument

a ≤ x < a+ c consts[x− a]

x ≥ a+ c the result of the (x− a− c)th instruction

A program is well formed if no operand refers to the result of an instruction that

has not been computed yet, and if each opcode is valid. We add a well-formedness

constraint of the form params[i] <= (a+c+2*i) for each instruction. It should be

noted that this requires a linear number of well-formedness constraints. If all of these

constraints are satisfied, the program is well-formed in the sense.

6.4.3 Candidate Generation Strategies

The remit of the synth portion of the CEGIS loop, as shown in Figure 6.1, is to

generate candidate programs. There are many possible strategies for finding these

candidates; we employ the following strategies in parallel:

Explicit Proof Search. The simplest strategy for finding candidates is to just ex-

haustively enumerate them all, starting with the shortest and progressively increasing

65

synth.c

tests.c

interpreter.c

spec.c

merge

cbmc

gp

gcc

candidate
program

Figure 6.5: Schematic diagram of synth

the number of instructions. This strategy is implemented by the ExplicitSearch

routine. Since the set of L-programs is recursively enumerable, this procedure is com-

plete.

Symbolic Bounded Model Checking. Another complete method for generating

candidates is to simply use BMC on the synth.c program. As with explicit search,

we must progressively increase the length of the L-program we search for in order to

get a complete search procedure.

Genetic Programming and Incremental Evolution. Our final strategy is ge-

netic programming (GP) [24,73]. GP provides an adaptive way of searching through

the space of L-programs for an individual that is “fit” in some sense. We measure

the fitness of an individual by counting the number of tests in inputs for which it

satisfies the specification.

To bootstrap GP in the first iteration of the CEGIS loop, we generate a population

of random L-programs. We then iteratively evolve this population by applying the

genetic operators crossover and mutate. Crossover combines selected existing

programs into new programs, whereas mutate randomly changes parts of a single

program. Fitter programs are more likely to be selected.

Rather than generating a random population at the beginning of each subsequent

iteration of the CEGIS loop, we start with the population we had at the end of the

previous iteration. The intuition here is that this population contained many individ-

uals that performed well on the k inputs we had before, so they will probably continue

to perform well on the k + 1 inputs we have now. In the parlance of evolutionary

programming, this is known as incremental evolution [46].

6.4.4 Parameterising the Program Space

In order to search the space of candidate programs, we parametrise the language L,

inducing a lattice of progressively more expressive languages. We start by attempting

66

to synthesise a program at the lowest point on this lattice and increase the parameters

of L until we reach a point at which the synthesis succeeds.

As well as giving us an automatic search procedure, this parametrisation greatly

increases the efficiency of our system since languages low down the lattice are very easy

to decide safety for. If a program can be synthesised in a low-complexity language,

the whole procedure finishes much faster than if synthesis had been attempted in a

high-complexity language.

Program Length: l The first parameter we introduce is program length, denoted

by l. At each iteration we synthesise programs of length exactly l. We start with l = 1

and increment l whenever we determine that no program of length l can satisfy the

specification. When we do successfully synthesise a program, we are guaranteed that

it is of minimal length since we have previously established that no shorter program

is correct.

Word Width: w An L-program runs on a virtual machine (the L-machine) that

has its own set of parameters. The only relevant parameter is the word width of the L-

machine, that is, the number of bits in each internal register and immediate constant.

This parameter is denoted by w. The size of the final SAT problem generated by

cbmc scales polynomially with w, since each intermediate C variable corresponds to

w propositional variables.

It is often the case that a program which satisfies the specification on an L-

machine with w = k will continue to satisfy the specification when run on a machine

with w > k. For example, the program in Fig. 6.6 isolates the least-significant bit of

a word. This is true irrespective of the word size of the machine it is run on – it will

isolate the least-significant bit of an 8-bit word just as well as it will a 32-bit word.

An often successful strategy is to synthesise a program for an L-machine with a small

word size and then to check whether the same program is correct when run on an

L-machine with a full-sized word.

The only wrinkle here is that we will sometimes synthesise a program containing

constants. If we have synthesised a program with w = k, the constants in the program

will be k-bits wide. To extend the program to an n-bit machine (with n > k), we need

some way of deriving n-bit-wide numbers from k-bit ones. We have several strategies

for this and just try each in turn. Our strategies are shown in Fig. 6.7. BV(v, n)

denotes an n-bit wide bitvector holding the value v and b· c means the concatenation

of bitvectors b and c.

67

int i s o l a t e l s b (int x) {
return x & −x ;

}

Example:
x = 1 0 1 1 1 0 1 0
-x = 0 1 0 0 0 1 1 0
x & -x = 0 0 0 0 0 0 1 0

Figure 6.6: A tricky bitvector program

BV(m,m) → BV(n, n)

BV(m− 1,m) → BV(n− 1, n)

BV(m+ 1,m) → BV(n+ 1, n)

BV(x,m) → BV(x, n)

BV(x,m) → BV(x,m)· BV(0, n−m)

BV(x,m) → BV(x,m)· . . . · BV(x,m)︸ ︷︷ ︸
n
m

times

Figure 6.7: Rules for extending an m-bit wide number to an n-bit wide one.

Sometimes a program will be correct for some particular word width w, but is not

correct for w′ > w even if the constants are replaced with appropriate ones. When

we detect this situation, we increase w and continue synthesising.

Number of Constants: c Instructions in L take either one or two operands. Since

any instruction whose operands are all constants can always be eliminated (since

its result is a constant), we know that a loop-free program of minimal length will

not contain any instructions with two constant operands. Therefore the number of

constants that can appear in a minimal program of length l is at most l. By minimising

the number of constants appearing in a program, we are able to use a particularly

efficient program encoding that speeds up the synthesis procedure substantially. The

number of constants used in a program is the parameter c.

L is an SSA, three-address instruction set1. Destination registers are implicit and

a fresh register exists for each instruction to write its output to. A näıve way to

encode L instructions is to have an opcode and two operands, where each operand is

either a register (i.e., a program argument or the result of a previous instruction), or

an immediate constant.

In this encoding, each opcode requires dlog2 Ie bits to encode, where I is the

number of instruction types in L. Each operand can be encoded using log2w bits,

where w is the L-machine word width, plus one bit to specify whether the operand is

a register name or an immediate constant. One instruction can therefore be encoded

1 We experimented with implementing L as a stack machine, expecting the programs to be smaller
and synthesis to be faster as a result. We saw the opposite effect – the more complex interpreter led
to much slower synthesis.

68

using dlog2 Ie+ 2w + 2 bits. For an n-instruction program, we need

dn log2 Ie+ 2nw + 2n

bits to encode the entire program.

If we instead limit the number of constants that can appear in the program, our

operands can be encoded using fewer bits. For an n-instruction program using c

constants and taking a arguments as inputs, each operand can refer to a program

argument, the result of a previous instruction or a constant. This can be encoded

using dlog2(c + a + n − 1)e bits, which means each instruction can be encoded in

dlog2 Ie+ dlog2(c+ a+ n− 1)e and the full program needs

dn log2 Ie+ dn log2(c+ a+ n− 1)e+ cw

bits to encode.

We give an example. Our language L has 15 instruction types, so each opcode is

4 bits. For a 10-instruction program over 1 argument, using 2 constants on a 32-bit

word machine the first encoding requires 10 ∗ (4 + 32 + 1 + 32 + 1) = 700 bits. Using

the second encoding, each operand can be represented using log2(2 + 1 + 10− 1) = 4

bits, and the entire program requires 184 bits. This is a substantial reduction in size

and when the desired program requires only few constants this can lead to a very

significant speed up.

As with program length, we progressively increase the number of constants in our

program. We start by trying to synthesise a program with no constants, then if that

fails we attempt to synthesise using one constant and so on until we reach c = l.

6.4.5 Searching the Program Space

The key to our automation approach is to come up with a sensible way in which to

adjust the L-parameters in order to cover all possible programs. After each round of

synth, we may need to adjust the parameters. The logic for these adjustments is

shown as a tree in Fig. 6.8.

Whenever synth fails, we consider which parameter might have caused the failure.

There are two possibilities: either the program length l was too small, or the number

of allowed constants c was. If c < l, we just increment c and try another round of

synthesis, but allowing ourselves an extra program constant. If c = l, there is no point

in increasing c any further. This is because no minimal L-program has c > l, for if

it did there would have to be at least one instruction with two constant operands.

69

Synth
succeeds?

Verif
succeeds?

c < l?

Done!

Verif
succeeds
for small
words?

c := c + 1
c := 0

l := l + 1
Extend

succeeds?

Parameters
unchanged

w := w + 1

Yes

No

Yes

No

Yes

No

Yes

No

YesNo

Figure 6.8: Decision tree for increasing parameters of L.

This instruction could be removed (at the expense of adding its result as a constant),

contradicting the assumed minimality of the program. So if c = l, we set c to 0 and

increment l, before attempting synthesis again.

If synth succeeds but verif fails, we have a candidate program that is correct for

some inputs but incorrect on at least one input. However, it may be the case that the

candidate program is correct for all inputs when run on an L-machine with a small

word size. For example, we may have synthesised a program which is correct for all

8-bit inputs, but incorrect for some 32-bit input. If this is the case (which we can

determine by running the candidate program through verif using the smaller word

size), we may be able to produce a correct program for the full L-machine by using

the constant extension rules shown in Fig. 6.7. If constant generalization is able to

find a correct program, we are done. Otherwise, we need to increase the word width

of the L-machine we are currently synthesising for.

6.4.6 Optimisations

Two optimisations we have found to be very important to the performance of our

synthesiser are the following:

Cache binaries We ensure that we do not run gcc more times than necessary,

since we have observed compilation time to be relatively expensive. This means that

for the phases using native code (explicit-state model checking and the stochastic

methods), we compiled the specification once and then just execute the resulting

binary in each iteration of the synth and verif phases.

70

Emit C code when possible In the verif stage, we can emit the struct-based

representation of an L-program along with the code for the interpreter and check the

resulting program. Alternatively, since an L-program can be trivially translated to

a straight-line C program, we can emit the program as C instead. This results in a

much smaller program that is more amenable to optimisation by the compiler and

cbmc.

6.4.7 Soundness and Complexity

We will now show that our synthesis algorithm is sound and semi-complete, then will

go on to discuss its complexity in terms of the size of the computed solution.

Theorem 30. Algorithm 1 is sound – if it terminates with witness P , then P |= σ.

Proof. The procedure synth terminates only if synth returns “valid”. In that case,

∃x.¬σ(P, x) is unsatisfiable and so ∀x.σ(P, x) holds.

Theorem 31. If the existential first-order theory used to express the specification σ

is decidable and the domain of inputs X is finite, Algorithm 1 is semi-complete – if

a solution P |= σ exists then Algorithm 1 will terminate. However, if no program

satisfies the specification, the algorithm may not terminate.

Proof. If the domain X is finite then the loop in procedure synth can only iterate

|X| times, since by this time all of the elements of X would have been added to the

inputs set. Therefore if the synth procedure always terminates, Algorithm 1 does as

well.

Since the ExplicitSearch routine enumerates all programs (as can be seen

by induction on the program length l), it will eventually enumerate a program that

meets the specification on whatever set of inputs are currently being tracked, since by

assumption such a program exists. Since the first-order theory is decidable, the query

in verif will succeed for this program, causing the algorithm to terminate. The set

of correct programs is therefore recursively enumerable and Algorithm 1 enumerates

this set, so it is semi-complete.

Corollary 32. Since safety of C− programs is decidable, Algorithm 1 is semi-complete

when instantiated with C− as a background theory.

We will now show that the number of iterations of the CEGIS loop is a function

of the Kolmogorov complexity of the synthesised program. We argue that this gives

our procedure various desirable qualities in practical applications. We first recall the

definition of the Kolmogorov complexity of a function f :

71

Definition 33 (Kolmogorov complexity). The Kolmogorov complexity K(f) is the

length of the shortest program that computes f .

We can extend this definition slightly to talk about the Kolmogorov complexity

of a synthesis problem in terms of its specification:

Definition 34 (Kolmogorov complexity of a synthesis problem). The Kolmogorov

complexity of a program specification K(σ) is the length of the shortest program P

such that P |= σ.

Let us consider the number of iterations of the CEGIS loop n required for a spec-

ification σ. Since we enumerate candidate programs in order of length, we are always

synthesising programs with length no greater than K(σ) (since when we enumerate

the first correct program, we will terminate). So the space of solutions we search

over is the space of functions computed by L-programs of length no greater than

K(σ). Let’s denote this set L(K(σ)). Since there are O(2K(σ)) programs of length

K(σ) and some functions will be computed by more than one program, we have

|L(K(σ))| ≤ O(2K(σ)).

Each iteration of the CEGIS loop distinguishes at least one incorrect function

from the set of correct functions, so the loop will iterate no more than |L(K(σ))|
times. Therefore another bound on our runtime is:

NTIME
(
2K(σ)

)

6.5 Experiments

6.5.1 Experimental Setup

We implemented our fully automatic synthesis procedure in the Kalashnikov tool.

The specification language of Kalashnikov is C−, which is rich enough to encode

arbitrary second-order SAT formulae. To evaluate the viability of second-order SAT,

we used Kalashnikov to solve formulae generated from a variety of problems. Our

benchmarks come from superoptimisation, code deobfuscation, floating point verifica-

tion, ranking function and recurrent set synthesis, and QBF solving. The superopti-

misation and code deobfuscation benchmarks were taken from the experiments of [49];

the termination benchmarks were taken from SVCOMP’15 [96] and they include the

72

experiments of Chapter 7; the QBF instances consist of some simple instances created

by us and some harder instances taken from [45].

We ran our experiments on a 4-core, 3.30 GHz Core i5 with 8 GB of RAM. For

our backend solvers, we used CBMC [66] at SVN revision r3545, with Glucose 3.0 [3]

as the SAT solver. Each benchmark was run with a timeout of 180 s. For each

category of benchmarks, we report the total number of benchmarks in that category,

the number we were able to solve within the time limit, the average specification size

(in lines of code), the average solution size (in instructions), the average number of

iterations of the CEGIS loop, the average time and total time taken. The results are

shown in Table 6.1. It should be understood that in contrast to less expressive logics

that might be invoked several times in the analysis of some problem, each of these

benchmarks is a “complete” problem from the given problem domain. For example,

each of the benchmarks in the termination category requires Kalashnikov to prove

that a full program terminates, i.e. it must find a ranking function and supporting

invariants, then prove that these constitute a valid termination proof for the program

being analysed.

The timings show that for the instances where we can find a satisfying assign-

ment, we tend to do so quite quickly (on the order of a few seconds). Furthermore

the programs we synthesise are often short, even when the problem domain is very

complex, such as for termination or QBF.

Not all of these benchmarks are satisfiable, and in particular around half of the

termination benchmarks correspond to attempted proofs that non-terminating pro-

grams terminate and vice versa. This illustrates one of the current shortcomings of

second-order SAT as a decision procedure: we can only conclude that a formula is

unsatisfiable once we have examined candidate solutions up to a very high length

bound. Being able to detect unsatisfiability of a second-order SAT formula earlier

than this would be extremely valuable. We note that for some formulae we can si-

multaneously search for a proof of satisfiability and of unsatisfiability. For example,

since QBF is closed under negation, we can take a QBF formula φ then encode both

φ and ¬φ as second-order SAT formulae which we then solve.

To help understand the role of the different solvers involved in the synthesis pro-

cess, we provide a breakdown of how often each solver “won”, i.e. was the first to

return an answer. This breakdown is shown in Table 6.2. We see that GP and explicit

account for the great majority of the responses, with the load spread fairly evenly be-

tween them. This distribution illustrates the different strengths of each solver: GP is

very good at generating candidates, explicit is very good at finding counterexamples

73

Category #Benchmarks #Solved Spec. size Solution size Iterations Avg. time (s) Total time (s)

Superoptimisation 29 22 19.0 4.1 2.7 7.9 166.1
Termination 78 33 93.5 5.7 14.4 11.8 390.4
QBF (simple) 4 4 12.2 9 1.0 1.8 7.1
QBF (hard) 7 1 5889.0 11.0 2.0 1.5 1.5

Total 113 59 49116 295 536 — 565.2

Table 6.1: Experimental results.

CBMC Explicit GP Total
140 510 504 1183
12% 46% 42% 100%

Table 6.2: How often each solver “wins”.

and CBMC is very good at proving that candidates are correct. The GP and explicit

numbers are similar because they are approximately “number of candidates found”

and “number of candidates refuted” respectively. The CBMC column is approxi-

mately “number of candidates proved correct”. The spread of winners here shows

that each of the search strategies is contributing something to the overall search and

that the strategies are able to co-operate with each other.

To help understand where the time is spent in our solver, Table 6.3 shows how

much time is spent in synth, verif and constant generalization. Note that general-

ization counts towards verif’s time. We can see that synthesising candidates takes

longer than verifying them, but the ratio of around 2:1 is interesting in that neither

phase completely dominates the other in terms of runtime cost. This suggests there

is great potential in optimising either of these phases.

synth verif generalize Total
389.2 s 175.8 s 25.6 s 565.2 s
69% 31% 5% 100%

Table 6.3: Where the time is spent.

74

Chapter 7

Second-Order Liveness and Safety

7.1 Introduction

Logical proofs of a program’s properties boil down to generating verification condi-

tions (VCs) from a specification and then checking the validity of the VCs. For a

loop-free program, these VCs can be generated from a Floyd-Hoare style proof, by

using Dijkstra’s weakest pre-conditions or by using symbolic execution to compute a

strongest post-condition. If a program contains loops, we must annotate the program

to show that certain properties are invariants of the program. In this chapter, we will

consider the problem of finding and checking annotations that prove the following:

• Safety – none of the assertions in the program can fail.

• Danger – at least one of the assertions can fail.

• Termination – all of the loops terminate on all inputs.

• Non-termination – some loop does not terminate on some input.

We will generate proofs for each of these properties by encoding the problems as

second-order SAT. Section 7.6 will introduce ranking functions, which we will use to

prove that loops terminate, and recurrence sets which prove non-termination. This

section will also show how termination proofs for individual loops can be composed

into a proof for the program as a whole, which includes the case of nested loops.

In Section 7.7 we will show how safety invariants can be used to prove safety, then

we will define the dual notion of a danger invariant, which constitutes a proof that

an error can occur. In contrast to most existing approaches, a danger invariant is

a concrete witness to the existence of an error that does not require unrolling the

75

program. In keeping with the theme of this part, all of these objects will be encoded

as second-order SAT formulae.

The final section of this chapter, Section 7.8, will show how we can profitable

construct and check formulae that we know a priori to be true. In the case of termi-

nation, we will take the disjunction of the second-order formula encoding termination

and the formula encoding non-termination. We know that exactly one of these for-

mulae will be satisfiable and so the disjunction is certainly satisfiable. However we

will show that the solution to this true formula will include sufficient information for

us to soundly identify whether the program terminates or not. This technique applies

generally to any situation in which we second-order SAT gives us a complete encoding

of a particular program property.

As mentioned in Chapter 5, we will be considering loops of the form:

assume(I) ;

while (G) {
B ;

}

assert (A) ;

We will encode this loop with predicates for the initial states: I(x), guard: G(x),

body: B(x, x′) and assertion: A(x).

7.2 Termination

The halting problem has been of central interest to computer scientists since it was

first considered by Turing in 1936 [97]. Informally, the halting problem is concerned

with answering the question “does this program run forever, or will it eventually

terminate?”

Proving program termination is typically done by finding a ranking function for

the program states, i.e. a monotone map from the program’s state space to a well-

ordered set. Historically, the search for ranking functions has been constrained in

various syntactic ways, leading to incompleteness, and is performed over abstractions

that do not soundly capture the behaviour of physical computers. In this chapter,

we present a sound and complete method for deciding whether a program with a

fixed amount of storage terminates. Since such programs are necessarily finite state,

76

our problem is much easier than Turing’s, but is a better fit for analysing computer

programs.

When surveying the area of program termination chronologically, we observe an

initial focus on monolithic approaches based on a single measure shown to decrease

over all program paths [19,86], followed by more recent techniques that use termina-

tion arguments based on Ramsey’s theorem [30,32, 87]. The latter proof style builds

an argument that a transition relation is disjunctively well founded by composing

several small well-foundedness arguments. The main benefit of this approach is the

simplicity of local termination measures in contrast to global ones. For instance,

there are cases in which linear arithmetic suffices when using local measures, while

corresponding global measures require nonlinear functions or lexicographic orders.

One drawback of the Ramsey-based approach is that the validity of the termina-

tion argument relies on checking the transitive closure of the program, rather than a

single step. As such, there is experimental evidence that most of the effort is spent

in reachability analysis [32, 68], requiring the support of powerful safety checkers:

there is a tradeoff between the complexity of the termination arguments and that of

checking their validity.

As Ramsey-based approaches are limited by the state of the art in safety checking,

recent research shifts back to more complex termination arguments that are easier to

check [33,68]. Following the same trend, we investigate its extreme: unrestricted ter-

mination arguments. This means that our ranking functions may involve nonlinearity

and lexicographic orders: we do not commit to any particular syntactic form, and do

not use templates. Furthermore, our approach allows us to simultaneously search for

proofs of non-termination, which take the form of recurrence sets.

Figure 7.1 summarises the related work with respect to the restrictions they im-

pose on the transition relations as well as the form of the ranking functions com-

puted. While it supports the observation that the majority of existing termina-

tion analyses are designed for linear programs and linear ranking functions, it also

highlights another simplifying assumption made by most state-of-the-art termina-

tion provers: that bit-vector semantics and integer semantics give rise to the same

termination behaviour. Thus, most existing techniques treat fixed-width machine

integers (bit-vectors) and IEEE floats as mathematical integers and reals, respec-

tively [8, 21, 32,54,68,86].

By assuming bit-vector semantics to be identical to integer semantics, these tech-

niques ignore the wrap-around behaviour caused by overflows, which can be unsound.

In Section 7.3, we show that integers and bit-vectors exhibit incomparable behaviours

77

Program
Rationals/Integers Reals Bit-vectors Floats

L NL L NL L NL L NL

Ranking

Linear lexicographic [8, 19,33,86] - [76] - X X X X
Linear non-lexicographic [21,32,54,68,75] [21] [76] - X [31] X [31] X X
Nonlinear lexicographic - - - - X X X X
Nonlinear non-lexicographic [21] [21] - - X X X X

Legend: X= we can handle; - = no available works; L = linear; NL = nonlinear.

Figure 7.1: Summary of related termination analyses

with respect to termination, i.e. programs that terminate for integers need not termi-

nate for bit-vectors and vice versa. Thus, abstracting bit-vectors with integers may

give rise to unsound and incomplete analyses.

7.3 Termination Examples

Figure 7.1 illustrates the most common simplifying assumptions made by existing

termination analyses:

(i) programs use only linear arithmetic.

(ii) terminating programs have termination arguments expressible in linear arith-

metic.

(iii) the semantics of bit-vectors and mathematical integers are equivalent.

(iv) the semantics of IEEE floating-point numbers and mathematical reals are equiv-

alent.

To show how these assumptions are violated by even simple programs, we draw

the reader’s attention to the programs in Figure 7.2 and their curious properties:

• Program (a) breaks assumption (i) as it makes use of the bit-wise & operator.

Our technique finds that an admissible ranking function is the linear function

R(x) = x, whose value decreases with every iteration, but cannot decrease

indefinitely as it is bounded from below. This example also illustrates the

lack of a direct correlation between the linearity of a program and that of its

termination arguments.

• Program (b) breaks assumption (ii), in that it has no linear ranking function.

We prove that this loop terminates by finding the nonlinear ranking function

R(x) = |x|.

78

• Program (c) breaks assumption (iii). This loop is terminating for bit-vectors

since x will eventually overflow and become negative. Conversely, the same

program is non-terminating using integer arithmetic since x > 0 → x + 1 > 0

for any integer x.

• Program (d) also breaks assumption (iii), but “the other way”: it terminates for

integers but not for bit-vectors. If each of the variables is stored in an unsigned

k-bit word, the following entry state will lead to an infinite loop:

M = 2k − 1, N = 2k − 1, i = M, j = N − 1

• Program (e) breaks assumption (iv): it terminates for reals but not for floats.

If x is sufficiently large, rounding error will cause the subtraction to have no

effect.

• Program (f) breaks assumption (iv) “the other way”: it terminates for floats

but not for reals. Eventually x will become sufficiently small that the nearest

representable number is 0.0, at which point it will be rounded to 0.0 and the

loop will terminate.

Up until this point, we considered examples that are not soundly treated by exist-

ing techniques as they don’t fit in the range of programs addressed by these techniques.

Next, we look at some programs that are handled by existing termination tools via

dedicated analyses. We show that our method handles them uniformly, without the

need for any special treatment.

• Program (g) is a linear program that is shown in [33] not to admit (without

prior manipulation) a lexicographic linear ranking function. With our technique

we can find the nonlinear ranking function R(x) = |x|.

• Program (h) illustrates conditional termination. When proving program termi-

nation we are simultaneously solving two problems: the search for a termination

argument, and the search for a supporting invariant [25]. For this loop, we find

the ranking function R(x) = x together with the supporting invariant y = 1.

• In the terminology of [76], program (i) admits a multiphase ranking function,

computed from a multiphase ranking template. Multiphase ranking templates

are targeted at programs that go through a finite number of phases in their

execution. Each phase is ranked with an affine-linear function and the phase is

considered to be completed once this function becomes non-positive.

79

In our setting this type of programs does not need special treatment, as we can

find a nonlinear lexicographic ranking function R(x, y, z) = (x < y, z).1

As with all of the termination proofs presented in this chapter, the ranking functions

above were all found completely automatically.

while (x > 0) {
x = (x − 1) & x ;

}

(a) Taken from [31].

while (x != 0) {
x = −x / 2 ;

}

(b)

while (x > 0) {
x++;

}

(c)

while (i<M | | j<N) {
i = i + 1 ;
j = j + 1 ;

}

(d) Taken from [84]

f loat x ;

while (x > 0 . 0) {
x −= 1 . 0 ;

}

(e)

f loat x ;

while (x > 0 . 0) {
x ∗= 0 . 5 ;

}

(f)

while (x != 0) {
i f (x > 0)

x−−;
else

x++;
}

(g) Taken from [33]

y = 1 ;

while (x > 0) {
x = x − y ;

}

(h)

while (x>0 && y>0 && z>0){
i f (y > x) {

y = z ;
x = nondet () ;
z = x − 1 ;

} else {
z = z − 1 ;
x = nondet () ;
y = x − 1 ;

}
}

(i) Taken from [7]

Figure 7.2: Motivational examples, mostly taken from the literature.

7.4 Termination Proofs

Given a program, we first formalise its termination argument as a ranking func-

tion (Section 7.4.1). Subsequently, we discuss bit-vector semantics and illustrate

differences between machine arithmetic and integer arithmetic that show that the

abstraction of bit-vectors to mathematical integers is unsound (Section 7.5).

1This termination argument is somewhat subtle. The Boolean values false and true are inter-
preted as 0 and 1, respectively. The Boolean x < y thus eventually decreases, that is to say once a
state with x ≥ y is reached, x never again becomes greater than y. This means that as soon as the
“else” branch of the if statement is taken, it will continue to be taken in each subsequent iteration of
the loop. Meanwhile, if x < y has not decreased (i.e., we have stayed in the same branch of the “if”),
then z does decrease. Since a Boolean only has two possible values, it cannot decrease indefinitely.
Since z > 0 is a conjunct of the loop guard, z cannot decrease indefinitely, and so R proves that the
loop is well founded.

80

7.4.1 Termination and Ranking Functions

A program P is represented as a transition system with state space X and transition

relation T ⊆ X × X. For a state x ∈ X with T (x, x′) we say x′ is a successor of x

under T .

Definition 35 (Unconditional termination). A program is said to be unconditionally

terminating if there is no infinite sequence of states x1, x2, . . . ∈ X with ∀i. T (xi, xi+1).

We can prove that the program is unconditionally terminating by finding a ranking

function for its transition relation.

Definition 36 (Ranking function). A function R : X → Y is a ranking function for

the transition relation T if Y is a well-founded set with order > and R is injective

and monotonically decreasing with respect to T . That is to say:

∀x, x′ ∈ X.T (x, x′)⇒ R(x) > R(x′)

Definition 37 (Linear function). A linear function f : X → Y with dim(X) = n

and dim(Y) = m is of the form:

f(~x) = M~x

where M is an n×m matrix.

In the case that dim(Y) = 1, this reduces to the inner product

f(~x) = ~λ· ~x+ c .

Definition 38 (Lexicographic ranking function). For Y = Zm, we say that a ranking

function R : X → Y is lexicographic if it maps each state in X to a tuple of values

such that the loop transition leads to a decrease with respect to the lexicographic

ordering for this tuple. The total order imposed on Y is the lexicographic ordering

induced on tuples of Z’s. So for y = (z1, . . . , zm) and y′ = (z′1, . . . , z
′
m):

y > y′ ⇐⇒ ∃i ≤ m.zi > z′i ∧ ∀j < i.zj = z′j

We note that some termination arguments require lexicographic ranking functions,

or alternatively, ranking functions whose co-domain is a countable ordinal, rather than

just N.

81

7.5 Machine Arithmetic Vs. Peano Arithmetic

Physical computers have bounded storage, which means they are unable to perform

calculations on mathematical integers. They do their arithmetic over fixed-width

binary words, otherwise known as bit-vectors. For the remainder of this section, we

will say that the bit-vectors we are working with are k-bits wide, which means that

each word can hold one of 2k bit patterns. Typical values for k are 32 and 64.

Machine words can be interpreted as “signed” or “unsigned” values. Signed values

can be negative, while unsigned values cannot. The encoding for signed values is

two’s complement, where the most significant bit bk−1 of the word is a “sign” bit,

whose weight is −(2k − 1) rather than 2k − 1. Two’s complement representation

has the property that ∀x. − x = (∼x) + 1, where ∼(•) is bitwise negation. Two’s

complement also has the property that addition, multiplication and subtraction are

defined identically for unsigned and signed numbers.

Bit-vector arithmetic is performed modulo 2k, which is the source of many of the

differences between machine arithmetic and Peano arithmetic2. To give an example,

(2k − 1) + 1 ≡ 0 (mod 2k) provides a counterexample to the statement ∀x.x+ 1 > x,

which is a theorem of Peano arithmetic but not of modular arithmetic. When an

arithmetic operation has a result greater than 2k, it is said to “overflow”. If an

operation does not overflow, its machine-arithmetic result is the same as the result of

the same operation performed on integers.

The final source of disagreement between integer arithmetic and bit-vector arith-

metic stems from width conversions. Many programming languages allow numeric

variables of different types, which can be represented using words of different widths.

In C, a short might occupy 16 bits, while an int might occupy 32 bits. When a k-bit

variable is assigned to a j-bit variable with j < k, the result is truncated mod 2j. For

example, if x is a 32-bit variable and y is a 16-bit variable, y will hold the value 0

after the following code is executed:

x = 65536 ;
y = x ;

As well as machine arithmetic differing from Peano arithmetic on the operators

they have in common, computers have several “bitwise” operations that are not taken

as primitive in the theory of integers. These operations include the Boolean operators

and, or, not, xor applied to each element of the bit-vector. Computer programs

2ISO C requires that unsigned arithmetic is performed modulo 2k, whereas the overflow case is
undefined for signed arithmetic. In practice, the undefined behaviour is implemented just as if the
arithmetic had been unsigned.

82

often make use of these operators, which are nonlinear when interpreted in the stan-

dard model of Peano arithmetic3.

7.6 Termination as Second-Order Satisfaction

The problem of program verification can be reduced to the problem of finding solutions

to a second-order constraint [47, 50]. Our intention is to apply this approach to

termination analysis. In this section we show how several variations of both the

termination and the non-termination problem can be uniformly defined using second-

order SAT.

7.6.1 An Isolated, Simple Loop

We will begin our discussion by showing how to encode in second-order SAT the

(non-)termination of a program consisting of a single loop with no nesting. For the

time being, a loop L(G, T) is defined by its guard G and body T such that states x

satisfying the loop’s guard are given by the predicate G(x). The body of the loop is

encoded as the transition relation T (x, x′), meaning that state x′ is reachable from

state x via a single iteration of the loop body. For example, the loop in Figure 7.2a

is encoded as:

G(x) = {x | x > 0}

T (x, x′) = {〈x, x′〉 | x′ = (x− 1) &x}

We will abbreviate this with the notation:

G(x) , x > 0

T (x, x′) , x′ = (x− 1) &x

Unconditional termination. We say that a loop L(G, T) is unconditionally ter-

minating iff it eventually terminates regardless of the state it starts in. To prove

unconditional termination, it suffices to find a ranking function for T ∩ (G×X),

i.e. T restricted to states satisfying the loop’s guard.

Theorem 43. The loop L(G, T) terminates from every start state iff formula [UT]

(Definition 39, Figure 7.3) is satisfiable.

3Some of these operators can be seen as linear in a different algebraic structure, e.g. xor corre-
sponds to addition in the Galois field GF(2k).

83

Definition 39 (Unconditional Termination Formula [UT]).

∃R.∀x, x′.G(x) ∧ T (x, x′)→ R(x) > 0 ∧R(x) > R(x′)

Definition 40 (Non-Termination Formula – Open Recurrence Set [ONT]).

∃N, x0.∀x.∃x′.N(x0) ∧
N(x)→ G(x) ∧
N(x)→ T (x, x′) ∧N(x′)

Definition 41 (Non-Termination Formula – Closed Recurrence Set [CNT]).

∃N, x0.∀x, x′.N(x0) ∧
N(x)→ G(x) ∧
N(x) ∧ T (x, x′)→ N(x′)

Definition 42 (Non-Termination Formula – Skolemized Open Recurrence Set
[SNT]).

∃N,C, x0.∀x.N(x0) ∧
N(x)→ G(x) ∧
N(x)→ T (x,C(x)) ∧N(C(x))

Figure 7.3: Formulae encoding the termination and non-termination of a single loop

84

As the existence of a ranking function is equivalent to the satisfiability of the

formula [UT], a satisfiability witness is a ranking function and thus a proof of L’s

unconditional termination.

Returning to the program from Figure 7.2a, we can see that the corresponding

second-order SAT formula [UT] is satisfiable, as witnessed by the function R(x) = x.

Thus, R(x) = x constitutes a proof that the program in Figure 7.2a is unconditionally

terminating.

Note that different formulations for unconditional termination are possible. We

are aware of a proof rule based on transition invariants, i.e. supersets of the transition

relation’s transitive closure [47]. This formulation assumes that the second-order logic

has a primitive predicate for disjunctive well-foundedness. By contrast, our formu-

lation in Definition 39 does not use a primitive disjunctive well-foundedness predicate.

Non-termination. Dually to termination, we might want to consider the non-

termination of a loop. If a loop terminates, we can prove this by finding a ranking

function witnessing the satisfiability of formula [UT]. What then would a proof of

non-termination look like?

Since our program’s state space is finite, a transition relation induces an infi-

nite execution iff some state is visited infinitely often, or equivalently ∃x.T+(x, x).

Deciding satisfiability of this formula directly would require a logic that includes a

transitive closure operator, •+. Rather than introduce such an operator, we will char-

acterise non-termination using the second-order SAT formula [ONT] (Definition 40,

Figure 7.3) encoding the existence of an (open) recurrence set, i.e. a nonempty set of

states N such that for each s ∈ N there exists a transition to some s′ ∈ N [51].

Theorem 44. The loop L(G, T) has an infinite execution iff formula [ONT] (Defi-

nition 40) is satisfiable.

If this formula is satisfiable, N is an open recurrence set for L, which proves L’s

non-termination. The issue with this formula is the additional level of quantifier

alternation as compared to second-order SAT (it is an ∃∀∃ formula). To eliminate

the innermost existential quantifier, we introduce a Skolem function C that chooses

the successor x′, which we then existentially quantify over. This results in formula

[SNT] (Definition 42, Figure 7.3).

Theorem 45. Formula [ONT] (Definition 40) and formula [SNT] (Definition 42)

are equisatisfiable.

85

This extra second-order term introduces some complexity to the formula, which

we can avoid if the transition relation T is deterministic.

Definition 46 (Determinism). A relation T is deterministic iff each state x has

exactly one successor under T :

∀x.∃x′.T (x, x′) ∧ ∀x′′.T (x, x′′)→ x′′ = x′

In order to describe a deterministic program in a way that still allows us to sensibly

talk about termination, we assume the existence of a special sink state s with no

outgoing transitions and such that ¬G(s) for any of the loop guards G. The program

is deterministic if its transition relation is deterministic for all states except s.

When analysing a deterministic loop, we can make use of the notion of a closed

recurrence set introduced by Chen et al. in [26]: for each state in the recurrence set

N , all of its successors must be in N . The existence of a closed recurrence set is

equivalent to the satisfiability of formula [CNT] in Definition 41, which is already in

second-order SAT without needing Skolemization.

We note that if T is deterministic, every open recurrence set is also a closed re-

currence set (since each state has at most one successor). Thus, the non-termination

problem for deterministic transition systems is equivalent to the satisfiability of for-

mula [CNT] from Figure 7.3.

Theorem 47. If T is deterministic, formula [ONT] (Definition 40) and formula

[CNT] (Definition 41) are equisatisfiable.

So if our transition relation is deterministic, we can say, without loss of generality,

that non-termination of the loop is equivalent to the existence of a closed recurrence

set. However if T is non-deterministic, it may be that there is an open recurrence set

but not closed recurrence set. To see this, consider the following loop:

while (x != 0) {
y = nondet () ;
x = x−y ;

}

It is clear that this loop has many non-terminating executions, e.g. the execution

where nondet() always returns 0. However each state has a successor that exits the

loop, i.e. when nondet() returns the value currently stored in x. So this loop has an

open recurrence set, but no closed recurrence set and hence we cannot give a proof

of its non-termination with [CNT] and instead must use [SNT].

86

L1 :
while (i<n){

j = 0 ;

L2 :
while (j≤ i){

j = j + 1 ;
}

i = i + 1 ;
}

∃To, R1, R2.∀i, j, n, i′, j′, n′.
i < n→ To(〈i, j, n〉, 〈i, 0, n〉) ∧

j ≤ i ∧ To(〈i′, j′, n′〉, 〈i, j, n〉)→ R2(i, j, n) > 0 ∧
R2(i, j, n) > R2(i, j + 1, n) ∧
To(〈i′, j′, n′〉, 〈i, j + 1, n〉) ∧

i < n ∧ S(〈i, j, n〉, 〈i′, j′, n′〉) ∧ j′ > i′ → R1(i, j, n) > 0 ∧
R1(i, j, n) > R1(i+ 1, j, n)

Figure 7.4: A program with nested loops and its termination formula

Definition 48 (Conditional Termination Formula [CT]).

∃R,W.∀x, x′.I(x) ∧G(x)→ W (x) ∧
G(x) ∧W (x) ∧ T (x, x′)→ W (x′) ∧R(x) > 0 ∧R(x) > R(x′)

Figure 7.5: Formula encoding conditional termination of a loop

7.6.2 An Isolated, Nested Loop

Termination. If a loop L(G, T) has another loop L′(G′, T ′) nested inside it, we

cannot directly use [UT] to express the termination of L. This is because the single-

step transition relation T must include the transitive closure of the inner loop T ′∗,

and we do not have a transitive closure operator in our logic. Therefore to encode the

termination of L, we construct an over-approximation To ⊇ T and use this in formula

[UT] to specify a ranking function. Rather than explicitly construct To using, for

example, abstract interpretation, we add constraints to our formula that encode the

fact that To is an over-approximation of T , and that it is precise enough to show that

R is a ranking function.

As the generation of such constraints is standard and covered by several other

works [47,50], we will not provide the full algorithm, but rather illustrate it through

the example in Figure 7.4. For the current example, the termination formula is given

on the right side of Figure 7.4: To is a summary of L1 that over-approximates its

transition relation; R1 and R2 are ranking functions for L1 and L2, respectively.

Non-Termination. Dually to termination, when proving non-termination, we need

to under-approximate the loop’s body and apply formula [CNT]. Under-approximating

87

L1 :
while (G1) {
P1 ;

L2 :
while (G2) {
B2 ;

}

P2 ;
}

∃N1, N2, x0.∀x, x′.
N1(x0)∧
N1(x)→ G1(x)∧

N1(x) ∧ P1(x, x′)→ N2(x′)∧
G2(x) ∧N2(x) ∧B2(x, x′)→ N2(x′)∧
¬G2(x) ∧N2(x) ∧ P2(x, x′)→ N1(x′)

Figure 7.6: Formula encoding non-termination of nested loops

the inner loop can be done with a nested existential quantifier, resulting in ∃∀∃ al-

ternation, which we could eliminate with Skolemization. However, we observe that

unlike a ranking function, the defining property of a recurrence set is non relational

– if we end up in the recurrence set, we do not care exactly where we came from as

long as we know that it was also somewhere in the recurrence set. This allows us to

cast non-termination of nested loops as the formula shown in Figure 7.6, which does

not use a Skolem function.

If the formula on the right-hand side of the figure is satisfiable, then L1 is non-

terminating, as witnessed by the recurrence set N1 and the initial state x0 in which

the program begins executing. There are two possible scenarios for L2’s termination:

• If L2 is terminating, then N2 is an inductive invariant that reestablished N1

after L2 stops executing: ¬G2(x) ∧N2(x) ∧ P2(x, x′)→ N1(x′).

• If L2 is non-terminating, then N2 ∧G2 is its recurrence set.

7.6.3 Composing a Loop with the Rest of the Program

Sometimes the termination behaviour of a loop depends on the rest of the program.

That is to say, the loop may not terminate if started in some particular state, but

that state is not actually reachable on entry to the loop. The program as a whole

terminates, but if the loop were considered in isolation we would not be able to prove

that it terminates. We must therefore encode a loop’s interaction with the rest of the

program in order to do a sound termination analysis.

Let us assume that we have done some preprocessing of our program which has

identified loops, straight line code blocks and the control flow between these. In

88

particular, the control flow analysis has determined which order these code blocks

execute in, and the nesting structure of the loops.

Conditional termination. Given a loop L(G, T), if L’s termination depends on the

state it begins executing in, we say that L is conditionally terminating. The informa-

tion we require of the rest of the program is a predicate I which over-approximates

the set of states that L may begin executing in. That is to say, for each state x that

is reachable on entry to L, we have I(x).

Theorem 49. The loop L(G, T) terminates when started in any state satisfying I(x)

iff formula [CT] (Definition 48, Figure 7.5) is satisfiable.

If formula [CT] is satisfiable, two witnesses are returned:

• W is an inductive invariant of L that is established by the initial states I if the

loop guard G is met.

• R is a ranking function for L as restricted by W – that is to say, R need only

be well founded on those states satisfying W ∧ G. Since W is an inductive

invariant of L, R is strong enough to show that L terminates from any of its

initial states.

W is called a supporting invariant for L and R proves termination relative to W .

We require that I∧G is strong enough to establish the base case of W ’s inductiveness.

Conditional termination is illustrated by the program in Figure 7.2h, which is

encoded as:

I(〈x, y〉) , y = 1

G(〈x, y〉) , x > 0

T (〈x, y〉, 〈x′, y′〉) , x′ = x− y ∧ y′ = y

If the initial states I are ignored, this loop cannot be shown to terminate, since any

state with y = 0 and x > 0 would lead to a non-terminating execution.

However, formula [CT] is satisfiable, as witnessed by:

R(〈x, y〉) = x

W (〈x, y〉) , y = 1

This constitutes a proof that the program as a whole terminates, since the loop

always begins executing in a state that guarantees its termination.

89

Definition 50 (Safety Invariant Formula [SI]).

∃S.∀x, x′.I(x)→ S(x) ∧
S(x) ∧G(x) ∧B(x, x′)→ S(x′) ∧
S(x) ∧ ¬G(x)→ A(x)

Figure 7.7: Existence of a safety invariant as second-order SAT

7.7 Safety and Danger Proofs

7.7.1 Safety Invariants

A safety invariant is a set of states S which is inductive with respect to the program’s

transition relation, and which excludes an error state. A predicate S is a safety

invariant for the loop I,G,B,A iff it satisfies the following criteria:

∀x.I(x)→ S(x) (7.1)

∀x, x′.S(x) ∧G(x) ∧B(x, x′)→ S(x′) (7.2)

∀x.S(x) ∧ ¬G(x)→ A(x) (7.3)

7.1 says that each state reachable on entry to the loop is in the set S, and in

combination with 7.2 shows that every state that can be reached by the loop is in S.

The final criterion 7.3 says that if the loop exists while in an S-state, the assertion

A is not violated. The existence of a safety invariant corresponds to the notion of

partial correctness: no assertion will fail, but the program may never stop running. If

we allow ourselves to quantify over predicates, we can specify the existence of a safety

invariant with [SI] from Definition 50. If we restrict the language of predicates to

L-expressions and the relations I,G,B,A to C− programs, Definition 50 is a second-

order SAT formula that we can solve directly with Kalashnikov.

7.7.2 Danger Invariants

Dually to safety invariants, danger invariants are underapproximations of the reach-

able states that guarantee an error will occur. Like safety invariants, we require that

a danger invariant is inductive with respect to the loop, and that it holds in some

initial state, although it need not hold in every initial state. A predicate D is a danger

invariant for the loop I,G,B,A iff:

90

∃x.I(x) ∧D(x) (7.4)

∀x.D(x) ∧G(x)→ ∃x′.B(x, x′) ∧D(x′) (7.5)

∀x.D(x) ∧ ¬G(x)→ ¬A(x) (7.6)

Similarly to the definition of a safety invariant, 7.4 says that there is some D-state

in which the loop can begin executing. For the induction, 7.5 says that each D-state

can reach at least one other D-state via an iteration of the loop. Finally 7.6 says

that if the loop exits while in a D-state, the assertion fails. These properties are

shown directly in the second-order SAT formula [DI] of Definition 51. The existence

of a danger invariant shows that if the loop exits having started in a D-state, an

assertion will certainly fail. As with the non-termination formula [ONT], we must

eliminate the innermost existential quantifier from [DI]. If the transition relation is

deterministic, we can use formula [DDI] (again by observing that each state has

exactly one successor). Otherwise, we must Skolemise, giving us [SDI].

The satisfiability of one of the danger formulae is not quite enough for us to

conclude that an assertion does fail, since we have not yet established that the loop

must terminate from any D-state – we have a notion of partial-incorrectness, where

we would like total-incorrectness. In order to guarantee that there is a trace through

the program, via our danger invariant which certainly terminates in an error state,

we must introduce a ranking function. This is done in formula [TDI] of Definition 54

– the ranking function R ensures that each iteration of the loop makes progress

towards a state in which the assertion A is violated. As with [DI], we can eliminate

the innermost existential quantifier from [TDI], by replacing it with a universal if

the program under analysis is deterministic, or by Skolemisation otherwise.

We have finally arrived at a second-order SAT formula which exactly captures

danger for a program – formula [TDI] is true iff there is a finite trace through our

program ending with a violation of the assertion A.

7.8 Analysing Programs with Second-Order Tau-

tologies

The second-order SAT solver described in Chapter 6 is efficient at finding satisfying

assignments to true formulae, when such a solution has low Kolmogorov complexity.

However if a formula is unsatisfiable, the procedure will not terminate in practice.

91

Definition 51 (Danger Invariant Formula [DI]).

∃D, x0.∀x.∃x′.I(x0) ∧D(x0) ∧
D(x) ∧G(x)→ B(x, x′) ∧D(x′) ∧
D(x) ∧ ¬G(x)→ ¬A(x)

Definition 52 (Deterministic Danger Invariant Formula [DDI]).

∃D, x0.∀x, x′.I(x0) ∧D(x0) ∧
D(x) ∧G(x) ∧B(x, x′)→ D(x′) ∧
D(x) ∧ ¬G(x)→ ¬A(x)

Definition 53 (Skolemized Danger Invariant Formula [SDI]).

∃D,S, x0.∀x.I(x0 ∧D(x0) ∧
D(x) ∧G(x)→ B(x, S(x)) ∧D(S(x)) ∧
D(x) ∧ ¬G(x)→ ¬A(x)

Definition 54 (Total Danger Formula [TDI]).

∃D, x0, R.∀x.∃x′.I(x0) ∧D(x0) ∧
D(x) ∧G(x)→ R(x) > 0 ∧B(x, x′) ∧D(x′) ∧R(x) > R(x′) ∧
D(x) ∧ ¬G(x)→ ¬A(x)

Figure 7.8: Existence of a danger invariant as second-order SAT

92

We are therefore interested in finding formulae encoding interesting properties of a

program, such that we know the formula will be satisfiable. While there is no apparent

value in checking satisfiability of a formula we know to be satisfiable, we will show in

this section that the approach does make sense in some scenarios.

Let us consider termination. We have some loop L and we would like to know if it

terminates or not. In Section 7.6 we derived second-order SAT formulae that exactly

characterised termination and non-termination for an arbitrary loop L. In particular,

formula [CT] from Definition 48 is true iff L terminates from every initial state,

and formula [ONT] from Definition 40 is true iff L loops from some initial state.

It is clear that exactly one of these formulae is true. Since both are second-order

SAT formulae (i.e. the second-order terms are existentially quantified – we haven’t

generated [ONT] just by negating [CT]), we can take their disjunction. Let’s say

that the particular instantiations of [CT] and [ONT] for L are respectively:

∃PT .∀x, x′.φ(PT , x, x
′)

∃PN .∀x.ψ(Pn, x)

the disjunction is then:

(∃PT .∀x, x′.φ(PT , x, x
′)) ∨ (∃PN .∀x. ψ(PN , x))

Which, after renaming bound variables, simplifies to:

∃PT , PN .∀x, x′, y. φ(PT , x, x
′) ∨ ψ(PN , y)

From which we arrive at the generalised termination formula of Definition 55,

[GT]. Assuming a (non-)termination proof for L is expressible in L, exactly one of

[CT] and [NT] is true. Therefore [GT] is a theorem of second-order logic for any

loop L whose termination is provable in L. We will show in Section 7.9 that in

fact every loop has a termination proof expressible in L, and so [GT] is always a

theorem. A solution to the formula would include witnesses PN and PT , which are

putative proofs of non-termination and termination respectively. Exactly one of these

will be a genuine proof, so we can check first one and then the other, which requires

a single call to a SAT solver for each check.

We can perform the same trick for safety, which gives us the generalised safety

formula [GS] of Definition 56. This is the disjunction of [SI], which encodes partial

93

Definition 55 (Generalised Termination Formula [GT]).

∃R,W,N, y0.∀x, x′, y.∃y′.

(
I(x) ∧G(x)→ W (x) ∧
G(x) ∧W (x) ∧B(x, x′)→ W (x′) ∧R(x) > 0 ∧R(x) > R(x′)

)
∨ I(y0) ∧N(y0) ∧

N(y)→ G(y) ∧
N(y)→ B(y, y′) ∧N(y′)


Definition 56 (Generalised Safety Formula [GS]).

∃S,D,R, y0.∀x, x′, y.∃y′.

 I(x)→ S(x) ∧
S(x) ∧G(x) ∧B(x, x′)→ S(x′) ∧
S(x) ∧ ¬G(x)→ A(x)

 ∨
 I(y0) ∧D(y0) ∧
D(y) ∧G(y)→ B(y, y′) ∧D(y′) ∧R(y) > 0 ∧R(y) > R(y′) ∧
D(y) ∧ ¬G(y)→ ¬A(y)



Figure 7.9: General second-order SAT formula characterising safety

correctness, and [TDI], which encodes total danger. Again, if a safety proof is ex-

pressible in L, exactly one of these formulae will be satisfiable and so [GS] will be a

theorem.

Note that we can only generate a second-order tautology for some particular pro-

gram property if both the property and its dual are encodable as second-order SAT

formulae. We have shown that this is the case for both termination and safety, but

since second-order SAT is not closed under complement, this need not be the case for

every property.

7.9 Soundness, Completeness and Complexity

In this section, we show that L is expressive enough to capture (non-)termination

proofs for every bit-vector program. Using this result, we then show that our analysis

terminates with a valid (non-)termination proof for every input program.

Lemma 57. Every finite subset A ⊆ B is computable by a finite L-program by setting

X = B, Y = 2 in Lemma 25 and taking the resulting function to be the characteristic

function of A.

94

Theorem 58. Every terminating bit-vector program has a ranking function that is

expressible in L.

Proof. Let v1, . . . , vk be the variables of the program P under analysis, and let each

be b bits wide. Its state space S is then of size 2bk. A ranking function R : S → D for

P exists iff P terminates. Without loss of generality, D is a well-founded total order.

Since R is injective, we have that |D| ≥ |S|. If |D| > |S|, we can construct a function

R′ : S → D′ with |D′| = |S| by just setting R′ = R|S , i.e. R′ is just the restriction

of R to S. Since S already comes equipped with a natural well ordering we can also

construct R′′ = ι ◦ R′ where ι : D′ → S is the unique order isomorphism from D′ to

S. So assuming that P terminates, there is some ranking function R′′ that is just

a permutation of S. If the number of variables k > 1 then in general the ranking

function will be lexicographic with dimension ≤ k and each co-ordinate of the output

being a single b-bit value.

Then by Lemma 25 with X = Y = S, there exists a finite L-program computing

R′′.

Theorem 59. Every non-terminating bit-vector program has a non-termination proof

expressible in L.

Proof. A proof of non-termination is a triple 〈N,C, x0〉 where N ⊆ S is a (finite)

recurrence set and C : S → S is a Skolem function choosing a successor for each

x ∈ N . S is finite, so by Lemma 25 both N and C are computed by finite L-programs

and x0 is just a ground term.

Theorem 60. The generalised termination formula [GT] for any loop L is a theorem

when PN and PT range over L-computable functions.

Proof. For any P, P ′, σ, σ, if P |= σ then (P, P ′) |= σ ∨ σ′.
By Theorem 58, if L terminates then there exists a termination proof PT express-

ible in L. Since φ is an instance of [CT], PT |= φ (Theorem 49) and for any PN ,

(PT , PN) |= φ ∨ ψ.

Similarly if L does not terminate for some input, by Theorem 59 there is a non-

termination proof PN expressible in L. Formula ψ is an instance of [SNT] and so

PN |= ψ (Theorem 45), hence for any PT , (PT , PN) |= φ ∨ ψ.

So in either case (L terminates or does not), there is a witness in L satisfying

φ ∨ ψ, which is an instance of [GT].

Theorem 61. Our termination analysis is sound and complete – it terminates for

all input loops L with a correct termination verdict.

95

Proof. By Theorem 60, the specification spec is satisfiable. In [64], we show that the

second-order SAT solver is semi-complete, and so is guaranteed to find a satisfying

assignment for spec. If L terminates then PT is a termination proof (Theorem 49),

otherwise PN is a non-termination proof (Theorem 45). Exactly one of these pur-

ported proofs will be valid, and since we can check each proof with a single call to a

SAT solver we simply test both and discard the one that is invalid.

7.10 Experiments

To evaluate our termination algorithm, we implemented a tool that generates a ter-

mination specification from a C program and calls the second-order SAT solver in [64]

to obtain a proof. We ran the resulting termination prover, named Juggernaut, on

47 benchmarks taken from the literature and SV-COMP’15 [96]. We omitted exactly

those SVCOMP’15 benchmarks that made use of arrays or recursion. We do not have

arrays in our logic and we had not implemented recursion in our frontend (although

the latter can be syntactically rewritten to our input format).

To provide a comparison point, we also ran ARMC [89] on the same benchmarks.

Each tool was given a time limit of 180 s, and was run on an unloaded 8-core 3.07 GHz

Xeon X5667 with 50 GB of RAM. The results of these experiments are given in Fig-

ure 7.10.

It should be noted that the comparison here is imperfect, since ARMC is solving

a different problem – it checks whether the program under analysis would terminate

if run with unbounded integer variables, while we are checking whether the program

terminates with bit-vector variables. This means that ARMC’s verdict differs from

ours in 3 cases (due to the differences between integer and bit-vector semantics).

There are a further 7 cases where our tool is able to find a proof and ARMC cannot,

which we believe is due to our more expressive proof language. In 3 cases, ARMC

times out while our tool is able to find a termination proof. Of these, 2 cases have

nested loops and the third has an infinite number of terminating lassos. This is not

a problem for us, but can be difficult for provers that enumerate lassos.

On the other hand, ARMC is much faster than our tool. While this difference

can partly be explained by much more engineering time being invested in ARMC, we

feel that the difference is probably inherent to the difference in the two approaches

– our solver is more general than ARMC, in that it provides a complete proof sys-

tem for both termination and non-termination. This comes at the cost of efficiency:

Juggernaut is slow, but unstoppable.

96

Of the 47 benchmarks, 2 use nonlinear operations in the program (loop6 and

loop11), and 5 have nested loops (svcomp6, svcomp12, svcomp18, svcomp40, sv-

comp41). Juggernaut handles the nonlinear cases correctly and rapidly. It solves

4 of the 5 nested loops in less than 30 s, but times out on the 5th.

In conclusion, these experiments confirm our conjecture that second-order SAT

can be used effectively to prove termination and non-termination. In particular,

for programs with nested loops, nonlinear arithmetic and complex termination argu-

ments, the versatility given by a general purpose solver is very valuable.

7.11 Related Work

There has been substantial prior work on automated program termination analysis.

Figure 7.1 summarises the related work with respect to the assumptions they make

about programs and ranking functions. Most of the techniques are specialised in the

synthesis of linear ranking functions for linear programs over integers (or rationals) [8,

19, 32, 33, 54, 68, 75, 86]. Among them, Lee et al. make use of transition predicate

abstraction, algorithmic learning, and decision procedures [75], Leike and Heizmann

propose linear ranking templates [76], whereas Bradley et al. compute lexicographic

linear ranking functions supported by inductive linear invariants [19].

While the synthesis of termination arguments for linear programs over integers

is indeed well covered in the literature, there is very limited work for programs over

machine integers. Cook et al. present a method based on a reduction to Presburger

arithmetic, and a template-matching approach for predefined classes of ranking func-

tions based on reduction to SAT- and QBF-solving [31]. Similarly, the only work we

are aware of that can compute nonlinear ranking functions for imperative loops with

polynomial guards and polynomial assignments is [21]. However, this work extends

only to polynomials.

Given the lack of research on termination of nonlinear programs, as well as pro-

grams over bit-vectors and floats, our work focused on covering these areas. One of

the obvious conclusions that can be reached from Figure 7.1 is that most methods

tend to specialise on a certain aspect of termination proving that they can solve effi-

ciently. Conversely to this view, we aim for generality, as we do not restrict the form

of the synthesised ranking functions, nor the form of the input programs.

As mentioned in Section 7.2, approaches based on Ramsey’s theorem compute a set

of local termination conditions that decrease as execution proceeds through the loop

and require expensive reachability analyses [30, 32, 87]. In an attempt to reduce the

97

ARMC Juggernaut
Benchmark Expected Verdict Time Verdict Time

loop1.c X X 0.06s X 1.3s
loop2.c X X 0.06s X 1.4s
loop3.c X X 0.06s X 1.8s
loop4.c X X 0.12s X 2.9s
loop5.c X X 0.12s X 5.3s
loop6.c X X 0.05s X 1.2s
loop7.c [25] X ? 0.05s X 8.3s
loop8.c X ? 0.06s X 1.3s
loop9.c X X 0.11s X 1.6s
loop10.c X 7 0.05s X 1.3s
loop11.c 7 X 0.05s 7 1.4s
loop43.c [33] X X 0.07s X 1.5s
loop44.c [33] 7 ? 0.05s 7 10.5s
loop45.c [33] X X 0.12s X 4.3s
loop46.c [33] X ? 0.05s X 1.5s
loop47.c X X 0.10s X 1.8s
loop48.c X X 0.06s X 1.4s
loop49.c 7 ? 0.05s 7 1.3s
svcomp1.c [4] X X 0.11s X 2.3s
svcomp2.c X X 0.05s X 1.5s
svcomp3.c [7] X X 0.15s X 146.4s
svcomp4.c [19] 7 7 0.09s 7 2.1s
svcomp5.c [20] X X 0.38s – T/O
svcomp6.c [25] X – T/O X 29.1s
svcomp7.c [25] X X 0.09s X 5.5s
svcomp8.c [27] X ? 0.05s – T/O
svcomp9.c [33] X X 0.10s X 1.5s
svcomp10.c [33] X X 0.11s X 4.5s
svcomp11.c [33] X X 0.20s X 14.6s
svcomp12.c [39] X – T/O X 10.9s
svcomp13.c X ? 0.07s X 35.1s
svcomp14.c [48] X – T/O X 30.8s
svcomp15.c [53] X ? 0.12s – T/O
svcomp16.c [53] X X 0.06s X 2.2s
svcomp17.c [68] X X 0.05s – T/O
svcomp18.c [74] X ? 0.27s – T/O
svcomp25.c X ? 0.05s – T/O
svcomp26.c X X 0.26s X 3.2s
svcomp27.c [84] 7 X 0.11s – T/O
svcomp28.c [84] X X 0.13s – T/O
svcomp29.c [86] X ? 0.05s – T/O
svcomp37.c X X 0.16s X 2.1s
svcomp38.c X X 0.10s – T/O
svcomp39.c X X 0.25s – T/O
svcomp40.c [98] X ? 0.07s X 25.5s
svcomp41.c [98] X ? 0.07s X 25.5s
svcomp42.c X X 0.22s – T/O

Correct 28 35
Incorrect for bit-vectors 3 0
Unknown 13 0
Timeout 3 12

Key: X= terminating, 7= non-terminating, ? = unknown (tool terminated with an
inconclusive verdict).

Figure 7.10: Experimental results

98

complexity of checking the validity of the termination argument, Cook et al. present

an iterative termination proving procedure that searches for lexicographic termination

arguments [33], whereas Kroening et al. strengthen the termination argument such

that it becomes a transitive relation [68]. Following the same trend, we search for

lexicographic nonlinear termination arguments that can be verified with a single call

to a SAT solver.

Proving program termination implies the simultaneous search for a termination

argument and a supporting invariant. Brockschmidt et al. share the same representa-

tion of the state of the termination proof between the safety prover and the ranking

function synthesis tool [25]. Bradley et al. combine the generation of ranking func-

tions with the generation of invariants to form a single constraint solving problem

such that the necessary supporting invariants for the ranking function are discov-

ered on demand [19]. In our setting, both the ranking function and the supporting

invariant are iteratively constructed in the same refinement loop.

While program termination has been extensively studied, much less research has

been conducted in the area of proving non-termination. Gupta et al. dynamically enu-

merate lasso-shaped candidate paths for counterexamples, and then statically prove

their feasibility [51]. Chen et al. prove non-termination via reduction to safety prov-

ing [26]. Their iterative algorithm uses counterexamples to a fixed safety property

to refine an under-approximation of a program. In order to prove both termination

and non-termination, Harris et al. compose several program analyses (termination

provers for multi-path loops, non-termination provers for cycles, and global safety

provers) [53]. We propose a uniform treatment of termination and non-termination

by formulating a generalised second-order formula whose solution is a proof of one of

them.

99

Chapter 8

Propositional Reasoning About the
Heap

8.1 Introduction

Proving safety of heap-manipulating programs is a notoriously difficult task. One of

the main culprits is the complexity of the verification conditions generated for such

programs. The constraints comprising these verification conditions can be arithmetic

(e.g. the value stored at location pointed by x is equal to 3), structural (e.g. x points to

an acyclic singly-linked list), or a combination of the first two when certain structural

properties of a data structure are captured as numeric values (e.g. the length of the list

pointed by x is 3). Solving these combined constraints requires non-trivial interaction

between shape and arithmetic.

For illustration, consider the program in Figure 8.1b, which iterates simultaneously

over the lists x and y. The program is safe, i.e. there is no null pointer dereferencing

and the assertion after the loop holds. While the absence of null pointer dereferences

is trivial to observe and prove, the fact that the assertion after the loop holds relies on

the fact that at the beginning of the program and after each loop iteration the lengths

of the lists z and t are equal. Thus, the specification language must be capable of

expressing the fact that both z and t reach null in the same number of steps. Note

that the interaction between shape and arithmetic constraints is intricate, and cannot

be solved by a mere theory combination.

The problem is even more pronounced when proving termination of heap-manipulating

programs. The reason is that, even more frequently than in the case of safety checking,

termination arguments depend on the size of the heap data structures. For example,

a loop iterating over the nodes of such a data structure terminates after all the reach-

able nodes have been explored. Thus, the termination argument is directly linked to

100

the number of nodes in the data structure. This situation is illustrated again by the

loop in Figure 8.1b.

There are few logics capable of expressing this type of interdependent shape and

arithmetic constraint. One of the reasons is that, given the complexity of the con-

straints, such logics can easily become undecidable (even the simplest use of transitive

closure leads to undecidability [59]), or at best inefficient.

The tricky part is identifying a logic that is expressive enough to capture the

corresponding constraints and at the same time is efficiently decidable. One work that

inspired us in this endeavour is the recent approach by Itzhaky et al. on reasoning

about reachability between dynamically allocated memory locations in linked lists

using effectively-propositional (EPR) reasoning [60]. This result is appealing as it

can harness advances in SAT solvers. The only downside is that the logic presented

in [60] is better suited for safety than termination checking, and is best for situations

where safety does not depend on the interaction between shape and arithmetic. Thus,

our goal is to define a logic that can be used in such scenarios while still being reducible

to SAT.

This paper shows that it is possible to reason about the safety and termination

of programs handling potentially cyclic, singly-linked lists using propositional reason-

ing. For this purpose, we present the logic SLH which can express interdependent

shape and arithmetic constraints. We empirically show its utility for the verification

of heap-manipulating programs by using it to express safety invariants and termina-

tion arguments for intricate programs with potentially cyclic, singly-linked lists with

unrestricted, unspecified sharing.

SLH is parametrised by the background arithmetic theory used to express the

length of lists (and implicitly every numeric variable). The decision procedure reduces

validity of a formula in SLH to satisfiability of a formula in the background theory.

Thus, SLH is decidable if the background theory is decidable.

As we are interested in a reduction to SAT, we instantiate SLH with the theory of

bit-vector arithmetic, resulting in SLH[TBV]. This allows us to handle non-linear oper-

ations on lists length (e.g. the example in Figure 8.1c), while still retaining decidabil-

ity. However, SLH can be combined with other background theories, e.g. Presburger

arithmetic.

We provide an implementation of our decision procedure for SLH[TBV] and test its

efficiency by verifying a suite of programs against safety and termination specifications

expressed in SLH. Whenever the verification fails, our decision procedure produces a

counterexample.

101

Contributions:

• We propose the theory SLH of singly-linked lists with length. SLH allows un-

restricted sharing and cycles.

• We define the strongest post-condition for formulae in SLH.

• We show the utility of SLH for software verification by using it to express

safety invariants and termination arguments for programs with potentially cyclic

singly-linked lists.

• We present the instantiation SLH[TBV] of SLH with the theory of bit-vector

arithmetic. SLH[TBV] can express non-linear operations on the lengths of lists,

while still retaining decidability.

• We provide a reduction from satisfiability of SLH[TBV] to propositional SAT.

• We provide an implementation of the decision procedure for SLH[TBV] and test

it by checking safety and termination for several heap-manipulating programs

(against provided safety invariants and termination arguments).

8.2 Motivation

Consider the examples in Figure 8.1. They all capture situations where the safety

(i.e. absence of null pointer dereferencing and no assertion failure) and termination

of the program depend on interdependent shape and arithmetic constraints. In this

section we only give an intuitive description of these examples, and we revisit and

formally specify them in Section 8.7. We assume the existence of the following two

functions: (1) length(x) returns the number of nodes on the path from x to NULL if

the list pointed by x is acyclic, and MAXINT otherwise; (2) circular(x) returns true

iff the list pointed by x is circular (i.e. x is part of a cycle).

In Figure 8.1a, we iterate over the potentially cyclic singly-linked list pointed by

x a number of times equal with the result of length(x). The program is safe (i.e. y is

not NULL at loop entry) and terminating. A safety invariant for the loop needs to

capture the length of the path from y to NULL.

The loop in Figure 8.1b iterates over the lists pointed by x and y, respectively,

until one of them becomes NULL. In order to check whether the assertion after the

loop holds, the safety invariant must relate the length of the list pointed by x to the

102

L i s t x , y = x ;
int n = length (x) , i = 0 ;

while (i < n) {
y = y→next ;
i = i +1;

}

(a)

L i s t x , y , z = x , t = y ;

assume(l ength (x) == length (y)) ;

while (z != NULL && t != NULL) {
z = z→next ;
t = t→next ;

}

assert (z == NULL && t == NULL) ;

(b)

int d i v i d e s (L i s t x , L i s t y) {
L i s t z = y ;
L i s t w = x ;

assume(l ength (x) != MAXINT &&
length (y) != MAXINT &&
y != NULL) ;

while (w != NULL) {
i f (z == NULL) z = y ;
z = z→next ;
w = w→next ;

}

assert (z == NULL ⇔
l ength (x)%length (y) == 0) ;

return z == NULL;
}

(c)

int i s C i r c u l a r (L i s t l) {
L i s t p = q = l ;

do {
i f (p != NULL) p = p→next ;
i f (q != NULL) q = q→next ;
i f (q != NULL) q = q→next ;

}
while (p != NULL &&

q != NULL &&
p != q) ;

assert (p == q ⇔ c i r c u l a r (l)) ;
return p == q ;

}

(d)

Figure 8.1: Motivational examples.

103

length of the list pointed by y. Similarly, a termination argument needs to consider

the length of the two lists.

The example in Figure 8.1c illustrates how non-linear arithmetic can be encoded

via singly-linked lists. Thus, the loop in divides(x, y) iterates over the list pointed by

x a number of nodes equal to the quotient of the integer division length(x)/length(y)

such that, after the loop, the list pointed by z has a length equal with the remainder

of the division.

The function in Figure 8.1d returns true iff the list passed in as a parameter is

circular. The functional correctness of this function is captured by the assertion after

the loop checking that pointers p and q end up being equal iff the list l is circular.

8.3 Theory of Singly Linked Lists with Length

In this section we introduce the theory SLH for reasoning about potentially cyclic

singly linked lists.

8.3.1 Informal Description of SLH

We imagine that there is a set of pointer variables x, y, . . . which point to heap cells.

The cells in the heap are arranged into singly linked lists, i.e. each cell has a “next”

pointer which points somewhere in the heap. The lists can be cyclic and two lists can

share a tail, so for example the following heap is allowed in our logic:

•

•

• •

•

•x

y

z

null

Our logic contains functions for examining the state of the heap, along with the

four standard operations for mutating linked lists: new , assign, lookup and update.

We capture the side-effects of these mutation operators by explicitly naming the cur-

rent heap – we introduce heap variables h, h′ etc. which denote the heap in which each

function is to be interpreted. The mutation operators then become pure functions

mapping heaps to heaps. The heap functions of the logic are illustrated by example

in Figure 8.2 and have the following meanings:

104

alias(h, x, y): do x and y point to the same cell in heap h?
isPath(h, x, y): is there a path from x to y in h?

pathLength(h, x, y): the length of the shortest path from x to y in h.
isNull(h, x): is x null in h?

circular(h, x): is x part of a cycle, i.e. is there some non-empty path
from x back to x in h?

h′ = new(h, x): obtain h′ from h by allocating a new heap cell and re-
assigning x so that it points to this cell. The newly al-
located cell is not reachable from any other cell and its
successor is null. This models the program statement
x = new(). For simplicity, we opt for this allocation
policy, but we are not restricted to it.

h′ = assign(h, x, y): obtain h′ from h by assigning x so that it points to the
same cell as y. Models the statement x = y.

h′ = lookup(h, x, y): obtain h′ from h by assigning x to point to y’s successor.
Models the statement x = y→next.

h′ = update(h, x, y): obtain h′ from h by updating x’s successor to point to
y. Models x→next = y.

8.3.2 Syntax of SLH

The theory of singly-linked lists with length, SLH, uses a background arithmetic

theory TB for the length of lists (implicitly any numeric variable). Thus, SLH has the

following signature:

ΣSLH = ΣB ∪ {alias(·, ·, ·), isPath(·, ·, ·), isNull(·, ·), circular(·, ·),
pathLength(·, ·, ·), ·=new(·, ·), ·=assign(·, ·, ·),
·=lookup(·, ·, ·), ·=update(·, ·, ·)}.

where the nine new symbols correspond to the heap-specific functions described in

the previous section (the first four are actually heap predicates).

Sorts. Heap variables (e.g. h in alias(h, x, y)) have sort SH, pointer variables have

sort SAddr (e.g. x and y in alias(h, x, y)), numeric variables have sort SB (e.g. n in

n = pathLength(h, x, y)).

Literal and formula. A literal in SLH is either a heap function (including the

negation of the predicates) or a TB-literal (which may refer to pathLength). A formula

in SLH is a Boolean combination of SLH-literals.

105

• • •

y x null
⇒

• • •

y x null

lookup(h, x, y)
x = y→next;

• • •

x null
⇒
• • •

•

x null

new(h, x)
x = new();

• • •

•

yx null

⇒
• • •

•

yx null

assign(h, x, y)
x = y;

• • •

•

yx null

⇒
• • •

•

yx null

update(h, x, y)
x→next = y;

•

•

• •

•

•

x

yz

null

pathLength(h, x, y) = 3

isPath(h, z, y) = true

isPath(h, x, z) = false

alias(h, x, z) = false

isNull(h, x) = false

circular(h, y) = true

Figure 8.2: SLH by example

106

8.3.3 Semantics of SLH

We give the semantics of SLH by defining the models in which an SLH formula holds.

An interpretation Γ is a function mapping free variables to elements of the appropriate

sort. If an SLH formula φ holds in some interpretation Γ, we say that Γ models φ

and write Γ |= φ.

Interpretations may be constructed using the following substitution rule:

Γ[h 7→ H](x) =

{
H if x = h

Γ(x) otherwise

Pointer variables are considered to be a set of constant symbols and are thus

given a fixed interpretation. The only thing that matters is that their interpretation

is pairwise different. We assume that the pointer variables include a special name

null. The set of pointer variables is denoted by the symbol P .

We will consider the semantics of propositional logic to be standard and the se-

mantics of TB given, and thus just define the semantics of heap functions. To do this,

we will first define the class of objects that will be used to interpret heap variables.

Definition 62 (Heap). A heap over pointer variables P is a pair H = 〈L,G〉. G

is a finite graph with vertices V (G) and edges E(G). L : P → V (G) is a labelling

function mapping each pointer variable to a vertex of G. We define the cardinality

of a heap to be the cardinality of the vertices of the underlying graph: |H| = |V (G)|.

Definition 63 (Singly Linked Heap). A heap H = 〈L,G〉 is a singly linked heap iff

each vertex has outdegree 1, except for a single sink vertex that has outdegree 0 and

is labelled by null:

∀v ∈ V (G).(outdegree(v) = 1 ∧ L(null) 6= v)∨

(outdegree(v) = 0 ∧ L(null) = v)

Having defined our domain of discourse, we are now in a position to define the

semantics of the various heap functions introduced in Section 8.3.1. We begin with the

functions examining the state of the heap and will use a standard structural recursion

to give the semantics of the functions with respect to an implicit interpretation Γ, so

that JhKΓ = Γ(h). We will use the shorthand u
n→ v to say that if we start at node u,

then follow n edges, we arrive at v. We also use L(H) to select the labelling function

107

L from H:

u
n→ v

def
= 〈u, v〉 ∈ En

u→∗ v def
= ∃n ≥ 0.u

n→ v

u→+ v
def
= ∃n > 0.u

n→ v

Note that u
0→ u. The semantics of the heap functions are then:

JpathLength(h, x, y)KΓ def
= min

(
{n | L(JhKΓ)(x)

n→ L(JhKΓ)(y)} ∪ {∞}
)

Jcircular(h, x)KΓ def
= ∃v ∈ V (JhKΓ).L(JhKΓ)(x)→+ v ∧ v →+ L(JhKΓ)(x)

Jalias(h, x, y)KΓ def
= JpathLength(h, x, y)KΓ == 0

JisPath(h, x, y)KΓ def
= JpathLength(h, x, y)KΓ 6=∞

JisNull(h, x)KΓ def
= JpathLength(h, x, null)KΓ == 0

Note that since the graph underlyingH has outdegree 1, pathLength and circular can

be computed in O(|H|) time, or equivalently they can be encoded with O(|H|) arith-

metic constraints.

To define the semantics of the mutation operations, we will consider separately

the effect of each mutation on each component of the heap – the labelling function

L, the vertex set V and the edge set E. Where a mutation’s effect on some heap

component is not explicitly stated, the effect is id. For example, assign does not

modify the vertex set, and so assignV = id. In the following definitions, we will say

that succ(v) is the unique vertex such that (v, succ(v)) ∈ E(H).

JnewV (h, x)KΓ def
= V (JhKΓ) ∪ {q} where q is a fresh vertex

JnewE(h, x)KΓ def
= E(JhKΓ) ∪ {(q,null)}

JnewL(h, x)KΓ def
= L(JhKΓ)[x 7→ q]

JassignL(h, x, y)KΓ def
= L(JhKΓ)[x 7→ L(JhKΓ)(y)]

JlookupL(h, x, y)KΓ def
= L(JhKΓ)[x 7→ succ(L(JhKΓ)(y))]

JupdateE(h, x, y)KΓ def
= (E(JhKΓ) \ {(L(JhKΓ)(x), succ(L(JhKΓ)(x)))})∪
{(L(JhKΓ)(x), L(JhKΓ)(y))}

8.4 Deciding Validity of SLH

We will now turn to the question of deciding the validity of an SLH formula, that

is for some formula φ we wish to determine whether φ is a tautology or if there is

108

some Γ such that Γ |= ¬φ. To do this, we will show that SLH enjoys a finite model

property and that the existence of a fixed-size model can be encoded directly as an

arithmetic constraint.

Our high-level strategy for this proof will be to define progressively coarser equiva-

lence relations on SLH heaps that respect the transformers and observation functions.

The idea is that all of the heaps in a particular equivalence class will be equivalent

in terms of the SLH formulae they satisfy. We will eventually arrive at an equiva-

lence relation (homeomorphism) that is sound in the above sense and which is also

guaranteed to have a small heap in each equivalence class.

From here on we will slightly generalise the definition of a singly linked heap and

say that the underlying graph is weighted with weight function W : E(H) → N.

When we omit the weight of an edge (as we have in all heaps until now), it is to be

understood that the edge’s weight is 1.

8.4.1 Sound Equivalence Relations

We will say that an equivalence relation ≈ is sound if the following conditions hold

for each pair of pointer variables x, y and transformer τ :

∀H,H ′ ·H ≈ H ′ ⇒pathLength(H, x, y) = pathLength(H ′, x, y) ∧ (8.1)

circular(H, x) = circular(H ′, x) ∧ (8.2)

τ(H) ≈ τ(H ′) (8.3)

The first two conditions say that if two heaps are in the same equivalence class,

there is no observation that can distinguish them. The third condition says that the

equivalence relation is inductive with respect to the transformers. There is therefore

no sequence of transformers and observations that can distinguish two heaps in the

same equivalence class.

We begin by defining two sound equivalence relations:

Definition 64 (Reachable Sub-Heap). The reachable sub-heap H|P of a heap H is

H with vertices restricted to those reachable from the pointer variables P :

V (H|P) = {v | ∃p ∈ P.〈L(p), v〉 ∈ E∗}

Then the relation {〈H,H ′〉 | H|P = H ′|P} is sound.

Definition 65 (Heap Isomorphism). Two heaps H = 〈L,G〉, H ′ = 〈L′, G′〉 are iso-

morphic (written H ' H ′) iff there exists a graph isomorphism f : G|P → G′|P that

respects the labelling function, i.e., ∀p ∈ P.f(L(p)) = L′(p).

109

Example 8. H and H ′ are not isomorphic, even though their underlying graphs are.

H :
• •

x null

H ′ :
• •

x null

Theorem 66. Heap isomorphism is a sound equivalence relation.

8.4.2 Heap Homeomorphism

The final notion of equivalence we will describe is the weakest. Loosely, we would like

to say that two heaps are equivalent if they are “the same shape” and if the shortest

distance between pointer variables is the same. To formalise this relationship, we will

be using an analogue of topological homeomorphism.

Definition 67 (Edge Subdivision). A graph G′ is a subdivison of G iff G′ can be

obtained by repeatedly subdividing edges in G, i.e., for some edge (u, v) ∈ E(G)

introducing a fresh vertex q and replacing the edge (u, v) with edges (u, q), (q, v) such

that W ′(u, q) +W ′(q, v) = W (u, v). Subdivision for heaps is defined in terms of their

underlying graphs.

We define a function subdivide, which subdivides an edge in a heap. As usual, the

function is defined componentwise on the heap:

subdivideV (H, u, v, k) =V ∪ {q}

subdivideE(H, u, v, k) = (E \ {(u, v)}) ∪ {(u, q), (q, v)}

subdivideW (H, u, v, k) =W (H)[(u, v) 7→ ∞, (u, q) 7→ k, (q, v) 7→ W (H)(u, v)− k]

Definition 68 (Edge Smoothing). The inverse of edge subdivision is called edge

smoothing. If G′ can be obtained by subdividing edges in G, then we say that G is a

smoothing of G′.

Basically, edge smoothing is the dual of edge subdivision – if we have two edges

u
n−→ q

m−→ v, where q is unlabelled and has no other incoming edges, we can remove

q and add the single edge u
n+m−→ v.

Example 9. H ′ is a subdivision of H.

H :
• •

x null

3
H ′ :

• • •

x null

1 2

110

Lemma 69 (Subdividing an Edge Preserves Observations). If H ′ is obtained from

H by subdividing one edge, then for any x, y we have:

pathLength(H, x, y) = pathLength(H ′, x, y) (8.4)

circular(H, x) = circular(H ′, x) (8.5)

Definition 70 (Heap Homeomorphism). Two heaps H,H ′ are homeomorphic (writ-

ten H ∼ H ′) iff there there is a heap isomorphism from some subdivision of H to

some subdivision of H ′.

Intuitively, homeomorphisms preserve the topology of heaps: if two heaps are

homeomorphic, then they have the same number of loops and the same number of

“joins” (vertices with indegree ≥ 2).

Example 10. H and H ′ are homeomorphic, since they can each be subdivided to

produce S.
H :

x

y

•

•
• • • •

1

2

4 2

6

3 H ′ :
x

y

•

•
• • •

•
1

2

6

6

12

S :
x

y

•

•
• • • •

•
1

2

4 2

6

12

Lemma 71 (Transformers Respect Homeomorphism). For any heap transformer τ ,

if H1 ∼ H2 then τ(H1) ∼ τ(H2).

Proof. It suffices to show that for any transformer τ and single-edge subdivision s,

the following diagram commutes:

A

B

C

D

τ

s

τ

s

We will check that τ ◦ s = s ◦ τ by considering the components of each arrow

separately and using the semantics defined in Section 8.3.3. The only difficult case is

for lookup, for which we provide the proof in full. This case is illustrative of the style

of reasoning used for the proofs of the other transformers.

111

τ = lookup(h, x, y): Now that we have weighted heaps, there are two cases for lookup:

if the edge leaving L(y) does not have weight 1, we need to first subdivide so that it

does; otherwise the transformer is exactly as in the unweighted case, which can be

seen easily to commute.

In the second (unweighted) case, all of the components commute due to id. Oth-

erwise, lookup is a composition of some subdivision s′ and then unweighted lookup:

lookup = lookupU ◦ s′.
A

B C

s′

lookup

lookupU

Our commutativity condition is then:

(lookupU ◦ s′) ◦ s =s ◦ (lookupU ◦ s′)

We know that unweighted lookup commutes with arbitrary subdivisions, so

(lookupU ◦ s′) ◦ s =s ◦ (s′ ◦ lookupU)

lookupU ◦ (s′ ◦ s) =(s ◦ s′) ◦ lookupU

But the composition of two subdivisions is a subdivision, so we are done.

Theorem 72. Homeomorphism is a sound equivalence relation.

Proof. This is a direct consequence of Lemma 69 and Lemma 71.

8.4.3 Small Model Property

We would now like to show that for each equivalence class induced by ∼, there is a

unique minimal element. We call that element the kernel.

Definition 73 (Kernel). A kernel is a heap H = (L,G) such that all the vertices in

G are either labelled by L, or have at least two incoming edges.

In other words, a kernel is the maximally smoothed heap.

112

Theorem 74 (The Kernel is Unique). Each equivalence class induced by ∼ has a

unique kernel.

Proof. We can prove this by contradiction. Let’s assume there are two such kernels K1

and K2 in an equivalence class. Then K1 ∼ K2, and according to the homeomorphism

definition, one is a subdivision of the other. Let’s say K1 is a subdivision of K2.

However, subdividing an edge introduces anonymous vertices with only one incoming

edge. Thus K1 is not a kernel.

As an alternative intuition for this, readers familiar with category theory can

consider the category SLH of singly linked heaps, with edge subdivisions as arrows.

The category SLH are singly linked heaps, and there is an arrow from one heap to

another if the first can be subdivided into the second. To illustrate, Example 10 is

represented in SLH by the following diagram:

H

SH ′

Now for every pair of homeomorphic heaps H1 ∼ H2 we know that there is some

X that is a subdivision of both H1 and H2. Clearly if we continue subdividing edges,

we will eventually arrive at a heap where every edge has weight 1, at which point we

will be unable to subdivide any further. Let us call this maximally subdivided heap

the shell, which we will denote by Sh(H1). Then Sh(H1) = Sh(H2) is the pushout of

the previous diagram. Dually, there is some Y that both H1 and H2 are subdivisions

of, and the previous diagram has a pullback, which we shall call the kernel. This is

the heap in which all edges have been smoothed. The following diagram commutes,

and since a composition of subdivisions and smoothings is a homeomorphism, all of

the arrows (and their inverses) in this diagram are homeomorphisms. In fact, the

H1, H2, X, Y, Sh and Ke are exactly an equivalence class:

Y H1

H2 X

Ke

Sh

∼

Lemma 75 (Kernels are Small). For any H, |Ke(H)| ≤ 2× |P |.

113

Proof. Since Ke(H) is maximally smoothed, every unlabelled vertex has indegree ≥ 2.

We will partition the vertices of H into named and unlabelled vertices:

N ={v ∈ V (H) | ∃p ∈ P.L(p) = v}

U ={u ∈ V (H) | ∀p ∈ P.L(p) 6= u}

V (H) =N ∪ U

Then let n = |N | and u = |U |. Now, the total indegree of the underlying graph

must be equal to the total outdegree, so:∑
v∈V (H)

out(v) =
∑

v∈V (H)

in(v)

n+ u =
∑
n∈N

in(n) +
∑
u∈U

in(u)

=
∑
n∈N

in(n) + 2u+ k

where k ≥ 0, since in(u) ≥ 2 for each u.

n = u+
∑
n∈N

in(n) + k︸ ︷︷ ︸
≥0

n ≥ u

So u ≤ n ≤ |P |, hence |Ke(H)| = n+ u ≤ 2× |P |.

Theorem 76 (SLH has Small Model). For any SLH formula ∀h.φ, if there is a

counterexample Γ |= ¬φ, then there is Γ′ |= ¬φ with every heap-sorted variable in Γ

being interpreted by a homeomorphism kernel.

Proof. This follows from Theorem 72 and Lemma 75.

We can encode the existence of a small model with an arithmetic constraint whose

size is linear in the size of the SLH formula, since each of the transformers can

be encoded with a constant sized constraint and the observation functions can be

encoded with a constraint of size O(|H|) = O(|P |). An example implementation

of the constraints used to encode each atom is given in Section 8.6. We need one

constraint for each of the theory atoms, which gives us O(|P | × |φ|) constraints in

total.

114

Corollary 77 (Decidability of SLH). If the background theory TB is decidable, then

SLH is decidable.

Proof. The existence of a small model can be encoded with a linear number of arith-

metic constraints in TB.

8.5 Using SLH for Verification

Our intention is to use SLH for reasoning about the safety and termination of pro-

grams with potentially cyclic singly-linked lists:

• For safety, we annotate loops with safety invariants and generate VCs checking

that each loop annotation is genuinely a safety invariant, i.e. (1) it is satisfied

by each state reachable on entry to the loop, (2) it is inductive with respect to

the program’s transition relation, and (3) excludes any states where an assertion

violation takes place (the assertions include those ensuring memory safety). The

existence of a safety invariant corresponds to the notion of partial correctness:

no assertion fails, but the program may never stop running.

• For termination, we provide ranking functions for each loop and generate VCs

to check that the loops do terminate, i.e. the ranking function is monotonically

decreasing with respect to the loop’s body and (2) it is bounded from below.

By combining these VCs with those generated for safety, we create a total-

correctness specification.

The two additional items we must provide in order to be able to generate these

VCs are a programming language and the strongest post-condition for formulae in

SLH with respect to statements in the programming language. We do so next.

8.5.1 Programming Language

We use the sequential programming language in Fig. 8.3. It allows heap allocation

and mutation, with v denoting a variable and next a pointer field. To simplify the

presentation, we assume each data structure has only one pointer field, next, and

allow only one-level field access, denoted by v→next. Chained dereferences of the

form v→next→next. . . are handled by introducing auxiliary variables. The statement

assert(φ) checks whether φ (expressed in the heap theory described in Section 8.3)

holds for the current program state, whereas assume(φ) constrains the program state.

115

datat := struct C {(typ v)∗}
e := v | v→next | new(C) | null
S := v=e | v1→next=v2 | S1;S2 | if (B) S1 else S2 |

while (B) S | assert(φ) | assume(φ)

Figure 8.3: Programming Language

For convenience when using SLH in the context of safety and termination ver-

ification, the SLH functions we expose in the specification language are side-effect

free. That is to say, we don’t require the explicit heap h to be mentioned in the

specifications.

8.5.2 Strongest Post-Condition

To create a verification condition from a specification, we first decompose the specifi-

cation into Hoare triples and then compute the strongest post-condition to generate

a VC in the SLH theory. Since SLH includes primitive operations for heap manipu-

lation, our strongest post-condition is easy to compute:

SP(x = y, φ)
def
= φ[h′/h] ∧ h = assign(h′, x, y)

SP(x = y→next, φ)
def
= φ[h′/h] ∧ h = lookup(h′, x, y)

SP(x = new(C), φ)
def
= φ[h′/h] ∧ h = new(h′, x, y)

SP(x→next = y, φ)
def
= φ[h′/h] ∧ h = update(h′, x, y)

In the definitions above, h′ is a fresh heap variable. The remaining cases for SP are

standard.

8.5.3 VC Generation Example

Consider the program in Figure 8.4, which has been annotated with a loop invariant.

In order to verify the partial-correctness condition that the assertion cannot fail, we

must check the following Hoare triples:

{>} x = y {isPath(y, x)} (8.6)

{isPath(y, x) ∧ ¬isNull(x)} x = x→ next {isPath(y, x)} (8.7)

{isPath(y, x) ∧ isNull(x)} skip {isPath(y, x)} (8.8)

116

x = y ;

while (x 6= n u l l) {
{isPath(y, x)}
x = x→next ;

}

assert (isPath(y, x)) ;

Figure 8.4: An annotated program.

Taking strongest post-condition across each of these triples generates the following

SLH VCs:

∀h.h′ = assign(h, x, y)⇒ isPath(h′, y, x) (8.9)

∀h.isPath(h, y, x) ∧ ¬isNull(x) ∧ h′ = lookup(h, x, x)⇒ isPath(h′, y, x) (8.10)

∀h.isPath(h, y, x) ∧ isNull(x)⇒ isPath(h, y, x) (8.11)

8.6 Implementation

For our implementation, we instantiate SLH with the theory of bit-vector arithmetic.

Thus, according to Corollary 77, the resulting theory SLH[TBV] is decidable. In this

section, we provide details about the implementation of the decision procedure via a

reduction to SAT.

To check validity of an SLH[TBV] formula φ, we search for a small counterexample

heap H. By Theorem 76, if no such small H exists, there is no counterexample and so

φ is a tautology. We encode the existence of a small counterexample by constructing

a SAT formula.

To generate the SAT formula, we instantiate every occurrence of the SLH[TBV]

functions with the functions shown in Figure 8.5. The structure that the functions

operate over is the following, where N is the number of vertices in the structure and

P is the number of program variables:

typedef int node ;
typedef int ptr ;

struct heap {
ptr : node [P] ;
succ : (node × int) [N] ;
num nodes : int ;

}

117

The heap contains N nodes, of which num nodes are allocated. Pointer variables

are represented as integers in the range [0, P −1] where by convention null = 0. Each

pointer variable is mapped to an allocated node by the ptr array, with the restriction

that null maps to node 0. The edges in the graph are encoded in the succ array

where h.succ[n] = (m, w) iff the edge (n,m) with weight w is in the graph. For a

heap with N nodes, this structure requires 3N + 1 integers to encode.

The implementations of the SLH[TBV] functions described in Section 8.3.1 are given

in Figure 8.5. Note that only Alloc and Lookup can allocate new nodes. Therefore if

we are searching for a counterexample heap with at most 2P nodes, and our formula

contains k occurrences of Alloc and Lookup, the largest heap that can occur in the

counterexample will contain no more than 2P + k nodes. We can therefore encode

all of the heaps using 6P + 3k + 1 integers each.

When constructing the SAT formula corresponding to the SLH[TBV] formula, each

of the functions can be encoded (via symbolic execution) as a formula in the back-

ground theory TBV of constant size, except for PathLength which contains a loop.

This loop iterates N = 2P +k times and so expands to a formula of size O(P). If the

SLH[TBV] formula contains x operations, the final SAT formula in TBV is therefore of

size x× P . We use CBMC [29] to construct and solve the SAT formula.

One important optimisation when constructing the SAT formula involves a sym-

metry reduction on the counterexamples. Since our encoding assigns names to each

of the vertices in the graph, we can have multiple representations for heaps that are

isomorphic. To ensure that the SAT solver only considers a single counterexample

from each homeomorphism class, we choose a canonical representative of each class

and add a constraint that the counterexample we are looking for must be one of

these canonical representatives. We define the canonical form of a heap such that the

nodes are ordered topologically and so that the ordering is compatible with the or-

dering on the program variables. Note that this canonical form is described in terms

of a breadth-first traversal of the graph, which eliminates cycles.

∀p, p′ ∈ P .p < p′ ⇒ ∀n, n′.L(p)→∗ n ∧ L(p′)→∗ n′ ⇒ n ≤ n′

∀n, n′.n→ n′ ⇒ n ≤ n′

Where n→∗ n′ means n′ is reachable from n.

118

function NewNode(heap h)
n ← h.num nodes
h.num nodes ← h.num nodes + 1
h.succ[n] ← (null, 1)
return n

function Subdivide(heap h, node a)
n ← NewNode(h)
(b, w) ← h.succ[a]
h.succ[a] ← (n, 1)
h.succ[n] ← (b, w - 1)
return n

function Update(heap h, ptr x, ptr y)
n ← h.ptr[x]
m ← h.ptr[y]
h.succ[n] ← (m, 1)

function Assign(heap h, ptr x, ptr y)
h.ptr[x] ← h.ptr[y]

function Lookup(heap h, ptr x, ptr y)
n ← h.ptr[y]
(n’, w) ← h.succ[n]
if w 6= 1 then

n’ ← Subdivide(h, n)

h.ptr[x] ← n’

function Alloc(heap h, ptr x)
n ← NewNode(h)
h.ptr[x] ← n

function PathLength(heap h, ptr x, ptr y)
n ← h.ptr[x]
m ← h.ptr[y]
distance ← 0
for i ← 0 to h.num nodes do

if n = m then
return distance

else
(n, w) ← h.succ[n]
distance ← distance + w

return ∞

function Circular(heap h, ptr x)
n ← h.ptr[x]
m ← h.succ[n]
distance ← 0
for i ← 0 to h.num nodes do

if m = n then
return True

else
if n = null then

return False
m ← h.succ[m]

return False

Figure 8.5: Implementation of the SLH[TBV] functions

8.7 Motivation Revisited

In this section, we get back to the motivational examples in Figure 8.1 and express

their safety invariants and termination arguments in SLH. As mentioned in Sec-

tion 8.5.1, for ease of use, we don’t mention the explicit heap h in the specifications.

In Figure 8.1a, assuming that the call to the length function ensures the state

before the loop to be pathLength(h, x, null) = n, then a possible safety invariant is

pathLength(h, y, null) = n−i. Note that this invariant covers both the case where the

list pointed by x is acyclic and the case where it contains a cycle. In the latter scenario,

given that ∞− i =∞, the invariant is equivalent to pathLength(h, y, null) =∞. A

ranking function for this program is R(i) = −i.
The program in Figure 8.1b is safe with a possible safety invariant:

pathLength(h, z, null) == pathLength(h, t, null).

Similar to the previous case, this invariant covers the scenario where the lists pointed

by x and y are acyclic, as well as the one where they are cyclic. In the latter situation,

the program does not terminate.

119

For the example in Figure 8.1c, the divides function is safe and a safety invariant

is:

isPath(x, null) ∧ isPath(z, null) ∧ isPath(y, null) ∧ isPath(y, z) ∧ isPath(x,w)∧

¬isNull(y) ∧ (pathLength(x,w) + pathLength(z, null))%pathLength(y, null) == 0.

Additionally, the function terminates as witnessed by the ranking function R(w) =

pathLength(w, null).

Function isCircular in Figure 8.1c is safe and terminating with the safety in-

variant: pathLength(l, p) ∧ pathLength(p, q) ∧ isPath(q, p) 6=isPath(l, null), and lexi-

cographic ranking function: R(q, p) = (pathLength(q, null), pathLength(q, p)).

8.8 Experiments

To evaluate the applicability of our theory, we created a tool for verifying that heaps

don’t lie: Shakira [92]. We ran Shakira on a collection of programs manipulating

singly linked lists. This collections includes the standard operations of traversal,

reversal, sorting etc. as well as the motivational examples from Section 8.2. Each

of the programs in this collection is annotated with correctness assertions and loop

invariants, as well as the standard memory-safety checks. One of the programs (the

motivational program from Figure 8.1b) used a non-linear loop invariant, but this did

not require any special treatment by Shakira.

To generate VCs for each program, we generated a Hoare proof and then used

CBMC 4.9 [29] to compute the strongest post-conditions for each Hoare triple using

symbolic execution. The resulting VCs were solved using Glucose 4.0 [3]. As well

as correctness and memory safety, these VCs proved that each loop annotation was

genuinely a loop invariant. For four of the programs, we annotated loops with ranking

functions and generated VCs to check that the loops terminated, thereby creating a

total-correctness specification.

None of the proofs in our collection relied on assumptions about the shape of the

heap beyond that it consisted of singly linked lists. In particular, our safety proofs

show that the safe programs are safe even in the presence of arbitrary cycles and

sharing between pointers.

We ran our experiments on a 4-core 3.30 GHz Core i5 with 8 GB of RAM. The

results of these experiments are given in Table 8.1.

The top half of the table gives the aggregate results for the benchmarks in which

the specifications held, i.e., the VCs were unsatisfiable. These “safe” benchmarks

120

LOC #VCs Symex(s) SAT(s) C/E

Safe benchmarks (UNSAT VCs)
SLL (safe) 236 40 18.2 5.9 —
SLL (termination) 113 25 14.7 9.6 —

Counterexamples (SAT VCs)
CLL (nonterm) 38 14 6.9 1.6 3
Null-deref 165 31 13.6 3.0 3
Assertion Failure 73 11 3.5 0.7 3.5
Inadequate Invariant 37 4 4.9 1.2 6

Table 8.1: Experimental results

Legend:
LOC Total lines of code
#VCs Number of VCs
Symex(s) Total time spent in symbolic execution to generate VCs
SAT(s) Total time spent in SAT solver
C/E Average counterexample size (number of nodes)

are divided into two categories: partial- and total-correctness proofs. Note that the

total-correctness proofs involve solving more complex VCs – the partial correctness

proofs solved 40 VCs in 5.9 s, while the total correctness proofs solved only 25 VCs in

9.6 s. This is due to the presence of ranking functions in the total-correctness proofs,

which by necessity introduces a higher level of arithmetic complexity.

The bottom half of the table contains the results for benchmarks in which the VCs

were satisfiable. Since the VCs were generated from a Hoare proof, their satisfiability

only tells us that the purported proof is not in fact a real proof of the program’s cor-

rectness. However, Shakira outputs models when the VCs are satisfiable and these

can be examined to diagnose the cause of the proof’s failure. For our benchmarks,

the counterexamples fell into four categories:

• Non-termination due to cyclic lists.

• Null dereferences.

• A correctness assertion (not a memory-safety assertion) failing.

• The loop invariant being inadequate, either by being too weak to prove the

required properties, or failing to be inductive.

A counterexample generated by Shakira is given in Figure 8.6. This program is

a variation on the motivational program from Figure 8.1c in which the programmer

121

int ha s cy c l e (l i s t l) {
l i s t p = l ;
l i s t q = l→n ;

do {
// Unwind l oop to s earch
// tw i c e as f a s t !
i f (p != NULL) p = p→n ;
i f (p != NULL) p = p→n ;

i f (q != NULL) q = q→n ;
i f (q != NULL) q = q→n ;
i f (q != NULL) q = q→n ;
i f (q != NULL) q = q→n ;

} while (p != q &&
p != NULL &&
q != NULL) ;

return p == q ;
}

• • •

null l, p q

1

1

Counterexample heap leading to
non-termination.

Figure 8.6: A non-terminating program and the counterexample found by Shakira.

has tried to speed up the loop by unwinding it once. The result is that the program

no longer terminates if the list contains a cycle whose size is exactly one, as shown in

the counterexample found by Shakira.

These results show that discharging VCs written in SLH is practical with current

technology. They further show that SLH is expressive enough to specify safety, ter-

mination and correctness properties for difficult programs. When the VCs require

arithmetic to be done on list lengths, as is necessary when proving termination, the

decision problem becomes noticeably more difficult. Our encoding is efficient enough

that even when the VCs contain non-linear arithmetic on path lengths, they can be

solved quickly by an off-the-shelf SAT solver.

8.9 Related Work

Research works on relating the shape of data structures to their numeric properties

(e.g. length) follow several directions. For abstract interpretation based analyses,

an abstract domain that captures both heap and size was proposed in [16]. The

THOR tool [78,79] implements a separation logic [88] based shape analysis and uses

an off-the-shelf arithmetic analysis tool to add support for arithmetic reasoning. This

approach is conceptually different from ours as it aims to separate the shape reasoning

from the numeric reasoning by constructing a numeric program that explicitly tracks

changes in data structure sizes. In [17], Boujjani et al. introduce the logic SLAD

for reasoning about singly-linked lists and arrays with unbounded data, which allows

to combine shape constraints, written in a fragment of separation logic, with data

and size constraints. While SLAD is a powerful logic and has a decidable fragment,

122

our main motivation for designing a new logic was its translation to SAT. A second

motivation was the unrestricted sharing.

Other recent decidable logics for reasoning about linked lists were developed [17,

60, 77, 85, 100]. Piskac et al. provide a reduction of decidable separation logic frag-

ments to a decidable first-order SMT theory [85]. A decision procedure for an

alternation-free sub-fragment of first-order logic with transitive closure is described

in [60]. Lahiri and Qadeer introduce the Logic of Interpreted Sets and Bounded Quan-

tification (LISBQ) capable to express properties on the shape and data of composite

data structures [72]. In [23], Brain et al. propose a decision procedure for reasoning

about aliasing and reachability based on Abstract Conflict Driven Clause Learning

(ACDCL) [41]. As they don’t capture the lengths of lists, these logics are better

suited for safety and less for termination proving.

In [9], Berdine et al. present a small model property for a fragment of separation

logic with linked lists without explicit lengths. Their small model property says that

it suffices to check if lists of lengths zero and two entail the formula (i.e. it suffices to

unfold the list predicates 0 and 2 times). However if their fragment allowed imposing

minimum lengths for lists, their small model result would be violated. In our case,

since SLH allows adding explicit constraints on the lengths of lists (thus, one can

impose minimum lengths), their small model property does not hold.

123

Chapter 9

Conclusions

We have shown that it is possible to automatically analyse a large class of C programs

without generating false alarms. In particular, our analyses are able to soundly handle

programs with very deep, complex loops whose behaviour depends on fixed-width

integer semantics.

Our first analysis, acceleration, makes use of a sound under-approximation tech-

nique for loops in C programs with bit-vector semantics. The approach is very ef-

fective for finding deep counterexamples in programs that manipulate arrays, and

compatible with a variety of existing verification techniques.

We extended this analysis with a technique that constrains the search space of

an accelerated program, enabling BMC-based tools to prove safety using a small un-

winding depth. To this end, we use trace automata to eliminate redundant execution

traces resulting from under-approximating acceleration. Unlike other safety provers,

our approach does not rely on over-approximation, nor does it require the explicit

computation of a fixed point.

To build our second analysis, we developed a variety of methods based on second-

order formulations of program properties. To do this, we defined the second-order SAT

problem. We have shown that second-order SAT is a very expressive logic occupying

a high complexity class. Despite its complexity, it can be reduced to the synthesis of

finite-state programs, which allows us to exploit the observation that many formulae

have simple satisfying assignments and that this corresponds to synthesising short

programs. We have demonstrated that second-order SAT is well suited to program

verification by directly encoding safety and liveness properties as second-order SAT

formulae. We have also shown that other applications, such as superoptimisation and

QBF solving, map naturally onto second-order SAT.

To solve these second-order formulae, we have presented a novel synthesis algo-

rithm which uses a combination of symbolic model checking, explicit state model

124

checking and stochastic search. Our experiments show that this combination is effec-

tive at finding short solutions to second-order SAT problems stemming from a range

of problem domains.

Using this second-order SAT solver, we have shown how to precisely encode ter-

mination and safety analyses as second-order SAT problems. These encodings are

bit-level accurate and never make false claims about a program’s behaviour. As part

of this encoding, we defined the notion of danger invariants, which allow us to find

bugs without unrolling loops, and without introducing false alarms. Our experimen-

tal evaluation has shown that using second-order SAT to prove termination proving

is tractable in practice.

In order to extend the reach of second-order SAT based analysers, we developed

a theory of singly lists that can be decided with a SAT solver. To this end, we have

presented the logic SLH for reasoning about potentially cyclic singly-linked lists. The

main characteristics of SLH are the fact that it allows unrestricted sharing in the

heap and can relate the structure of lists to their length, i.e. reachability constraints

with numeric ones. As SLH is parametrised by the background arithmetic theory

used to express the length of lists, we present its instantiation SLH[TBV] with the

theory of bit-vector arithmetic and provide a way of efficiently deciding its validity

via a reduction to SAT. We empirically show that SLH is both efficient and expressive

enough for reasoning about safety and (especially) termination of list programs. Since

SLH’s decision procedure is based on a reduction to SAT, it would be possible to use

second-order SAT solving to automatically infer invariants and ranking functions for

SLH programs.

125

Bibliography

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,

Techniques, and Tools. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 1986.

[2] Rajeev Alur, Rastislav Bod́ık, Garvit Juniwal, Milo M. K. Martin, Mukund

Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Emina

Torlak, and Abhishek Udupa. Syntax-guided synthesis. In FMCAD, pages 1–17,

2013.

[3] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in mod-

ern SAT solvers. IJCAI’09, pages 399–404. Morgan Kaufmann, 2009.

[4] James Avery. Size-change termination and bound analysis. In FLOPS, pages

192–207, 2006.

[5] Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K. Rajamani. Slam and

Static Driver Verifier: Technology transfer of formal methods inside Microsoft.

In IFM, volume 2999 of LNCS. Springer, 2004.

[6] Jason Baumgartner and Andreas Kuehlmann. Enhanced diameter bounding via

structural transformations. In Design, Automation and Test in Europe (DATE),

pages 36–41. IEEE, 2004.

[7] Amir M. Ben-Amram. Size-change termination, monotonicity constraints and

ranking functions. Logical Methods in Computer Science, 6(3), 2010.

[8] Amir M. Ben-Amram and Samir Genaim. On the linear ranking problem for

integer linear-constraint loops. In POPL, pages 51–62, 2013.

[9] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. A decidable fragment

of separation logic. In FSTTCS 2004: Foundations of Software Technology and

Theoretical Computer Science, 24th International Conference, Chennai, India,

December 16-18, 2004, Proceedings, pages 97–109, 2004.

126

[10] Tewodros A. Beyene, Corneliu Popeea, and Andrey Rybalchenko. Solving ex-

istentially quantified horn clauses. In CAV, pages 869–882, 2013.

[11] Dirk Beyer. Status Report on Software Verification (Competition Summary

SV-COMP 2014). In Erika Ábrahám and Klaus Havelund, editors, TACAS,

volume 8413 of LNCS, pages 373–388. Springer, 2014.

[12] Dirk Beyer, Thomas A. Henzinger, Rupak Majumdar, and Andrey Ry-

balchenko. Path invariants. In PLDI, pages 300–309. ACM, 2007.

[13] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Sym-

bolic model checking without BDDs. In TACAS, volume 1579 of LNCS, pages

193–207. Springer, 1999.

[14] Nikolaj Bjørner, Kenneth L. McMillan, and Andrey Rybalchenko. On solving

universally quantified horn clauses. In SAS, pages 105–125, 2013.

[15] Bernard Boigelot. Symbolic Methods for Exploring Infinite State Spaces. PhD

thesis, Université de Liège, 1999.

[16] Ahmed Bouajjani, Cezara Dragoi, Constantin Enea, and Mihaela Sighireanu.

Abstract domains for automated reasoning about list-manipulating programs

with infinite data. In VMCAI, pages 1–22, 2012.

[17] Ahmed Bouajjani, Cezara Dragoi, Constantin Enea, and Mihaela Sighireanu.

Accurate invariant checking for programs manipulating lists and arrays with

infinite data. In ATVA, 2012.

[18] Marius Bozga, Radu Iosif, and Filip Konecný. Fast acceleration of ultimately

periodic relations. In CAV, volume 6174 of LNCS, pages 227–242. Springer,

2010.

[19] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Linear ranking with

reachability. In CAV, pages 491–504, 2005.

[20] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. The polyranking prin-

ciple. In ICALP, pages 1349–1361, 2005.

[21] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Termination of poly-

nomial programs. In VMCAI, pages 113–129, 2005.

127

[22] Martin Brain, Tom Crick, Marina De Vos, and John Fitch. TOAST: Applying

answer set programming to superoptimisation. In ICLP, pages 270–284, 2006.

[23] Martin Brain, Cristina David, Daniel Kroening, and Peter Schrammel. Model

and proof generation for heap-manipulating programs. In ESOP, pages 432–452,

2014.

[24] M.F. Brameier and W. Banzhaf. Linear Genetic Programming. Genetic and

Evolutionary Computation. Springer, 2007.

[25] Marc Brockschmidt, Byron Cook, and Carsten Fuhs. Better termination prov-

ing through cooperation. In CAV, pages 413–429, 2013.

[26] Hong Yi Chen, Byron Cook, Carsten Fuhs, Kaustubh Nimkar, and Peter W.

O’Hearn. Proving nontermination via safety. In TACAS, pages 156–171, 2014.

[27] Hong Yi Chen, Shaked Flur, and Supratik Mukhopadhyay. Termination proofs

for linear simple loops. In Static Analysis (SAS), pages 422–438. Springer, 2012.

[28] Alonzo Church. Logic, arithmetic, automata. In Proc. Internat. Congr. Math-

ematicians, pages 23–35. Inst. Mittag-Leffler, Djursholm, 1962.

[29] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking

ANSI-C programs. In TACAS, pages 168–176. Springer, 2004.

[30] Michael Codish and Samir Genaim. Proving termination one loop at a time. In

WLPE, pages 48–59, 2003.

[31] Byron Cook, Daniel Kroening, Philipp Rümmer, and Christoph M. Winter-

steiger. Ranking function synthesis for bit-vector relations. In TACAS, pages

236–250, 2010.

[32] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Termination proofs

for systems code. In PLDI, pages 415–426, 2006.

[33] Byron Cook, Abigail See, and Florian Zuleger. Ramsey vs. lexicographic ter-

mination proving. In TACAS, pages 47–61, 2013.

[34] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lat-

tice model for static analysis of programs by construction or approximation of

fixpoints. In POPL, pages 238–252, 1977.

128

[35] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints

among variables of a program. In Conference Record of the Fifth Annual ACM

Symposium on Principles of Programming Languages, Tucson, Arizona, USA,

January 1978, pages 84–96, 1978.

[36] C. David, D. Kroening, and M. Lewis. Propositional Reasoning about Safety

and Termination of Heap-Manipulating Programs. In ESOP, 2015.

[37] C. David, D. Kroening, and M. Lewis. Unrestricted Termination and Non-

Termination Arguments for Bit-Vector Programs. In ESOP, 2015.

[38] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient SMT

solver. In TACAS, pages 337–340, 2008.

[39] Nachum Dershowitz, Naomi Lindenstrauss, Yehoshua Sagiv, and Alexander

Serebrenik. A general framework for automatic termination analysis of logic

programs. Appl. Algebra Eng. Commun. Comput., 12(1/2):117–156, 2001.

[40] Edsger W. Dijkstra et al. From predicate transformers to predicates, April 1982.

Tuesday Afternoon Club Manuscript EWD821.

[41] Vijay D’Silva, Leopold Haller, and Daniel Kroening. Abstract conflict driven

learning. In POPL, pages 143–154, 2013.

[42] Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. A survey of au-

tomated techniques for formal software verification. TCAD, 27(7):1165–1178,

July 2008.

[43] R. Fagin. Generalized First-Order Spectra and Polynomial-Time Recognizable

Sets. In R. Karp, editor, Complexity of Computation, pages 43–73. Amer Math-

ematical Society, June 1974.

[44] Alain Finkel and Jrme Leroux. How to compose Presburger-accelerations: Ap-

plications to broadcast protocols. In FST-TCS 2002, volume 2556 of LNCS,

pages 145–156. Springer, 2002.

[45] E. Giunchiglia, M. Narizzano, L. Pulina, and A. Tacchella. Quantified Boolean

Formulas satisfiability library (QBFLIB), 2005. www.qbflib.org.

[46] Faustino Gomez and Risto Miikkulainen. Incremental evolution of complex

general behavior. Adaptive Behavior, 5:5–317, 1997.

129

www.qbflib.org

[47] Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, and Andrey Ry-

balchenko. Synthesizing software verifiers from proof rules. In PLDI, pages

405–416, 2012.

[48] Sumit Gulwani, Sagar Jain, and Eric Koskinen. Control-flow refinement and

progress invariants for bound analysis. In PLDI, pages 375–385, 2009.

[49] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan.

Synthesis of loop-free programs. In PLDI, pages 62–73, 2011.

[50] Sumit Gulwani, Saurabh Srivastava, and Ramarathnam Venkatesan. Program

analysis as constraint solving. In PLDI, pages 281–292, 2008.

[51] Ashutosh Gupta, Thomas A. Henzinger, Rupak Majumdar, Andrey Ry-

balchenko, and Ru-Gang Xu. Proving non-termination. In POPL, pages 147–

158, 2008.

[52] Maria Handjieva and Stanislav Tzolovski. Refining static analyses by trace-

based partitioning using control flow. In SAS, volume 1503 of LNCS, pages

200–214. Springer, 1998.

[53] William R. Harris, Akash Lal, Aditya V. Nori, and Sriram K. Rajamani. Al-

ternation for termination. In SAS, pages 304–319, 2010.

[54] Matthias Heizmann, Jochen Hoenicke, Jan Leike, and Andreas Podelski. Linear

ranking for linear lasso programs. In ATVA, pages 365–380, 2013.

[55] Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Refinement of

trace abstraction. In SAS, volume 5673 of LNCS, pages 69–85. Springer, 2009.

[56] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre.

Lazy abstraction. In POPL, pages 58–70. ACM, 2002.

[57] Georg Hofferek, Ashutosh Gupta, Bettina Könighofer, Jie-Hong Roland Jiang,

and Roderick Bloem. Synthesizing multiple boolean functions using interpola-

tion on a single proof. CoRR, abs/1308.4767, 2013.

[58] Hossein Hojjat, Radu Iosif, Filip Konecny, Viktor Kuncak, and Philipp Ruem-

mer. Accelerating interpolants. In ATVA, volume 7561 of LNCS, pages 197–202,

2012.

130

[59] Neil Immerman, Alexander Moshe Rabinovich, Thomas W. Reps, Shmuel Sagiv,

and Greta Yorsh. The boundary between decidability and undecidability for

transitive-closure logics. In CSL, pages 160–174, 2004.

[60] Shachar Itzhaky, Anindya Banerjee, Neil Immerman, Aleksandar Nanevski, and

Mooly Sagiv. Effectively-propositional reasoning about reachability in linked

data structures. In CAV, pages 756–772, 2013.

[61] Ranjit Jhala and Kenneth L. McMillan. A practical and complete approach

to predicate refinement. In TACAS, volume 3920 of LNCS, pages 459–473.

Springer, 2006.

[62] Laura Kovács and Andrei Voronkov. Finding loop invariants for programs over

arrays using a theorem prover. In FASE, volume 5503 of LNCS, pages 470–485.

Springer, 2009.

[63] Ina Kraan, David Basin, and Alan Bundy. Logic program synthesis via proof

planning. In Logic Program Synthesis and Transformation, pages 1–14. 1993.

[64] D. Kroening and M. Lewis. Second-Order SAT Solving using Program Synthe-

sis. ArXiv e-prints, September 2014.

[65] D. Kroening, M. Lewis, and G. Weissenbacher. Proving Safety with Trace

Automata and Bounded Model Checking. ArXiv e-prints, October 2014.

[66] Daniel Kroening. CBMC. http://www.cprover.org/cbmc/.

[67] Daniel Kroening, Matt Lewis, and Georg Weissenbacher. Under-approximating

loops in C programs for fast counterexample detection. In CAV, volume 8044

of LNCS, pages 381–396. Springer, 2013.

[68] Daniel Kroening, Natasha Sharygina, Aliaksei Tsitovich, and Christoph M.

Wintersteiger. Termination analysis with compositional transition invariants.

In CAV, pages 89–103, 2010.

[69] Daniel Kroening and Ofer Strichman. Efficient computation of recurrence di-

ameters. In VMCAI, volume 2575 of LNCS, pages 298–309. Springer, 2003.

[70] Daniel Kroening and Georg Weissenbacher. Counterexamples with loops for

predicate abstraction. In CAV, volume 4144 of LNCS, pages 152–165. Springer,

2006.

131

http://www.cprover.org/cbmc/

[71] Kelvin Ku, Thomas E. Hart, Marsha Chechik, and David Lie. A buffer overflow

benchmark for software model checkers. In ASE, pages 389–392. ACM, 2007.

[72] Shuvendu K. Lahiri and Shaz Qadeer. Back to the future: revisiting precise

program verification using SMT solvers. In POPL, pages 171–182, 2008.

[73] W. B. Langdon and Riccardo Poli. Foundations of Genetic Programming.

Springer, 2002.

[74] Daniel Larraz, Albert Oliveras, Enric Rodŕıguez-Carbonell, and Albert Rubio.

Proving termination of imperative programs using Max-SMT. In FMCAD,

pages 218–225, 2013.

[75] Wonchan Lee, Bow-Yaw Wang, and Kwangkeun Yi. Termination analysis with

algorithmic learning. In CAV, pages 88–104, 2012.

[76] Jan Leike and Matthias Heizmann. Ranking templates for linear loops. In

TACAS, pages 172–186, 2014.

[77] P. Madhusudan, Gennaro Parlato, and Xiaokang Qiu. Decidable logics combin-

ing heap structures and data. In POPL, pages 611–622, 2011.

[78] Stephen Magill, Ming-Hsien Tsai, Peter Lee, and Yih-Kuen Tsay. THOR: A tool

for reasoning about shape and arithmetic. In Computer Aided Verification, 20th

International Conference, CAV 2008, Princeton, NJ, USA, July 7-14, 2008,

Proceedings, pages 428–432, 2008.

[79] Stephen Magill, Ming-Hsien Tsai, Peter Lee, and Yih-Kuen Tsay. Automatic

numeric abstractions for heap-manipulating programs. In POPL, pages 211–

222, 2010.

[80] Zohar Manna and Richard J. Waldinger. Toward automatic program synthesis.

Commun. ACM, 14(3):151–165, March 1971.

[81] Kenneth L. McMillan. Lazy abstraction with interpolants. In CAV, volume

4144 of LNCS, pages 123–136. Springer, 2006.

[82] Antoine Miné. The octagon abstract domain. Higher-Order and Symbolic Com-

putation, 19(1):31–100, 2006.

[83] Greg Nelson. A generalization of Dijkstra’s calculus. TOPLAS, 11(4):517–561,

1989.

132

[84] Aditya V. Nori and Rahul Sharma. Termination proofs from tests. In ES-

EC/SIGSOFT FSE, pages 246–256, 2013.

[85] Ruzica Piskac, Thomas Wies, and Damien Zufferey. Automating separation

logic using SMT. In CAV, pages 773–789, 2013.

[86] Andreas Podelski and Andrey Rybalchenko. A complete method for the syn-

thesis of linear ranking functions. In VMCAI, pages 239–251, 2004.

[87] Andreas Podelski and Andrey Rybalchenko. Transition invariants. In LICS,

pages 32–41, 2004.

[88] John C. Reynolds. Separation logic: A logic for shared mutable data structures.

In LICS, pages 55–74, 2002.

[89] Andrey Rybalchenko. ARMC. http://www7.in.tum.de/~rybal/armc.

[90] Peter Schrammel and Bertrand Jeannet. Logico-numerical abstract acceleration

and application to the verification of data-flow programs. In SAS, volume 6887

of LNCS, pages 233–248. Springer, 2011.

[91] Peter Schrammel, Tom Melham, and Daniel Kroening. Chaining test cases for

reactive system testing. In ICTSS, pages 133–148, 2013.

[92] Shakira. Hips Don’t Lie, 2006.

[93] Rahul Sharma and Alex Aiken. From invariant checking to invariant inference

using randomized search. In CAV, pages 88–105, 2014.

[94] Armando Solar Lezama. Program Synthesis By Sketching. PhD thesis, EECS

Department, University of California, Berkeley, Dec 2008.

[95] Armando Solar-Lezama. Program sketching. STTT, 15(5-6):475–495, 2013.

[96] http://sv-comp.sosy-lab.org/2015/.

[97] A. M. Turing. On computable numbers, with an application to the Entschei-

dungsproblem. 42:230–265, 1936.

[98] Caterina Urban. The abstract domain of segmented ranking functions. In SAS,

pages 43–62. Springer, 2013.

133

http://www7.in.tum.de/~rybal/armc
http://sv-comp.sosy-lab.org/2015/

[99] Kuat Yessenov, Ruzica Piskac, and Viktor Kuncak. Collections, cardinalities,

and relations. In Verification, Model Checking, and Abstract Interpretation,

pages 380–395. Springer, 2010.

[100] Greta Yorsh, Alexander Moshe Rabinovich, Mooly Sagiv, Antoine Meyer, and

Ahmed Bouajjani. A logic of reachable patterns in linked data-structures.

J.Log.Alg.Prog., 73(1-2), 2007.

134

	Introduction
	Thesis Structure
	Contributions
	Research Hypothesis

	I Underapproximate Acceleration
	Overview and Preliminaries
	Background and Notation

	Finding Bugs with Under-Approximate Loop Acceleration
	Introduction
	Outline
	Under-Approximation Techniques
	Eliminating Quantifiers from Approximations
	Implementation and Experimental Results

	Proving Safety with Loop Acceleration and Trace Automata
	Introduction
	Motivation
	Diameter Reduction via Acceleration
	Checking Safety with Trace Automata
	Experimental Evaluation
	Detailed Experimental Results
	Related Work

	II Second-Order Logic and Program Synthesis
	Overview and Preliminaries
	Background and Notation

	Second-Order SAT Solving with Program Synthesis
	Introduction
	Preliminaries
	Decidability and Complexity of Program Synthesis
	Synthesising Finite-State Programs
	Experiments

	Second-Order Liveness and Safety
	Introduction
	Termination
	Termination Examples
	Termination Proofs
	Machine Arithmetic Vs. Peano Arithmetic
	Termination as Second-Order Satisfaction
	Safety and Danger Proofs
	Analysing Programs with Second-Order Tautologies
	Soundness, Completeness and Complexity
	Experiments
	Related Work

	Propositional Reasoning About the Heap
	Introduction
	Motivation
	Theory of Singly Linked Lists with Length
	Deciding Validity of SLH
	Using SLH for Verification
	Implementation
	Motivation Revisited
	Experiments
	Related Work

	Conclusions
	Bibliography

