A Saturation Method for the Modal Mu-Calculus with Backwards Modalities over Pushdown Systems

M. Haguea, C.-H. L. Onga

aOxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, UK

Abstract

We present an algorithm for computing directly the denotation of a modal μ-calculus formula χ with backwards modalities over the configuration graph of a pushdown system. Our method gives the first extension of the saturation technique to the full modal μ-calculus with backwards modalities. Finite word automata are used to represent sets of pushdown configurations. Starting from an initial automaton, we perform a series of automaton manipulations which compute the denotation by recursion over the structure of the formula. We introduce notions of under-approximation (soundness) and over-approximation (completeness) that apply to automaton transitions rather than runs. Our algorithm is relatively simple and direct, and avoids an immediate exponential blow up.

Keywords: Modal Mu-Calculus, Backwards Time, Pushdown Systems, Parity Games, Winning Regions. Global Model Checking. Saturation Methods.

1. Preliminaries

1.1. Pushdown Systems

A pushdown system (PDS) is a triple $\mathcal{P} = (\mathcal{P}, \mathcal{D}, \Sigma \bot)$ where \mathcal{P} is a set of control states, $\Sigma \bot := \Sigma \cup \{\bot\}$ is a finite stack alphabet (we assume $\bot \not\in \Sigma$), $\mathcal{D} \subseteq \mathcal{P} \times \Sigma \bot \times \mathcal{P} \times \Sigma \bot^*$ is a set of pushdown rules. As is standard, we assume that the bottom-of-stack symbol \bot is neither pushed onto, nor popped from, the stack. We write $\langle p, aw \rangle \rightarrow \langle p', w'w \rangle$ whenever $p a \rightarrow p' w' \in \mathcal{D}$ and C to refer to the set of all pushdown configurations.

1.2. Modal μ-Calculus

Given a set of propositions AP and a disjoint set of variables Z, formulas of the modal μ-calculus are defined as follows (with $x \in AP$ and $Z \in \mathcal{Z}$):

$$\phi := x \mid \neg x \mid Z \mid \phi \land \phi \mid \phi \lor \phi \mid \Box \phi \mid \Diamond \phi \mid \mu Z. \phi \mid \nu Z. \phi.$$

Thus we assume that the formulas are in positive form, in the sense that negation is only applied to atomic propositions. Over a pushdown system, the semantics of a formula ϕ are given with respect to a valuation $V : Z \rightarrow \mathcal{P}(\mathcal{C})$ which
maps each free variable to its set of satisfying configurations and an environment \(\rho : AP \to \mathcal{P}(C) \) mapping each atomic proposition to its set of satisfying configurations. We then have,

\[
\begin{align*}
[x]_V^p &= \rho(x) \\
[-x]_V^p &= C \setminus \rho(x) \\
[Z]_V^p &= V(Z) \\
[\varphi_1 \land \varphi_2]_V^p &= [\varphi_1]_V^p \cap [\varphi_2]_V^p \\
[\varphi_1 \lor \varphi_2]_V^p &= [\varphi_1]_V^p \cup [\varphi_2]_V^p \\
[\Box \varphi]_V^p &= \{ c \in C \mid \forall c'.c \leftarrow c' \implies [\varphi]_V^p \} \\
[\Diamond \varphi]_V^p &= \{ c \in C \mid \exists c'.c \leftarrow c \implies [\varphi]_V^p \} \\
[\Box \Diamond \varphi]_V^p &= \{ c \in C \mid \forall c'.c \leftarrow c \implies [\varphi]_V^p \} \\
[\Diamond \Box \varphi]_V^p &= \{ c \in C \mid \exists c'.c \leftarrow c \land [\varphi]_V^p \} \\
[\mu Z. \varphi]_V^p &= \bigcap\{ S \subseteq C \mid [\varphi]_{V[Z \mapsto S]}^p \subseteq S \} \\
[\nu Z. \varphi]_V^p &= \bigcup\{ S \subseteq C \mid S \subseteq [\varphi]_{V[Z \mapsto S]}^p \}
\end{align*}
\]

where \(V[Z \mapsto S] \) updates the valuation \(V \) to map the variable \(Z \) to the set \(S \).

The operators \(\Box \varphi \) and \(\Diamond \varphi \) assert that \(\varphi \) holds after all possible transitions and after some transition respectively; \(\Box \) and \(\Diamond \) are their backwards time counterparts; and the \(\mu \) and \(\nu \) operators specify greatest and least fixed points. Another interpretation of these operators is given below. For a full discussion of the modal \(\mu \)-calculus we refer the reader to a survey by Bradfield and Stirling [7].

1.3. Approximants

Thanks to the Knaster-Tarski Fixed Point Theorem, the semantics of a fixed point formula \([\sigma Z. \chi(\overline{Y}, Z)]_V^p \), where \(\overline{Y} = Y_1, \ldots, Y_n \) and \(\sigma \in \{ \mu, \nu \} \) can be given as the limit of the sequence of \(\alpha \)-approximants \([\sigma^\alpha Z. \chi(\overline{Y}, Z)]_V^p \), where \(\alpha \) ranges over the ordinals and \(\lambda \) ranges over the limit ordinals:

\[
\begin{align*}
[\sigma^0 Z. \chi(\overline{Y}, Z)]_V^p &= \text{Init} \\
[\sigma^{\alpha+1} Z. \chi(\overline{Y}, Z)]_V^p &= [\chi(\overline{Y}, Z)]_V^p \cup \bigcup_{0 < \lambda < \alpha} [\sigma^\lambda Z. \chi(\overline{Y}, Z)]_V^p \\
[\sigma^\lambda Z. \chi(\overline{Y}, Z)]_V^p &= \bigcap_{0 < \kappa < \lambda} [\sigma^\kappa Z. \chi(\overline{Y}, Z)]_V^p
\end{align*}
\]

where \(\text{Init} = \emptyset \) and \(\bigcap \bigcup \) when \(\sigma = \mu \), and \(\text{Init} \) is the set of all configurations and \(\bigcup \bigcap \) when \(\sigma = \nu \). The least ordinal \(\kappa \) such that \([\sigma^\kappa Z. \chi(\overline{Y}, Z)]_V^p = [\sigma Z. \chi(\overline{Y}, Z)]_V^p \) is called the closure ordinal.

Example 1.1. When interpreted in a pushdown graph, \([\sigma^\alpha Z. \chi(\overline{Y}, Z)]_{\alpha \in \text{Ord}} \) may have an infinite closure ordinal. Consider the pushdown graph in Figure 1 (which is a dual of an example of Cachat’s [20]). The proposition \(p \) is true only when the control state is \(p \) and \(f \) is true only at control state \(f \). In this graph \([\mu Z_1.vZ_2. (p \land \Box Z_1) \lor (f \land \Box Z_2)]\) consists of all configurations. However, any \(\langle f, a a^n \rangle \) for some \(n \) only appears in an approximant of the least fixed point when \(\langle f, a a^n \rangle \) and \(\langle p, a a^n \rangle \) appear in the previous approximant (since \(\Box Z_2 \) quantifies over all transitions from \(\langle f, a a^n \rangle \)). Hence, all \(\langle p, a a^n \rangle \) must appear
in the \(\alpha \)-approximant before any \(\langle f, a^n \perp \rangle \) can appear in the \((\alpha + 1)\)-approximant. Thus the first approximant containing all \(p \) configurations is the \(\omega \)-approximant. It follows that the least fixed point in question has an infinite closure ordinal. Cachat also shows that a greatest fixed point may also have an infinite closure ordinal.

1.4. Alternating Multi-Automata

We use alternating multi-automata [2] as a representation of (regular) sets of configurations. Given a pushdown system \((P, D, \Sigma)\) with \(P = \{ p_1, \ldots, p_z \}\), an alternating multi-automaton \(A \) is a quintuple \((Q, \Sigma, \Delta, I, F)\) where \(Q\) is a finite set of states, \(\Delta \subseteq Q \times (\Sigma \cup \{ \perp \}) \times 2^Q\) is a set of transitions (we assume \(\perp \not\in \Sigma \)), \(I = \{ q_1^1, \ldots, q_n^1 \} \subseteq Q\) is a set of initial states, and \(F \subseteq Q\) is a set of final states. Observe that there is an initial state for each control state of the pushdown system. We write \(q \xrightarrow{a} Q \) just if \((q, a, Q) \in \Delta \); and define \(q \xrightarrow{aw} Q_1 \cup \cdots \cup Q_n \) just if \(q \xrightarrow{a} \{ q_1, \ldots, q_n \} \) and \(q_k \xrightarrow{w} Q_k \) for all \(1 \leq k \leq n \). Finally we define the language accepted by \(A \), \(\mathcal{L}(A) \), by: \(\langle p, w \rangle \in \mathcal{L}(A) \) just if \(q^1 \xrightarrow{w} Q \) for some \(Q \subseteq F \). We further define \(L_q(A) \) to be the set of all words accepted from the state \(q \) in \(A \). Henceforth, we shall refer to alternating multi-automata simply as automata. In cases of ambiguity, we may specify runs of a particular automaton \(A \) with a transition relation \(\Delta \) by \(q \xrightarrow{a} A \) and \(q \xrightarrow{aw} \Delta \) respectively.

1.5. Reachability and Projection

Formulas of the form \(\Box \varphi \) and \(\Diamond \varphi \) assert a one-step backwards reachability property, which we compute using a simplification of the reachability algorithm [2] due to Bouajjani et al. Cachat’s extension of this algorithm to Büchi games [19] requires a technique called projection. Using an example, we briefly introduce the relevant techniques.

Take a PDS with the rules \(p_1^1 a \rightarrow p_2^2 \varepsilon \) and \(p_2^2 b \rightarrow p_2^2 ba \). The automaton \(A_{eg} \) in Figure 2 (with \(q_f \) being the only accepting state) represents a configuration set \(C \). Let \(\text{Pre}(C) \) be the set of all configurations that can reach \(C \) in exactly one step. To calculate \(\text{Pre}(C) \) we first add a new set of initial states — since we don’t necessarily have \(C \subseteq \text{Pre}(C) \). By applying \(p_1^1 a \rightarrow p_2^2 \varepsilon \), any configuration of the form \(\langle p_1^1, aw \rangle \), where \(w \) is accepted from \(q_f^1 \) in \(A_{eg} \), can reach \(C \). Hence we add an \(a \)-transition from \(q_{new}^1 \). (Via the pop transition, we reach \(\langle p_2^2, w \rangle \in \mathcal{L}(A_{eg}) \).) Alternatively, via \(p_2^2 b \rightarrow p_2^2 ba \), any configuration of the form \(\langle p_2^2, bw \rangle \), where \(bw \)
is accepted from \(q^2 \) in \(A_{eg} \), can reach \(C \). The push, when applied backwards, replaces \(ba \) by \(b \). We add a \(b \)-transition from \(q^2_{new} \) which skips any run over \(ba \) from \(q^2 \). Figure 3 shows the resulting automaton.

To ensure termination of the Büchi construction, Cachat uses projection, which replaces a new transition to an old initial state with a transition to the corresponding new state. Hence, the transition in Figure 3 from \(q^1_{new} \) is replaced by the transition in Figure 4. The old initial states are then unreachable, and deleted, which, in this case, leaves an automaton with the same states as Figure 2 (modulo the \(new \) suffix) but an additional transition. In this sense, the state-set remains fixed.

2. The Algorithm

Without loss of generality, assume all pushdown commands are \(p \ a \rightarrow \ p' \varepsilon \), \(p \ a \rightarrow p' b \), or \(p \ a \rightarrow \ p' bb' \).
We begin by introducing some notation. A literal \(\hat{x} \) is either \(x \) or \(\neg x \) for an atomic proposition \(x \). For a modal \(\mu \)-calculus formula \(\chi \), we write \(\text{FV}(\chi) \) for the set of free variables of \(\chi \). Henceforth we fix a modal \(\mu \)-calculus formula \(\chi \). We shall assume \(\chi \) contains no sub-formulas of the form \(\sigma Z.\hat{x} \) or \(\sigma Z X \) with \(\sigma \in \{ \mu, \nu \} \). Furthermore, all bound variable names are unique.

The algorithm is given in Procedures 1 to 11. Each procedure returns an automaton and a set of initial states that give the valuation of the formula it computes. These sets, \(I \), contain a (unique) state of the form \((p, \varphi, c)\) for each control state \(p \). In general, \(\varphi \) is the formula whose denotation is being computed, but, in the case of a fixed point, \(\varphi = Z \) where \(Z \) is the variable bound by the fixed point. Hence, we introduce the notation

\[I(p) = (p, \varphi, c) \text{ where } (p, \varphi, c) \in I \]

to denote the valuation for a given control state \(p \). For a control state \(p \) and characters \(a, b \), for forward time modalities, let \(\text{Next}(p, a) = \{ (p', w) \mid p a \to p' w \} \), for backwards time, let \(\text{Pop}(p) = \{ (p', a') \mid p' a' \to p \} \), and \(\text{Rew}(p, a) = \{ (p', a') \mid p' a' \to p b \} \), and together \(\text{Pre}(p, a, b) = \text{Pop}(p) \cup \text{Rew}(p, a) \cup \text{Push}(p, a, b) \). Most automaton states are of the form \((p, \varphi, c)\) which represents a working value of the denotation of \(\varphi \) restricted to the control state \(p \). The last element \(c \) is an integer that broadly corresponds to the fixed point depth of \(\varphi \) in \(\chi \). There are also states of the form \((p, \varphi, c, a)\) which are used as intermediate states for the backwards time computations. For convenience we equate all \((p, \varphi, c, \bot)\) with \(q_f^\bot \).

We define the projection function

\[\pi_c(q) = \begin{cases} (p, \varphi, c + 1) & \text{if } q = (p, \varphi, c) \\ (p, \varphi, c + 1, a) & \text{if } q = (p, \varphi, c, a) \\ q & \text{otherwise} \end{cases} \]

which we lift to sets of states in the obvious way. This projection function can be compared with the projections discussed in Section 1.5. Here, the states \((p, \varphi, c + 1)\) correspond to the new initial states, and \((p, \varphi, c)\) to the old.

For an automaton \(A \) and variable \(Z \), we say that the variable has the set of binding states \((p, Z, c)\) for all control states \(p \) such that \(c \) is the largest value for which \((p, Z, c)\) is in \(A \). We say an automaton \(A \) gives a valuation of an environment if it contains an initial state \((p, \hat{x}, *)\) for every atomic proposition and control state and a binding state for every free variable and control state, such that, for a given \(Z \), all binding states have the same \(c \). Let \(\mathbb{Q}^A_Z \) be the set of binding states of \(Z \) in \(A \) and \(\mathbb{Q}^A_Z \) be the set of all \((p, \hat{x}, *)\). In addition, let \(\text{level}(p, \varphi, c) = c \) and \(A[\varphi/I] \) be a renaming function on automata that renames states of the form \((p, \varphi', c)\) in \(I \) to \((p, \varphi, c)\). The sets \(I \) will be suitably defined to avoid name clashes.

We also assume that all automata have (share) the states \(q^* \) and \(q_f^\bot \), where \(q_f^\bot \) is accepting and \(q^* \stackrel{a}{\to} \{q^*\} \) for all \(a \in \Sigma \setminus \{\bot\} \) and \(q^* \stackrel{\bot}{\to} \{q_f^\bot\} \). Furthermore, all transitions of the form \(q \stackrel{a}{\to} Q \) have \(Q = \{q_f^\bot\} \). Finally, we introduce a
comparison operator $A \preceq A'$, which can be intuitively read as $\mathcal{L}(A) \subseteq \mathcal{L}(A')$. The precise definition is deferred to Definition 3.2.

In Section 4 we give the pre- and post-conditions of each of the given procedures. Correctness is shown in Section 4.

Procedure 1\textit{Denotation}(\chi, A_V, \mathcal{P})

\textbf{Require:} A pushdown system $\mathcal{P} = (\mathcal{P}, \mathcal{D}, \Sigma)$, a modal μ-calculus formula χ and an automaton A_V giving valuations for all (unbound) literals.

\textbf{Ensure:} A pair (A, I) such that automaton A recognises $[\chi]_V^\mathcal{P}$ from initial states I.

\textbf{return} $\text{Dispatch}(A_V, \chi, 1, \mathcal{P})$

Procedure 2\textit{Dispatch}(A, \phi, c, \mathcal{P})

\textbf{if} $\phi = x$ \textbf{then} return (A, Q_1^A)
\textbf{else if} $\phi = Z$ \textbf{then} return (A, Q_2^A)
\textbf{else if} $\phi = \phi_1 \land \phi_2$ \textbf{then}
 \textbf{return} $\text{And}(A, \phi_1, \phi_2, c, \mathcal{P})$
\textbf{else if} $\phi = \phi_1 \lor \phi_2$ \textbf{then}
 \textbf{return} $\text{Or}(A, \phi_1, \phi_2, c, \mathcal{P})$
\textbf{else if} $\phi = \lozenge \phi_1$ \textbf{then}
 \textbf{return} $\text{Diamond}(A, \phi_1, c, \mathcal{P})$
\textbf{else if} $\phi = \square \phi_1$ \textbf{then}
 \textbf{return} $\text{Box}(A, \phi_1, c, \mathcal{P})$
\textbf{else if} $\phi = \mu Z. \phi_1$ \textbf{then}
 \textbf{return} $\text{LF}P(A, Z, \phi_1, c, \mathcal{P})$
\textbf{else if} $\phi = \nu Z. \phi_1$ \textbf{then}
 \textbf{return} $\text{GF}P(A, Z, \phi_1, c, \mathcal{P})$
\textbf{end if}

3. Termination

3.1. Comparing Automata

We begin by defining the \preceq operator described intuitively in Section 2. Observe that if we have $q \xrightarrow{a} Q$ and $q' \xrightarrow{a} Q'$ with $Q \subseteq Q'$, then acceptance from Q' implies acceptance from Q. That is, the transition to Q' can, in some sense, be simulated by the transition to Q. Furthermore, acceptance from any q that is
Procedure 3 And($A, \varphi_1, \varphi_2, c, \mathcal{P}$)

\[
((Q_1, \Sigma, \Delta_1, \omega, F_1), I_1) = Dispatch(A, \varphi_1, c, \mathcal{P}) \\
((Q_2, \Sigma, \Delta_2, \omega, F_2), I_2) = Dispatch(A, \varphi_2, c, \mathcal{P}) \\
A' = (Q_1 \cup Q_2 \cup I, \Sigma, \Delta_1 \cup \Delta_2 \cup \Delta', \omega, F_1 \cup F_2)
\]
where $I = \{ (p, \varphi_1 \land \varphi_2, c) \mid p \in \mathcal{P} \}$
and $\Delta' = \{ (p, \varphi_1 \land \varphi_2, c), a, Q_1 \cup Q_2) \mid (I_1(p), a, Q_1) \in \Delta_1 \land (I_2(p), a, Q_2) \in \Delta_2 \}$

return (A', I)

Procedure 4 Or($A, \varphi_1, \varphi_2, c, \mathcal{P}$)

\[
((Q_1, \Sigma, \Delta_1, \omega, F_1), I_1) = Dispatch(A, \varphi_1, c, \mathcal{P}) \\
((Q_2, \Sigma, \Delta_2, \omega, F_2), I_2) = Dispatch(A, \varphi_2, c, \mathcal{P}) \\
A' = (Q_1 \cup Q_2 \cup I, \Sigma, \Delta_1 \cup \Delta_2 \cup \Delta', \omega, F_1 \cup F_2)
\]
where $I = \{ (p, \varphi_1 \lor \varphi_2, c) \mid p \in \mathcal{P} \}$
and $\Delta' = \{ (p, \varphi_1 \lor \varphi_2, c), a, Q) \mid (I_1(p), a, Q) \in \Delta_1 \lor (I_2(p), a, Q) \in \Delta_2 \}$

return (A', I)

Procedure 5 Box($A, \varphi_1, c, \mathcal{P}$)

\[
((Q_1, \Sigma, \Delta_1, \omega, F_1), I_1) = Dispatch(A, \varphi_1, c, \mathcal{P}) \\
A' = (Q_1 \cup I, \Sigma, \Delta_1 \cup \Delta', \omega, F_1)
\]
where $I = \{ (p, \Box \varphi_1, c) \mid p \in \mathcal{P} \}$
and $\Delta' = \{ (p, \Box \varphi_1, c), a, Q) \mid Next(p, a) = \{ (p_1, w_1), \ldots, (p_n, w_n) \} \land \bigwedge_{1 \leq j \leq n} I_1(p_j) \xrightarrow{w_j} Q_j \land Q = Q_1 \cup \cdots \cup Q_n \}$
\[
\bigcup \{ (p, \Box \varphi_1, c), a, \{ q^j \}) \mid Next(p, a) = \emptyset \land a \neq \bot \} \cup \\
\{ (p, \Box \varphi_1, c), \bot, \{ q^j \}) \mid Next(p, \bot) = \emptyset \}
\]

return (A', I)

Procedure 6 Diamond($A, \varphi_1, c, \mathcal{P}$)

\[
((Q_1, \Sigma, \Delta_1, \omega, F_1), I_1) = Dispatch(A, \varphi_1, c, \mathcal{P}) \\
A' = (Q_1 \cup I, \Sigma, \Delta_1 \cup \Delta', \omega, F_1)
\]
where $I = \{ (p, \Diamond \varphi_1, c) \mid p \in \mathcal{P} \}$
and $\Delta' = \{ (p, \Diamond \varphi_1, c), a, Q) \mid (p', w) \in Next(p, a) \land I_1(p') \xrightarrow{w} Q \}$

return (A', I)
Procedure 7 BackBox(A, φ_1, c, P)

$((Q_1, \Sigma, \Delta_1, F_1), I_1) = \text{Dispatch}(A, \varphi_1, c, P)$

$A' = (Q_1 \cup I \cup Q_{\text{int}}, \Sigma, \Delta_1 \cup \Delta', \varnothing, F_1)$

where $I = \{ (p, \Box \varphi_1, c) \mid p \in P \}$

and $Q_{\text{int}} = \{ (p, \Box \varphi_1, c, a) \mid p \in P \wedge a \in \Sigma \}$

and $\Delta' =$

$\left\{ \begin{array}{l}
(p, \Box \varphi_1, c, a, Q) \\
(p, \Box \varphi_1, c, a, \{ q^* \}) \\
(p, \Box \varphi_1, c, \bot, \{ q^*_j \}) \\
(p, \Box \varphi_1, c, a, \{ q^*_j \}) \\
(p, \Box \varphi_1, c, a, \{ q^*_j \})
\end{array} \right\}$

\[Q = \left\{ (p, \Box \varphi_1, c, a) \right\} \cup Q_{\text{pop}} \cup Q_{\text{rew}} \land \\
\text{Pop}(p) = \{ (p_1, a_1), \ldots, (p_n, a_n) \} \land \\
\bigwedge_{1 \leq j \leq n} \left(I_1(p_j) \xrightarrow{a_j} Q_j \xrightarrow{a} Q_{\text{pop}} \right) \land \\
\text{Rew}(p, a) = \{ (p'_1, a'_1), \ldots, (p'_n, a'_n) \} \land \\
\bigwedge_{1 \leq j \leq n} \left(I_1(p'_j) \xrightarrow{a'_j} Q_{\text{rew}} \right) \land \\
\text{Pre}(p, a, b) = \{ (p_1, a_1), \ldots, (p_n, a_n) \} \land \\
\bigwedge_{1 \leq j \leq n} \left(I_1(p'_j) \xrightarrow{a'_j} Q_{\text{push}} \right) \land \\
Q = Q_{\text{push}} \cup \ldots \cup Q_{\text{push}} \land \\
\forall b. \text{Pre}(p, a, b) = \emptyset \}
\]

\[\text{return} \ (A', I) \]

Procedure 8 BackDiamond(A, φ_1, c, P)

$((Q_1, \Sigma, \Delta_1, F_1), I_1) = \text{Dispatch}(A, \varphi_1, c, P)$

$A' = (Q_1 \cup I \cup Q_{\text{int}}, \Sigma, \Delta_1 \cup \Delta', \varnothing, F_1)$

where $I = \{ (p, \Diamond \varphi_1, c) \mid p \in P \}$

and $Q_{\text{int}} = \{ (p, \Diamond \varphi_1, c, a) \mid p \in P \wedge a \in \Sigma \}$

and $\Delta' =$

$\left\{ \begin{array}{l}
(p, \Diamond \varphi_1, c, a, Q) \\
(p', a') \in \text{Pop}(p) \land \\
I_1(p') \xrightarrow{a'} Q' \xrightarrow{a} Q \land \\
(p, \Diamond \varphi_1, c, a, Q) \\
(p', a') \in \text{Rew}(p, a) \land \\
I_1(p') \xrightarrow{a'} Q \land \\
\{ (p, \Diamond \varphi_1, c, a, \{ p, \Diamond \varphi_1, c, a \}) \} \cup \\
\{ (p, \Diamond \varphi_1, c, a, \{ p, \Diamond \varphi_1, c, a \}) \} \cup \\
(p, \Diamond \varphi_1, c, a, b, Q) \\
(p', a') \in \text{Push}(p, a, b) \land \\
I_1(p') \xrightarrow{a'} Q \land \\
\end{array} \right\}$

\[\text{return} \ (A', I) \]
Procedure 9 \(LFP(A, Z, \varphi_1, c, P) \)

\[A_0 = (Q \cup I_c, \Sigma, \Delta, \varphi_1, \Sigma, \Delta, \varphi_1) \]

where \(I_c = \{ (p, Z, c) \mid p \in P \} \)

for \(i = 0 \) to \(\omega \) do

\[(B_i, I_i) = Dispatch(A_i, \varphi_1, c + 1, P) \]

\[A_{i+1} = Proj(B_i[Z/I_i]) \]

if \(A_{i+1} \preceq A_i \) then

return \((A_i, I_c) \)

end if

end for

Procedure 10 \(GFP(A, Z, \varphi_1, c, P) \)

\[A_0 = (Q \cup I_c, \Sigma, \Delta \cup \Delta', \varphi_1, \Sigma, \Delta \cup \Delta', \varphi_1, \Sigma, \Delta \cup \Delta', \varphi_1, \Sigma, \Delta \cup \Delta', \varphi_1) \]

where \(I_c = \{ (p, Z, c) \mid p \in P \} \)

and \(\Delta' \) contains \(q \xrightarrow{a} \{ q^* \} \) for all \(a \neq \bot \) and \(q \xrightarrow{\bot} \{ q' \} \) for all \(q \in I_c \).

for \(i = 0 \) to \(\omega \) do

\[(B_i, I_i) = Dispatch(A_i, \varphi_1, c + 1, P) \]

\[A_{i+1} = Proj(B_i[Z/I_i]) \]

if \(A_{i+1} \preceq A_i \) then

return \((A_i, I_c) \)

end if

end for

Procedure 11 \(Proj(A, c) \)

\[A' = A \]

for all \(q \) with \(\text{level}(q) = c + 1 \) do

Replace each transition \(q \xrightarrow{a} Q \) in \(A' \) with \(q \xrightarrow{a} \pi_c(Q) \).

end for

for all \(q \) with \(\text{level}(q) = c \) do

Remove \(q \) from \(A' \).

end for

for all \(q = (p, \varphi', c + 1) \) in \(A' \) for some \(p \) and \(\varphi' \) do

Rename \(q \) to \((p, \varphi', c) \).

end for

return \(A' \)
We proceed by induction over the length of the run we have $Q \ll Q'$ can be taken to mean an accepting run from Q' implies an accepting run from Q.

Definition 3.1. For all non-empty sets of states Q and Q', we define

$$Q \ll Q' := ((q^* \in Q \Rightarrow \exists q.q \neq q^* \land q \in Q') \land (\forall q \neq q^*.q \in Q \Rightarrow q \in Q'))$$

We define \preceq by extending this definition to automata as follows.

Definition 3.2. For automata A and A' with state-sets Q and Q' respectively, we define $A \preceq A'$ just if for all $q \in Q \cap Q'$, a and Q, if $q \xrightarrow{a}_A Q$ then for some Q', $q \xrightarrow{a}_{A'} Q'$ and $Q' \ll Q$.

By induction, \preceq can be applied to full runs. Observe that this implies, for each shared state q, $L_q(A) \subseteq L_q(A')$. Since A and A' need not share the same state set, one of the consequences of using \ll is that q^* can take the place of a state that is not shared between the automata. This is important after the first iteration of the greatest fixed point computations, since the recursive call may add states that were not in the initial automaton A_0.

Lemma 3.1. For automata A and A' with state-sets Q and Q' respectively, if $A \preceq A'$ then for all $q \in Q \cap Q'$, w and Q, if $q \xrightarrow{w}_A Q$ then for some Q', $q \xrightarrow{w}_{A'} Q'$ and $Q' \ll Q$.

Proof. We prove for all $Q_1 \subseteq Q$, $Q_2 \subseteq Q'$ and w that, if $Q_2 \ll Q_1$ and $Q_1 \xrightarrow{w}_A Q'_1$ for some Q'_1, then there exists Q_2 such that $Q_2 \xrightarrow{w}_{A'} Q'_2$ and $Q'_2 \ll Q'_1$.

We proceed by induction over the length of w.

Let $Q_1 = \{q^1_1, \ldots, q^n_1\}$. We have that $q^i_1 \xrightarrow{a}_A Q'_1$ for all $1 \leq i \leq n$ and $Q'_1 = \bigcup Q'^i_1 \cup Q'^n_1$. When $a = \perp$, the property is immediate from $A \preceq A'$ and the assumed format of \perp-transitions. Otherwise $a \neq \perp$ and for each q^i_1 there are two cases. Either $q^* \in Q_2$ or $q^i_1 \in Q_2$. In the first case, we have $q^* \xrightarrow{a}_{A'} Q'_2$ where $Q'_2 = \{q^*_i\}$, and hence $Q_2 \ll Q'_1$. In the second case, we have, from $A \preceq A'$ some transition $q^i_1 \xrightarrow{a}_A Q'_2$ with $Q'_2 \ll Q'_1$. Thus, we have $Q'_2 = Q'^1_2 \cup \cdots \cup Q'^n_2 \ll Q'^1_1 \cup \cdots \cup Q'^n_1 = Q'_1$ as required. This concludes the base case.

Inductively, assume $w = aw'$ and a run $Q_1 \xrightarrow{a}_A Q'_1 w' \xrightarrow{a}_A Q'_1$. By repeating the above argument we have $Q_2 \xrightarrow{a}_{A'} Q'_2$ with $Q'_2 \ll Q'_1$. Then, by induction over the length of the run we have $Q_2 \xrightarrow{w'}_{A'} Q'_2$ with $Q'_2 \ll Q'_1$. This gives us the required run over aw.

To prove termination, we will require the notion of an expansion.
Definition 3.3. Given an automaton A with state-set Q, we define

$$\text{EXPAND}(A) := \left\{ q \xrightarrow{a} Q' \mid q \xrightarrow{a} Q \text{ in } A \text{ and } Q \ll Q' \subseteq Q \right\}.$$

To test termination of the fixed point computations, we compare $\text{EXPAND}(A_{i+1})$ and $\text{EXPAND}(A_i)$. In the following proofs we assume both automata share the same state-set.

Lemma 3.2. $\text{EXPAND}(A) \subseteq \text{EXPAND}(A')$ if and only if $A \preceq A'$.

Proof. First we assume $\text{EXPAND}(A) \subseteq \text{EXPAND}(A')$. Take $q \xrightarrow{a} Q$ in A. Then $q \xrightarrow{a} Q \in \text{EXPAND}(A)$. We have $q \xrightarrow{a} Q \in \text{EXPAND}(A')$, and therefore $q \xrightarrow{a} Q'$ is a transition of A' with $Q' \ll Q$.

In the other direction, we assume $q \xrightarrow{a} Q$ in A implies $q \xrightarrow{a} Q'$ in A'. Take $q \xrightarrow{a} Q \in \text{EXPAND}(A)$. We need $q \xrightarrow{a} Q \in \text{EXPAND}(A')$. We have some $q \xrightarrow{a} Q'$ in A with $Q' \ll Q$. Hence, we have $q \xrightarrow{a} Q''$ in A' with $Q'' \ll Q$. Hence, $q \xrightarrow{a} Q \in \text{EXPAND}(A')$ as required. □

We extend the property to runs. Hence $\text{EXPAND}(A) \subseteq \text{EXPAND}(A')$ implies $L(A) \subseteq L(A')$.

Lemma 3.3. If $\text{EXPAND}(A) \subseteq \text{EXPAND}(A')$ then whenever $q \xrightarrow{w} Q$ in A then there is some $Q' \ll Q$ with $q \xrightarrow{w} Q'$ in A'.

Proof. This follows directly from Lemma 3.2 and Lemma 3.1. □

3.2. Algorithm Termination

We prove the following to show termination.

Lemma 3.4 (Termination). The algorithm satisfies the following properties.

1. Each subroutine introduces a fixed set of new states, independent of the automaton A given as input (but may depend on the other parameters). Transitions are only added to these new states.
2. For two input automata A_1 and A_2 (giving valuations of the same environments) such that $A_1 \preceq A_2$, then the returned automata A_1' and A_2', respectively, satisfy $A_1' \preceq A_2'$.
3. The algorithm terminates.

Proof. The first of these conditions is trivially satisfied by all constructions, hence we omit the proofs. Similarly, termination is trivial for all procedures except the fixed point constructions. We will say a procedure is monotonic if is satisfies the second condition. The second and third conditions will be show by mutual induction over the recursion (structure of the formula). The cases \hat{x} and Z are immediate.
Case $And(A, \varphi_1, \varphi_2, c, \mathbb{P})$:

Take $A \preceq A'$ both giving valuations for V. After the recursive calls we have $A_1 \preceq A'_1$ and $A_2 \preceq A'_2$. New transitions are only added to new states, which are the same in A_1 and A'_1 (as part of the termination conditions), and similarly for A_2 and A'_2. Let the results for the intersection be A_\land and A'_\land respectively. For all p we have $(p, \varphi_1 \land \varphi_2, c)^* A_\land Q$ derived from $I_1(p) \frac{a}{A_1} Q_1$ and $I_2(p) \frac{a}{A_2} Q_2$.

Hence we have $I_1(p) \frac{a}{A'_1} Q'_1$ and $I_2(p) \frac{a}{A'_2} Q'_2$ and thus $(p, \varphi_1 \land \varphi_2, c)^* A'_\land Q'$ such that $Q' = Q'_1 \cup Q'_2 \ll Q_1 \cup Q_2 = Q$ as required.

Case $Or(A, \varphi_1, \varphi_2, c, \mathbb{P})$:

Take $A \preceq A'$ both giving valuations for V. After the recursive calls we have $A_1 \preceq A'_1$ and $A_2 \preceq A'_2$. New transitions are only added to new states, which are the same in A_1 and A'_1 (as part of the termination conditions), and similarly for A_2 and A'_2. Let the results for the disjunction be A_\lor and A'_\lor respectively. For all p we have $(p, \varphi_1 \lor \varphi_2, c)^* A_\lor Q$ derived from $I_1(p) \frac{a}{A_1} Q$ or $I_2(p) \frac{a}{A_2} Q$.

Hence we have $I_1(p) \frac{a}{A'_1} Q'$ or $I_2(p) \frac{a}{A'_2} Q'$ and thus $(p, \varphi_1 \lor \varphi_2, c)^* A'_\lor Q'$ such that $Q' \ll Q$ as required.

Case $Box(A, \varphi_1, c, \mathbb{P})$:

Take $A \preceq A'$ both giving valuations for V. After the recursive calls we have $A_1 \preceq A'_1$. New transitions are only added to new states, which are the same in A_1 and A'_1 (as part of the termination conditions). Let the results for the box be A_\boxdot and A'_\boxdot respectively. Take a new transition $(p, \square \varphi_1, c)^* A_\boxdot Q$. Since the case when $Next(p, a) = \emptyset$ is immediate, let $Next(p, a) = \{(p_1, w_1), \ldots, (p_n, w_n)\}$. We have $Q = Q_1 \cup \cdots \cup Q_n$, where for each $1 \leq i \leq n$ we have $I_1(p_i) \frac{a}{A_i} Q_i$. By $A_1 \preceq A'_1$, we have $I_1(p_i) \frac{w_i}{A'_1} Q'_i$ with $Q_i \ll Q'_i$. Hence, we have $(p, \square \varphi_1, c)^* A'_\boxdot Q'$ with $Q' = Q'_1 \cup \cdots \cup Q'_n \ll Q_1 \cup \cdots Q_n = Q$ as required.

Case $Diamond(A, \varphi_1, c, \mathbb{P})$:

Take $A \preceq A'$ both giving valuations for V. After the recursive calls we have $A_1 \preceq A'_1$. New transitions are only added to new states, which are the same in A_1 and A'_1 (as part of the termination conditions). Let the results for the box be A_\Diamond and A'_\Diamond respectively. Take a new transition $(p, \Diamond \varphi_1, c)^* A_\Diamond Q$. Take some $(p', w') \in Next(p, a)$. We have $I_1(p') \frac{w'_1}{A_1} Q$. By $A_1 \preceq A'_1$, we have $I(p') \frac{w'}{A'_1} Q'$ with $Q' \ll Q$. Hence, we have $(p, \Diamond \varphi_1, c)^* A'_\Diamond Q'$ with $Q' \ll Q$ as required.

Case $BackBox(A, \varphi_1, c, \mathbb{P})$ and $BackDiamond(A, \varphi_1, c, \mathbb{P})$:

It can be observed that all new transitions in A are derived from transitions $I(p') \frac{a}{A} Q$ (or are independent of A and A'). Since $A \preceq A'$ it follows that all

12
transitions have a counterpart \(I(p') \xrightarrow{\alpha_1} Q' \) with \(Q' \ll Q \). Hence the property follows in a similar manner to the previous cases.

Case LFP\((A, Z, \varphi_1, c, P)\):

Note that the state-set of \(A_0 \) is a subset of the states of \(A_1 \) (since it does not contain the states introduced by the recursive call). However, for all \(i \geq 1 \), all \(A_i \) have the same states. Initially we have \(A_0 \preceq A_1 \) since the shared states of \(A_0 \) and \(A_1 \) are either given by \(A \) (and hence have the same transitions), or have no transitions in \(A_0 \). Since the recursive call is monotonic, and the projections do not affect monotonicity, we have by induction that \(A_i \preceq A_{i+1} \) for all \(i \). For all \(i \geq 1 \), we have by Lemma 3.2 that \(\text{EXPAND}(A_i) \subseteq \text{EXPAND}(A_{i+1}) \). Since the set of states is fixed, we must eventually have \(\text{EXPAND}(A_i) = \text{EXPAND}(A_{i+1}) \) and hence \(A_{i+1} \preceq A_i \), resulting in termination.

Monotonicity follows directly from the monotonicity of the recursive call, and that the projections do not affect the monotonicity property.

Case GFP\((A, Z, \varphi_1, c, P)\):

Note that the state-set of \(A_0 \) is a subset of the states of \(A_1 \) (since it does not contain the states introduced by the recursive call). However, for all \(i \geq 1 \), all \(A_i \) have the same states. Initially we have \(A_1 \preceq A_0 \) since the shared states of \(A_0 \) and \(A_1 \) are either given by \(A \) (and hence have the same transitions), or have transitions to \(q^* \) or \(q_\epsilon \) that always imply \(\ll \) as required. Since the recursive call is monotonic, and the projections do not affect monotonicity, we have by induction that \(A_{i+1} \preceq A_i \) for all \(i \). For all \(i \geq 1 \), we have by Lemma 3.2 that \(\text{EXPAND}(A_{i+1}) \subseteq \text{EXPAND}(A_i) \). Since the set of states is fixed, we must eventually have \(\text{EXPAND}(A_i) = \text{EXPAND}(A_{i+1}) \) and hence \(A_i \preceq A_{i+1} \), resulting in termination.

Monotonicity follows directly from the monotonicity of the recursive call, and that the projections do not affect the monotonicity property.

3.3. Complexity

The algorithm runs in \(\text{EXPTIME} \). Let \(m \) be the nesting depth of the fixed points of the formula and \(n \) be the number of states in \(A_V \). We introduce at most \(k = O(|P| \cdot |\chi| \cdot m \cdot |\Sigma|) \) states to the automaton. Hence, there are at most \(O(n+k) \) states in the automaton during any stage of the algorithm. The fixed point computations iterate up to an \(O(2^{O(n+k)}) \) number of times. Each iteration has a recursive call, which takes up to \(O(2^{O(n+k)}) \) time. Hence the algorithm is \(O(2^{O(n+k)}) \) overall.

4. Correctness

4.1. Valuation Soundness and Completeness

To prove correctness, we will introduce the notion of a valuation profile, which is a mapping \(V : Q \to \Sigma^* \bot \). Intuitively, a valuation profile maps each
state of an automaton to a set of words that should be accepted from that state. For example, \(V(q^*) = \Sigma^* \perp \) since all valid stacks are accepted from \(q^* \). Similarly, \(V(q_f^c) = \{ \varepsilon \} \). Note that we overload \(V \) to represent valuation profiles and modal \(\mu \)-calculus valuations. It will be clear from the context which usage is intended.

Given a valuation profile \(V \) and some \(c \), we can extract a modal \(\mu \)-calculus valuation \(V_c \) as follows. Let \(V_c(Z) = \{ \langle p, w \rangle \mid w \in V(p, Z, c') \} \) where \(c' \) is the largest \(c' \leq c \) such that \(V(p, Z, c') \) is defined.

We introduce valuation soundness and valuation completeness based on a profile \(V \). We prove that all subroutines of the algorithm have this property.

The main challenge in proving correctness is to show that the projections do not cause any violations to correctness: the rest of the algorithm can be seen, rather straightforwardly, to be correct. Given a transition from some state \((p, \varphi, c+1) \) to a set of states \(Q \), the effect of the projections is to replace every occurrence of \((p, \varphi, c) \) in \(Q \) with \((p, \varphi, c+1) \). Valuation soundness and completeness formalises the intuition that these two states represent two working values of the same denotation. Hence, replacing one with the other will maintain correctness.

More precisely valuation soundness captures the observation that the existence of an \(a \)-transition in an automaton means that the \(a \) character can be prepended to any word accepted by the destination of the transition. For an automaton to be valuation sound with respect to some \(V \), then all of its transitions must be in accordance with \(V \).

Definition 4.1. Given a valuation \(V \), an automaton \(A \) is \(V \)-sound just if, for all \(q, a \) and \(w, w' \), if \(A \) has a transition \(q \xrightarrow{a} Q \) such that \(w \in V(q') \) for all \(q' \in Q \), then \(aw \in V(q) \).

By induction on the length of the word, valuation soundness extends to runs of an automaton. We then obtain that all accepting runs are sound.

Lemma 4.1. Let \(A \) be a \(V \)-sound automaton.

1. For all \(q, w \) and \(w' \), if \(A \) has a run \(q \xrightarrow{w} Q \) such that \(w' \in V(q') \) for all \(q' \in Q \), then \(aw \in V(q) \).
2. For all \(q \in Q_A \), \(\mathcal{L}_q(A) \subseteq V(q) \).

Proof. (i) We prove by induction on the length of the word \(w \). When \(w = a \), the property is just \(V \)-soundness. Take \(w = au \) and some run \(q \xrightarrow{u} Q \xrightarrow{w} Q' \) such that for all \(q' \in Q' \), we have \(w \in V(q') \). By the induction hypothesis, we have the property for the run \(Q \xrightarrow{u} Q' \). Hence, we have for all \(q' \in Q \) that, \(uw' \in V(q') \). Thus, from \(V \)-soundness, we have \(auw' \in V(q) \).

(ii) Take an accepting run \(q \xrightarrow{w} Q_f \) of \(A \). We have for all \(q' \in Q_f = \{ q_f \} \), \(\varepsilon \in V(q') \). Thanks to (i), we have \(w \in V(q) \).

\[\square \]
Valuation completeness is the dual notion to valuation soundness. It says that if a character can begin a word that should be accepted from a given state, then there should be a transition that witnesses this. Furthermore, the transition should be in accordance with the given valuation V.

Definition 4.2. Given a valuation V, an automaton A is V-complete just if, for all q, a and w, if $aw \in V(q)$ then A has a transition $q \xrightarrow{a} Q$ such that $w \in V(q')$ for all $q' \in Q$.

By induction on the length of the word, valuation completeness extends to runs. Furthermore, an accepting run always exists when required.

Lemma 4.2. Let A be a V-complete automaton.

1. For all q, w and w', if $ww' \in V(q)$ then A has a run $q \xrightarrow{w'} Q$ such that $w' \in V(q')$ for all $q' \in Q$.
2. For all $q \in Q_A$, $V(q) \subseteq L_q(A)$.

Proof. (i) The proof is by induction on the length of the word w. When $w = a$, the property is simply V-completeness. Take $w = au$ and some q with $auw \in V(q)$. From V-completeness, we have a transition $q \xrightarrow{a} Q$ such that for all $q' \in Q$, we have $uw \in V(q')$. By induction on the length of the word, we have a run $Q \xrightarrow{u} Q'$ satisfying the property. Hence, we have $q \xrightarrow{a} Q \xrightarrow{u} Q'$ as required.

(ii) Take $w \in V(q)$. Instantiating (i) with $w' = \varepsilon$, we know A has a run $q \xrightarrow{w} Q$. Every state in Q must be accepting because ε is only accepted from accepting states and there can be no (p', ε) satisfying any denotation because ε is not a valid stack. \hfill \Box

4.2. Algorithm Correctness

To define the correctness conditions we need to define the extension of a valuation profile by a formula φ. For a variable Z bound in φ, we denote by φ_Z the sub-formula of φ that binds Z.

Definition 4.3. Given a valuation profile V, we define V^c_φ for a given c and φ such that for sub-formulas φ' of φ

\[
V^c_\varphi(p, \varphi', c') = \begin{cases}
V(p, \varphi', c') & \text{if } c' < c \\
\{ w \mid (p, w) \in [\varphi_Z]_{V^c_\varphi} \} & \text{if } \varphi' = Z \text{ and } c' = c \\
\{ w \mid (p, w) \in [\varphi']_{V^c_\varphi} \} & \text{otherwise}
\end{cases}
\]

and

\[
V^c_\varphi(p, \Box \varphi', c', a) = \begin{cases}
V(p, \Box \varphi', c', a) & \text{if } c' < c \\
\{ bw \mid \forall (p', a'w) \ni (p, abw). (p', a'w) \in [\varphi']_{V^c_\varphi} \} & \text{otherwise}
\end{cases}
\]
and

\[
V^c_\phi(p, \overline{\phi}', c', a) = \begin{cases}
V(p, \overline{\phi}', c', a) & \text{if } c' < c \\
\exists (p', a'w) \mapsto (p, abw). \quad & \text{otherwise}
\end{cases}
\]

(Note that this definition is circular. The definition can be made recursive by valuing the variables in order of alternation depth.)

We are now ready to state the correctness conditions.

Definition 4.4 (Correctness Conditions). The correctness conditions are as follows. Let \(A \) be the input automaton, \(\phi \) be the input formula\(^1\), \(c \) be the input level and \(A' \) be the result.

1. We only introduce level \(c \) states.
2. If \(A \) is \(V \)-sound, \(A' \) is \(V^c_\phi \)-sound.
3. If \(A \) is \(V \)-complete, \(A' \) is \(V^c_\phi \)-complete.

We say that a procedure is \(V \)-sound/complete if the second/third condition is satisfied. That each procedure only introduces level \(c \) states is straightforward, hence we only show \(V \)-soundness and -completeness.

Lemma 4.3 (Valuation Soundness). The algorithm is \(V \)-sound.

Proof. The proof is by induction over the recursion. The base cases \(\hat{x} \) and \(Z \) are immediate.

Case And(\(A, \phi_1, \phi_2, c, P \)):

By assumption, \(A \) is valuation sound with respect to some \(V \). Furthermore, by induction, \(A_1 \) and \(A_2 \) are valuation sound with respect to \(V^c_{\phi_1} \) and \(V^c_{\phi_2} \) respectively.

We claim \(A' \) is sound with respect to \(V^c_{\phi_1 \land \phi_2} \). This only has to be shown for the new transitions \(((p, \phi_1 \land \phi_2, c), a, Q_1 \cup Q_2) \) derived from \((I_1(p), a, Q_1) \) and \((I_2(p), a, Q_2) \). Suppose some \(w \) such that for all \(q \in Q_1 \cup Q_2 \), \(w \in V^c_{\phi_1 \land \phi_2}(q) \). Then, we have \(w \in V^c_{\phi_1}(q) \) and \(w \in V^c_{\phi_2}(q) \). Since \(A_1 \) and \(A_2 \) are sound, this implies \(aw \in V^c_{\phi_1}(I_1(p)) \) and \(aw \in V^c_{\phi_2}(I_2(p)) \) and hence \(aw \in V^c_{\phi_1 \land \phi_2}(p, \phi_1 \land \phi_2, c) \) as required.

Case Or(\(A, \phi_1, \phi_2, c, P \)):

By assumption, \(A \) is valuation sound with respect to some \(V \). Furthermore, by induction, \(A_1 \) and \(A_2 \) are valuation sound with respect to \(V^c_{\phi_1} \) and \(V^c_{\phi_2} \) respectively.

We claim \(A' \) is sound with respect to \(V^c_{\phi_1 \lor \phi_2}(Z, c') \). This only has to be shown for the new transitions \(((p, \phi_1 \lor \phi_2, c), a, Q) \) derived from \((I_1(p), a, Q) \)

\(^1\)For cases such as And(\(A, \phi_1, \phi_2, c, P \)) we take, as appropriate \(\phi = \phi_1 \land \phi_2 \).
or \((I_2(p), a, Q)\). By symmetry, we only handle the first case. Suppose some \(w\) such that for all \(q \in Q\), \(w \in V_{\varphi_1}^c(q)\). Then, we have \(w \in V_{\varphi_1}^c(p)\). Since \(A_1\) is sound, this implies \(aw \in V_{\varphi_1}^c(I_1(p))\) and hence \(aw \in V_{\varphi_1}^c(p, \varphi_1 \lor \varphi_2, c)\) as required.

Case \(\Box(A, \varphi_1, c, \mathbb{P})\):

We assume that \(A\) is valuation sound with respect to some valuation \(V\). By induction \(A_1\) is valuation sound with respect to \(V_{\varphi_1}^c\). We show that \(A'\) is valuation sound with respect to \(V_{\varphi_1}^c\).

We first deal with the case when \(\text{Next}(p, a) = \emptyset\). In this case, the valuation of \(\Box \varphi_1\) contains all words of the form \(aw\) for some \(w\). Hence, all added transitions are trivially sound.

Otherwise, take a new transition \(((p, \Box \varphi_1, c), a, Q)\) derived from the value of \(\text{Next}(p, a) = \{(p_1, w_1), \ldots, (p_n, w_n)\}\) and for all \(1 \leq j \leq n\), the runs \(I_1(p_j) \xrightarrow{w_j} A_1^w Q_j\), with \(Q = Q_1 \cup Q_n\). Suppose for some \(w, w' \in V_{\Box \varphi_1}^c(q)\) for all \(q \in Q\). By valuation soundness of \(A_1\) we know \(w_j, w \in V_{\Box \varphi_1}^c(I_1(p_j))\) and hence, since all transitions from \(\langle p, aw \rangle\) lead to configurations satisfying \(\varphi_1\), \(aw \in V_{\Box \varphi_1}^c(p, \Box \varphi_1, c)\) as required.

Case \(\Diamond(A, \varphi_1, c, \mathbb{P})\):

We assume that \(A\) is valuation sound with respect to some valuation \(V\). By induction \(A_1\) is valuation sound with respect to \(V_{\Box \varphi_1}^c\). We show that \(A'\) is valuation sound with respect to \(V_{\Box \varphi_1}^c\).

Take a new transition \(((p, \Diamond \varphi_1, c), a, Q)\) derived from some \(\langle p', w' \rangle \in \text{Next}(p, a)\) and the run \(I_1(p') \xrightarrow{w'} A_1^w Q\). Suppose for some \(w, w' \in V_{\Diamond \varphi_1}^c(q)\) for all \(q \in Q\). By valuation soundness of \(A_1\) we know \(w'w \in V_{\Diamond \varphi_1}^c(I_1(p'))\) and hence, since there is a transition from \(\langle p, aw \rangle\) to a configuration satisfying \(\varphi_1\), \(aw \in V_{\Diamond \varphi_1}^c(p, \Diamond \varphi_1, c)\) as required.

Case \(\text{BackBox}(A, \varphi_1, c, \mathbb{P})\):

We assume that \(A\) is valuation sound with respect to some valuation \(V\). By induction \(A_1\) is valuation sound with respect to \(V_{\Box \varphi_1}^c\). We show that \(A'\) is valuation sound with respect to \(V_{\Box \varphi_1}^c\).

We observe that no \((p', \Box \varphi_1, c)\) are reachable from a state \((p, \Box \varphi, c, a)\), hence we show soundness for the latter states first.

The first case is for some \(b\) with \(\text{Push}(p, a, b) = \emptyset\). In this case, the valuation of \((p, \Box \varphi, c, a)\) contains all words of the form \(bw\). Hence soundness is immediately satisfied.

Otherwise, \(\text{Push}(p, a, b) = \{(p_1, a_1), \ldots, (p_n, a_n)\}\) such that for all \(1 \leq j \leq n, \langle p_j, a_j, w \rangle \leftarrow \langle p, abw \rangle\). Take a new transition \(((p, \Box \varphi, c, a), b, Q)\) derived from the runs \(I_1(p_j) \xrightarrow{a_j} A_1^w Q_j\) for all \(1 \leq j \leq n\), with \(Q = Q_1 \cup Q_n\). Suppose for some \(w, w \in V_{\Box \Box \varphi_1}^c(q)\) for all \(q \in Q\). By valuation soundness of \(A_1\) we
know \(a_j w \in V_{\Phi_1}^c (I_1(p_j)) \) and hence, since all transitions to \(\langle p, abw \rangle \) are from configurations satisfying \(\varphi_1 \), we have \(bw \in V_{\Phi_1}^c (p, \Box \varphi_1, c, a) \) as required.

The remaining states are of the form \(\langle p, \Box \varphi_1, c, a \rangle \). We first deal with the case when for all \(b \) we have \(\text{Pre}(p, a, b) = \emptyset \). In this case, the valuation of \(\Box \varphi_1 \) contains all words of the form \(aw \) for some \(w \). Hence, all added transitions are trivially sound.

Otherwise, take a new transition \(\langle p, \Box \varphi_1, c, a, Q \rangle \) derived from some \(b \), the value of \(\text{Push}(p) = \{(p_1, a_1), \ldots, (p_n, a_n)\} \) and for all \(1 \leq j \leq n \), the runs \(I_1(p_j) \xrightarrow{{a_j}_{A_1}} Q_j^b \xrightarrow{{b}_{A_1}} Q_j^{pop} \), with \(Q_{pop} = Q_{rew}^p \cup Q_{rew} \), and the value of

\[\text{Rew}(p, c) = \{(p_1', a_1'), \ldots, (p_{n'}, a_{n'})\} \]

and for all \(1 \leq j \leq n' \), the runs \(I_1(p_j') \xrightarrow{{a_j'}_{A_1}} Q_j^{rew} \) with \(Q_{rew} = Q_{rew}^p \cup Q_{rew} \).

Finally, consider some \(bw \) in the valuation of \(\langle p, \Box \varphi_1, c, a \rangle \). From the soundness of this state, shown above, we have that all push transitions leading to \(\langle p, abw \rangle \) are from configurations satisfying \(\varphi_1 \).

Putting the three cases together, we have for all \(abw \in V_{\Box \varphi_1}^c (p, \Box \varphi_1, c, a) \) as required.

The above cases do not cover the case \(\perp \in V_{\Box \varphi_1}^c (p, \Box \varphi_1, c) \). However, since no push transition can reach this stack, we just require the first two cases and that \(\langle p, \Box \varphi_1, c, \perp \rangle = q_1^f \).

Case BackDiamond\((A, \varphi_1, c, P)\):

We assume that \(A \) is valuation sound with respect to some valuation \(V \). By induction \(A_1 \) is valuation sound with respect to \(V_{\varphi_1}^c \). We show that \(A' \) is valuation sound with respect to \(V_{\varphi_1}^c \).

We begin with the states \(\langle p, \Box \varphi, c, a \rangle \). Take a transition \(\langle p, \Box \varphi, c, a, b, Q \rangle \).

Then there is some \((p', a') \in \text{Push}(p, a, b) \) such that \(I_1(p') \xrightarrow{{a'}_{A_1}} QA_1 \). From the soundness of \(A_1 \) we know for all \(w \) with \(w \in V_{\Box \varphi_1}^c (q) \) for all \(q \in Q \) we have \(a'w \in V_{\Box \varphi_1}^c (I_1(p')) \). Since \((p', a'w) \leftrightarrow (p, abw) \), we have \((p, abw) \) satisfies \(\varphi_1 \) and hence \(bw \in V_{\Box \varphi_1}^c (p, \Box \varphi, c, a) \) and the transition is sound.

For the remaining states, take a new transition \(\langle (p, \Box \varphi_1, c, a, Q) \rangle \). There are three cases.

If the transition was derived from some \((p', a') \in \text{Pop}(p) \) and the run \(I_1(p') \xrightarrow{{a'}_{A_1}} QA_1 \), then suppose for some \(w, w \in V_{\Box \varphi_1}^c (q) \) for all \(q \in Q \). By valuation soundness of \(A_1 \) we know \(a'aw \in V_{\Box \varphi_1}^c (I_1(p')) \) and hence, since there is a transition
\[\langle p', a'w \rangle, \text{ a configuration satisfying } \varphi_1, \text{ to } \langle p, aw \rangle \text{ we obtain } aw \in V^c_{\mu, \varphi_1} (p, \varphi_1, c) \text{ as required.} \]

If the transition was derived from some \(\langle p', a' \rangle \in \text{Rew}(p, a) \) and the run \(I_1(p') \xrightarrow{a'} A_1 \) \(Q \), then suppose for some \(w, w \in V^c_{\mu, \varphi_1} (q) \) for all \(q \in Q \). By valuation soundness of \(A_1 \), we know \(a'w \in V^c_{\mu, \varphi_1} (I_1(p')) \) and hence, since there is a transition \(\langle p', a'w \rangle \), a configuration satisfying \(\varphi_1 \), to \(\langle p, aw \rangle \) we obtain \(aw \in V^c_{\mu, \varphi_1} (p, \varphi_1, c) \) as required.

Finally, if \(Q = \{ (p, \varnothing, c, a) \} \) then soundness is immediate from the definition of \(V^c_{\mu, \varphi_1} \).

Case LFP(A, Z, \varphi_1, c, P):

By assumption \(A \) is sound with respect to \(V \). Let \(V_\mu = V^c_{\mu, Z, \varphi_1} \). Initially, \(A_0 \) is valuation sound with respect to \(V_\mu \) since there are no transitions from the new states. Hence, we assume the case for \(A_i \) and prove it for \(A_{i+1} \). By induction over the recursion, \(B_i \) is sound with respect to \(V_\mu \). Since \(I_i \) are sound with respect to \(\varphi_1 \) and (abusing notation) \(\mu Z. \varphi_1 = \varphi_1 (\mu Z. \varphi_1) \) we have that \(B_i [Z/I_i] \) remains \(V_\mu \) sound.

Take any transition \(((p, \varphi, c), a, Q) \) or \(((p, \varphi, c, b), a, Q) \) in \(A_{i+1} \) and any \(w \) such that for all \(q \in Q \) we have \(w \in V_\mu (q) \). Consider the corresponding transition \(((p, \varphi, c+1), a, Q') \) or \(((p, \varphi, c+1, b), a, Q') \) in \(B_i [Z/I_i] \). All states \(q \) in \(Q' \) that are not level \(c \) or \(c+1 \) remain in \(Q \), hence we have \(w \in V_\mu (q) \). Furthermore, since the level \(c \) valuation of \(Z \) equals the level \(c+1 \) valuation, we have \(w \in V_\mu (q) \) for all level \(c \) and \(c+1 \) states. Hence, by soundness of \(B_i [Z/I_i] \) we know \(aw \in V_\mu (p, \varphi, c+1) \) or \(aw \in V_\mu (p, \varphi, c+1, b) \) and therefore \(aw \in V_\mu (p, \varphi, c) \) or \(aw \in V_\mu (p, \varphi, c, b) \) as required.

Case GFP(A, Z, \varphi_1, c, P):

By assumption \(A \) is sound with respect to \(V \). Let \(v^\alpha \) be \([v^\alpha Z. \varphi_1]_V \). We begin, with a minor diversion.

Assume, \(A_i \) is valuation sound with respect to

\[
V_{\alpha+1}(p, \varphi, c') = \begin{cases}
V(p, \varphi, c') & \text{if } c' < c \\
\{ w \mid (p, w) \in v^{\alpha+1} \} & \text{if } \varphi = Z \text{ and } c = c' \\
\{ w \mid (p, w) \in [\varphi]_{(V_\mu [Z-\nu^\alpha])} \} & \text{otherwise}
\end{cases}
\]

and similarly for \(V_{\alpha+1}(p, \varphi, c', a) \) (in the style of Definition 4.3). We show \(A_{i+1} \) is sound with respect to

\[
V_{\alpha+2}(p, \varphi, c') = \begin{cases}
V(p, \varphi, c') & \text{if } c' < c \\
\{ w \mid (p, w) \in v^{\alpha+2} \} & \text{if } \varphi = Z \text{ and } c = c' \\
\{ w \mid (p, w) \in [\varphi]_{(V_\mu [Z-\nu^\alpha])} \} & \text{otherwise}
\end{cases}
\]

and similarly for \(V_{\alpha+2}(p, \varphi, c', a) \). Let \(V^{\alpha+1}_{\alpha+1} = (V_{\alpha^*})_{\varphi_1}^{\alpha+1} \). By induction, \(B_i \) is sound with respect to \(V^{\alpha+1}_{\alpha+1} \), which values \(Z \) as \(v^{\alpha+1} \).
Take any \(((p, Z, c), a, Q) \) in \(A_{i+1} \) and \(w \) such that \(w \in V_{\alpha+2}(q) \). Take the corresponding transition \((I_i(p), a, Q') \) in \(B_i \). For all \(q \in Q' \) that are not level \(c \) or \(c+1 \) we know \(q \in Q \) and hence \(w \in V_{\alpha+2}(q) \) which is a subset of \(V_{\alpha+1}(q) \). For level \(c \) states the same subset argument holds. For level \(c+1 \) the valuations are the same. Hence, the pre-conditions for the soundness condition are satisfied, and from the soundness of \(B_i \) we know \(aw \in V_{\alpha+1}(p) = \mu^{\alpha+2} = V_{\alpha+2}(p, Z, c) \), as required.

Take any \(((p, \varphi, c), a, Q) \) or \(((p, \varphi, c, b), a, Q) \) with \(\varphi \neq Z \) in \(A_{i+1} \) and \(w \) such that \(w \in V_{\alpha+2}(q) \). Take the corresponding transition \(((p, \varphi, c+1), a, Q') \) or \(((p, \varphi, c, b), a, Q') \) in \(B_i \). For all \(q \in Q' \) that are not level \(c \) or \(c+1 \) we know \(q \in Q \) and hence \(w \in V_{\alpha+2}(q) \) which is a subset of \(V_{\alpha+1}(q) \). For level \(c \) states the same subset argument holds. For level \(c+1 \) the valuations are the same. Hence, the pre-conditions for the soundness condition are satisfied, and from the soundness of \(B_i \) we know \(aw \in V_{\alpha+1}(p, \varphi, c+1) = V_{\alpha+2}(p, \varphi, c) \) or \(aw \in V_{\alpha+1}(p, \varphi, c+1, b) = V_{\alpha+2}(p, \varphi, c, b) \), as required.

Thus, \(A_{i+1} \) is sound with respect to \(V_{\alpha+2} \) as required.

We are now ready to prove the main result by induction over the ordinals. We have that, \(A' = A_i = A_{i+1} \), \(A_0 \) is trivially sound with respect to \(V_0 \). Then, by the argument above, \(A_i \) is sound with respect to \(V_i \). The case of a successor ordinal also follows from the above. For a limit ordinal \(\lambda \), we have soundness for all \(\alpha < \lambda \). Since \(\theta^\lambda = \bigcap_{\alpha < \lambda} \theta^\alpha \), the result follows because each configuration in the limit appears in all smaller approximants, and we are sound for all smaller approximants (and trivially for the zeroth approximant). To regain the induction hypothesis for successor ordinals, we simply apply the successor construction once, which keeps all \((p, \varphi, c) \) where \(\varphi \neq Z \) sound for the limit, while \((p, Z, c) \) becomes sound for \(\nu^{\lambda+1} \).

\begin{lemma}
\textbf{(Valuation Completeness).} The algorithm is \(V \)-complete.
\end{lemma}

\begin{proof}
The proof is by induction over the recursion. The base cases \(\widehat{x} \) and \(Z \) are immediate.

\textbf{Case} \(\text{And}(A, \varphi_1, \varphi_2, c, \mathbb{F}) \):

By assumption, \(A \) is valuation complete with respect to some \(V \). Furthermore, by induction, \(A_1 \) and \(A_2 \) are valuation complete with respect to \(V^{\mathbb{F}}_{\varphi_1} \) and \(V^{\mathbb{F}}_{\varphi_2} \) respectively. We have \(V^{\mathbb{F}}_{\varphi_1 \wedge \varphi_2} \) as above. We claim \(A' \) is complete with respect to this valuation. This only has to be shown for the new states of the form \(q_{\text{new}} = (p, \varphi_1 \wedge \varphi_2, c) \). Suppose \(aw \in V^{\mathbb{F}}_{\varphi_1 \wedge \varphi_2}(q_{\text{new}}) \). This implies \(aw \in V^{\mathbb{F}}_{\varphi_1}(I_1(p)) \) and \(aw \in V^{\mathbb{F}}_{\varphi_2}(I_2(p)) \). Since \(A_1 \) and \(A_2 \) are valuation complete, we have some transitions \((I_1(p), a, Q_1) \) and \((I_2(p), a, Q_2) \) such that for all \(q \in Q_1 \cup Q_2 \), \(w \in V^{\mathbb{F}}_{\varphi_1 \wedge \varphi_2}(q) \). This implies the transition \(((p, \varphi_1 \wedge \varphi_2, c), a, Q_1 \cup Q_2) \) is in \(A' \). This transition witnesses completeness.

\textbf{Case} \(\text{Or}(A, \varphi_1, \varphi_2, c, \mathbb{F}) \):

By assumption, \(A \) is valuation complete with respect to some \(V \). Furthermore, by induction, \(A_1 \) and \(A_2 \) are valuation complete with respect to \(V^{\mathbb{F}}_{\varphi_1} \) and \(V^{\mathbb{F}}_{\varphi_2} \).
respectively. Take $V_{\varphi_1 \lor \varphi_2}^c$ as above. We claim A' is complete with respect to this valuation. This only has to be shown for the new states of the form $q_{\text{new}} = (p, \varphi_1 \lor \varphi_2, c)$. Suppose $aw \in V_{\varphi_1 \lor \varphi_2}^c (q_{\text{new}})$. This implies $aw \in V_{\varphi_1}^c (I_1(p))$ or $aw \in V_{\varphi_2}^c (I_2(p))$. We assume the first case by symmetry. Since A_1 is valuation complete, we have some transition $(I_1(p), a, Q)$ such that for all $q \in Q$, $w \in V_{\varphi_1}^c (q)$. This implies the transition $((p, \varphi_1 \lor \varphi_2, c), a, Q)$ is in A'. This transition witnesses completeness.

Case Box($A, \varphi_1, c, \mathbb{P}$):

We are given that A is valuation complete with respect to some valuation V, and by induction we have completeness of A_1 with respect to $V_{\varphi_1}^c$. We show A' is complete with respect to $V_{\square \varphi_1}^c$.

In the case that $\text{Next}(p, a) = \emptyset$, we either have $a = \bot$ and the transition from $(p, \square \varphi_1, c)$ to $\{q^*_f\}$ witnesses completeness, or we have $a \neq \bot$ and the transition from $(p, \square \varphi_1, c)$ to $\{q^*_f\}$ witnesses completeness.

Otherwise, assume we have aw such that $aw \in V_{\square \varphi_1}^c (p, \square \varphi_1, c)$ and $\text{Next}(p, a) = \{(p_1, w_1), \ldots, (p_n, w_n)\}$. Hence, for all $1 \leq j \leq n$, we have $w_j w \in V_{\square \varphi_1}^c (I_1(p_j))$. By completeness of A_1 we have runs $I_1(p_j) \xrightarrow{w_j A_1} Q_j$ such that for all $q \in Q_j$, $w \in V_{\square \varphi_1}^c (q)$. Hence, the transition $((p, \square \varphi_1, c), a, Q_1 \cup \cdots \cup Q_n)$ witnesses completeness.

Case Diamond($A, \varphi_1, c, \mathbb{P}$):

We are given that A is valuation complete with respect to some valuation V, and by induction we have completeness of A_1 with respect to $V_{\square \varphi_1}^c$. We show A' is complete with respect to $V_{\Box \varphi_1}^c$.

Assume some aw such that $aw \in V_{\Box \varphi_1}^c (p, \Box \varphi_1, c)$ and take $(p', w') \in \text{Next}(p, a)$ such that we have $(p', w') \in V_{\Box \varphi_1}^c (I_1(p'))$. By completeness of A_1 we have a run $I_1(p') \xrightarrow{w' A_1} Q$ such that for all $q \in Q$, $w \in V_{\Box \varphi_1}^c (q)$. Hence, the transition $((p, \Box \varphi_1, c), a, Q)$ witnesses completeness.

Case BackBox($A, \varphi_1, c, \mathbb{P}$):

We are given that A is valuation complete with respect to some valuation V, and by induction we have completeness of A_1 with respect to $V_{\Box \varphi_1}^c$. We show A' is complete with respect to $V_{\square \varphi_1}^c$.

As in the soundness proof, we begin with the states $(p, \square \varphi_1, c, a)$. In the case $\text{Push}(p, a, b) = \emptyset$ for some b, we either have $b = \bot$ and the transition from $(p, \square \varphi_1, c, a)$ to $\{q^*_f\}$ witnesses completeness, or we have $a \neq \bot$ and the transition to $\{q^*_f\}$ witnesses completeness.

Otherwise $\text{Push}(p, a, b) = \{(p_1, a_1), \ldots, (p_n, a_n)\}$. Take some bw such that $abw \in V_{\square \varphi_1}^c (p, \square \varphi_1, c, a)$. Then we have $a_j w \in V_{\square \varphi_1}^c (p_j, c, a)$ for all $1 \leq j \leq n$. From completeness of A_1 we have a transition $I_1(p_j) \xrightarrow{a_j} Q_j$ with $w \in V_{\square \varphi_1}^c (q)$.
for all \(q \in Q_j \). Hence, we have a complete \(b \)-transition from \((p, \square \varphi_1, c, a)\) as required.

For the states of the form \((p, \square \varphi_1, c)\) we first deal with the case when for all \(b \) we have \(\text{Pre}(p, a, b) = \emptyset \). In this case we immediately have transitions witnessing completeness.

Otherwise, take some \(abw \in V_{\varphi_1}^c (p, \square \varphi_1, c) \). Then, for all \((p', a') \in \overline{\text{Pop}}(p)\), we have \(a'bw \in V_{\varphi_1}^c (I_1(p')) \); and for all \((p', a') \in \overline{\text{Rew}}(p, a)\) we have \(a'w \in V_{\varphi_1}^c I_1(p') \).

From completeness of \(A_1 \) we have a complete run \(I_1(p') \xrightarrow{a'} A_1 p', Q \xrightarrow{a'} A_1 Q \) for each \((p', a') \in \overline{\text{Pop}}(p)\) and a complete run \(I_1(p') \xrightarrow{a'} A_1 p, Q \) for each \((p', a') \in \overline{\text{Rew}}(p, a)\).

Since we know \(bw \in V_{\varphi_1}^c (p, \square \varphi_1, c, a) \) there must be some complete transition from \((p, \square \varphi_1, c)\) as required.

The only case not covered by the above is the case \(\bot \in V_{\varphi_1}^c (p, \square \varphi_1, c) \). In this case there are no push transitions reaching this configuration. That is \(\overline{\text{Push}}(p, \bot, b) = \emptyset \) for all \(b \). Note also that we equated all \((p, \square \varphi_1, c, \bot)\) with \(q_f^\bot \).

Hence, from the pop and rewrite cases above, and that \((p, \square \varphi_1, c, \bot) = q_f^\bot \) we have completeness as required.

Case BackDiamond \((A, \varphi_1, c, P)\):

We are given that \(A \) is valuation complete with respect to some valuation \(V \), and by induction we have completeness of \(A_1 \) with respect to \(V_{\varphi_1}^c \). We show \(A' \) is complete with respect to \(V_{\varphi_1}^c \). There are three cases.

Assume some \(aw \) such that \(aw \in V_{\varphi_1}^c (p, \Diamond \varphi_1, c) \) by virtue of some \((p', a') \in \overline{\text{Pop}}(p)\) such that we have \(\langle p', a'aw \rangle \in V_{\varphi_1}^c (I_1(p')) \). By completeness of \(A_1 \) we have a run \(I_1(p') \xrightarrow{a'aw} A_1 Q \) such that for all \(q \in Q \), \(w \in V_{\varphi_1}^c (q) \). Hence, the transition \((p, \Diamond \varphi_1, c, a, Q)\) witnesses completeness.

Otherwise, take some \(aw \) such that \(aw \in V_{\varphi_1}^c (p, \Diamond \varphi_1, c) \) from some \((p', a') \in \overline{\text{Rew}}(p, a)\) such that we have \(\langle p', a'w \rangle \in V_{\varphi_1}^c (I_1(p')) \). By completeness of \(A_1 \) we have a run \(I_1(p') \xrightarrow{a'} A_1 Q \) such that for all \(q \in Q \), \(w \in V_{\varphi_1}^c (q) \). Hence, the transition \((p, \Diamond \varphi_1, c, a, Q)\) witnesses completeness.

Finally, take some \(abw \) such that \(abw \in V_{\varphi_1}^c (p, \Diamond \varphi_1, c) \) from some \((p', a') \in \overline{\text{Push}}(p, a, b)\) such that we have \(\langle p', a'w \rangle \in V_{\varphi_1}^c (I_1(p')) \). By completeness of \(A_1 \) we have a run \(I_1(p') \xrightarrow{a'} A_1 Q \) such that for all \(q \in Q \), \(w \in V_{\varphi_1}^c (q) \). Hence, the transitions \((p, \Diamond \varphi_1, c, \{ (p, \Diamond, c, a) \})\) and \((p, \Diamond \varphi_1, c, a, Q)\) witness completeness.
Case \(\text{LFP}(A, Z, \varphi_1, c, \varphi) \):

By assumption \(A \) is complete with respect to \(V \). Let \(\mu^\alpha \) be \(\{\mu^\alpha Z, \varphi_1\}_{\varphi_1} \). We begin, as before, with a minor diversion.

Assume, \(A_i \) is valuation complete with respect to

\[
V_{\alpha+1}(p, \varphi, c') = \begin{cases}
V(p, \varphi, c') & \text{if } c' < c \\
\{ w \mid (p, w) \in \mu^{\alpha+1} \} & \text{if } \varphi = Z \text{ and } c = c' \\
\{ w \mid (p, w) \in \{\varphi\}_{\varphi_1} \} & \text{otherwise}
\end{cases}
\]

and similarly for \(V_{\alpha+1}(p, \varphi, c', a) \) (in the spirit of Definition 4.3). We show \(A_{i+2} \) is complete with respect to \(V_{\alpha+2} \), which values \(Z \) as \(\mu^\alpha \).

For each \((p, Z, c) \) in \(A_{i+1} \), take some \(aw \in V_{\alpha+2}(p, Z, c) = \mu^{\alpha+2} \). Since \(\mu^{\alpha+2} = \varphi_1(\mu^{\alpha+1}) \) we have that \(aw \in V_{\alpha+1}(p) \) from the completeness of \(B_i \).

Hence there was a complete transition \((I_i(p), a, Q)\) in \(B_i \). For all states \(q \in Q \) not of level \(c \) or \(c+1 \), the completeness conditions remain satisfied after the projections in \(A_{i+1} \). For level \(c \) state \((p', \varphi, c)\) we know that \(w \in V_{\alpha+1}(p', \varphi, c) \) which is a subset of \(V_{\alpha+2}(p', \varphi, c) \) and we are done. For a level \(c+1 \) state \((p', \varphi, c+1)\) we know \(w \in V_{\alpha+1}(p', \varphi, c+1) \) which is also a subset of \(V_{\alpha+2}(p', \varphi, c) \), hence we are done.

For each \((p, \varphi, c)\) or \((p, \varphi, c', a)\) in \(A_{i+1} \) with \(\varphi \neq Z \), take some \(aw \in V_{\alpha+2}(p, \varphi, c) \) or \(aw \in V_{\alpha+2}(p, \varphi, c, a) \). From the completeness of \(B_i \) there was a complete transition \(((p, \varphi, c+1), a, Q)\) or \(((p, \varphi, c+1, a, Q)\) in \(B_i \). For all states \(q \in Q \) not of level \(c \) or \(c+1 \), the completeness conditions remain satisfied after the projections in \(A_{i+1} \). For a level \(c \) state \((p', \varphi', c)\) or \((p', \varphi', c, a')\) we know that \(w \in V_{\alpha+1}(p', \varphi', c) \) which is a subset of \(V_{\alpha+2}(p', \varphi', c) \) or \(w \in V_{\alpha+1}(p', \varphi', c, a') \) which is a subset of \(V_{\alpha+2}(p', \varphi', c, a') \) and we are done. For a level \(c+1 \) state \((p', \varphi', c+1)\) or \((p', \varphi', c+1, a')\) we know \(w \in V_{\alpha+1}(p', \varphi', c+1) \) which is also a subset of \(V_{\alpha+2}(p', \varphi', c) \) or \(w \in V_{\alpha+1}(p', \varphi', c+1, a) \) which is also a subset of \(V_{\alpha+2}(p', \varphi', c, a) \), hence we are done.

Thus, \(A_{i+1} \) is complete with respect to \(V_{\alpha+2} \) as required.

We are now ready to prove the main result by induction over the ordinals. Trivially, \(A' = A_i = A_{i+1} \) (for some \(i \geq 1 \)) is sound with respect to \(V_0 \). This is because \(A_0 \) is complete with respect to the extension of \(V \) mapping \(Z \) to \(\mu^0 \), and the recursive call ensures completeness with respect to the full \(V_0 \). The case of a successor ordinal was shown above. For a limit ordinal \(\lambda \), we have completeness for \(V_\alpha \) for all \(\alpha < \lambda \). Since \(\mu^\lambda = \bigcup_{\alpha<\lambda} \mu^\alpha \), the result follows because each configuration in the limit appears in some smaller approximant, and the transition witnessing completeness for the approximant witnesses completeness.
for the limit. To regain the induction hypothesis for successor ordinals, we simply apply the successor construction once, which keeps all \((p, \varphi, c)\) where \(\varphi \neq Z\) complete for the limit, while \((p, Z, c)\) becomes complete for \(\mu^{\lambda+1}\).

Case \(GFP(A, Z, \varphi_1, c, P)\):

By assumption \(A\) is complete with respect to \(V\). Initially, \(A_0\) is valuation complete with respect to the extension of \(V\) that values \(Z\) as \([\nu Z.\varphi_1]_V\). After the first iteration, using a specialisation of the argument below, we have that \(A_1\) is complete with respect to \(V I_{Z,\varphi_1}\), which we will abbreviate as \(V_\varphi\).

We assume completeness with respect to \(V_\varphi\) for \(A_1\) and prove it for \(A_{i+1}\).

By induction over the recursion, \(B_i\) is complete with respect to \(V_\varphi\). Since \(I_i\) are complete and \(\nu Z.\varphi_1 = \varphi_1(\nu Z.\varphi_1)\) we have that \(B_i[Z/I_i]\) remains \(V_\varphi\) complete.

Take any \(aw \in V_\varphi(p, \varphi, c)\) or \(aw \in V_\varphi(p, \varphi, c, b)\). Since \(V_\varphi(p, \varphi, c) = V_\varphi(p, \varphi, c+1)\) and \(V_\varphi(p, \varphi, c, b) = V_\varphi(p, \varphi, c+1, b)\) we have a transition \(((p, \varphi, c+1), a, Q)\) or \(((p, \varphi, c+1, b), a, Q)\) in \(B_i[Z/I_i]\) that witnesses completeness for \(B_i[Z/I_i]\). From this transition we have \(((p, \varphi, c), a, \pi_c(Q))\) or \(((p, \varphi, c, b), a, \pi_c(Q))\) in \(A_{i+1}\). For all \(q \in Q\) of level less than \(c\) we have from \(B_i\) that \(w \in V_\varphi(q)\). For \(q\) of level \(c\) and \(c+1\) we have \(w \in V_\varphi(\pi_c(q))\) from \(V_\varphi(p', \varphi', c) = V_\varphi(p', \varphi', c+1)\) and \(V_\varphi(p', \varphi', c, b') = V_\varphi(p', \varphi', c+1, b')\) for all \(p', b'\) and \(\varphi'\). Hence we have a transition witnessing completeness, as required.

\[\Box\]

5. Termination and Correctness of \(\text{Denotation}(\chi, A_V, P)\)

Termination and valuation soundness and completeness for the called subroutines are given in Lemma 3.4, Lemma 4.3 and Lemma 4.4.

Theorem 5.1. Let \((A, I) = \text{Denotation}(\chi, A_V, P)\) where \(A_V\) describes a valuation \(V\). The states \(I\) of \(A\) give the denotation \([\chi]_V\).

Proof. Observe that \(A_V\) is automatically \(V\)-sound and -complete. There are two cases when \(\chi\) is not \(\vec{x}\) or \(Z\). Either \(I = \{ (p, Z, 1) \mid p \in P \}\) when \(\chi = \sigma Z.\varphi(Z)\) for \(\sigma \in \{\mu, v\}\), or \(I = \{ (p, \chi, 1) \mid p \in P \}\) otherwise. In both cases, from Lemma 4.3 with Lemma 4.1 and Lemma 4.4 with Lemma 4.2 we have the theorem as required.

\[\Box\]

