
Linear Types with Dynamic Multiplicities in Dependent Type
Theory (Functional Pearl)

MAXIMILIAN DORÉ, University of Oxford, United Kingdom

We construct a linear type system inside dependent type theory. For this, we equip the output type of a
program with a bag containing copies of each of the input variables. We call the number of copies of an input
variable its multiplicity. We then characterise a dependent type which ensures that a program uses exactly the
given multiplicity of each input variable. While our system is not closed under linear function types, we can
program in the resulting system in a practical way using usual dependent functions, which we demonstrate
by constructing standard programs on lists such as folds, unfolds and sorting algorithms. Since our linear type
system is deeply embedded in a functional language, we can moreover dynamically compute multiplicities,
which allows us to capture that a program uses a varying number of copies of some input depending on the
other inputs. We can thereby give precise types to many functional programs that cannot be typed in systems
with static multiplicities.

CCS Concepts: • Theory of computation→ Type theory; Linear logic; Logic and verification; Programming
logic.

Additional Key Words and Phrases: Linear Dependent Type Theory, Quantitative Type Theory, Graded Types

ACM Reference Format:
Maximilian Doré. 2025. Linear Types with Dynamic Multiplicities in Dependent Type Theory (Functional
Pearl). Proc. ACM Program. Lang. 9, ICFP, Article 262 (August 2025), 21 pages. https://doi.org/10.1145/3747531

1 Introduction
Linear type systems allow for specifying in the type of a program how often it uses each variable.
This gives crucial information to both the programmer, whowants to reason about the correctness of
their program, and the compiler, which tries to understand the usage of resource to find an efficient
way to run a program. Recent work on integrating linear type systems in functional languages
such as Linear Haskell [3], Quantitative Type Theory [1] and Graded Modal Type Theory [21]
restrict the typing rules by annotating variables with elements of some sort of resource algebra.
Thereby, any variable comes with a multiplicity which says how often that variable will be used.
Crucially, the multiplicity of each variable needs to be known statically, which makes it impossible
to precisely type many programs that occur naturally when programming functionally. Consider,
e.g., a safe head function for lists defined as follows in Haskell.
safeHead :: [a] -> a -> (a,[a])
safeHead [] y = (y,[])
safeHead (x:xs) y = (x,xs)

The function aims to extract the head of the list and, if the given list is empty, resorts to returning
the backup element 𝑦 (it also returns the tail of the list as the second element in the pair). The
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element 𝑦 is therefore used once or not at all, depending on the given list. We cannot express this
use of 𝑦 in either of the systems mentioned above since they require a static multiplicity for 𝑦.1

We present a solution to this conundrum by deeply embedding a linear type system in a functional
language, as opposed to changing the typing rules of the language itself. This makes it possible to
dynamically compute the multiplicity of a variable. The functional language we use is dependent
type theory [17], which adds predicates to the type system. We deeply embed the rules of linear
logic in the host type theory using finite multisets, which can be defined as a higher inductive
type [25] in Cubical Agda [28], and then define a dependent type which we understand as a linear
judgment, i.e., as the statement that some program uses exactly the given resources. We thereby
obtain a linear type system inside dependent type theory, and this system ensures that any program
whose output type is a linear judgment uses exactly the provided resources.

What is missing from our type system are linear function types, which means we cannot
represent linear higher-order functions, in contrast to other systems [1, 21]. We get around this by
using the function type of the host dependent type theory. This has limitations, e.g., we cannot
capture how often some function variable is used by a program, but we can nevertheless give a
precise type to many common functional programs. The programs themselves are implemented as
usual in a functional language, we only have to construct linear functions while we implement a
program to convince the type-checker that it uses the provided resources. We show how data types
can be accommodated in our type system and derive folds and unfolds for lists, which makes it
straightforward to construct more complex programs such as sorting algorithms in a linear fashion.

In summary, this paper works out the—in the eyes of the author surprising—finding that in order
to make a dependently typed language linear, we do not have to change its rules, but can just
deeply embed the rules of linear logic. Not only allows this approach to easily add linear types to
an existing language, it also enables us to represent forms of variable use that we could not express
if we had equipped the structural rules of type theory with static resource annotations.

Outline of the construction. To make a program of type (𝑥1 : 𝐴1) → · · · → (𝑥𝑛 : 𝐴𝑛) → 𝐵

linear, we equip the output type 𝐵 with a bag of values Δ, which we call a supply. A supply gathers
the resources that we can and must use in our program. If Δ contains𝑚 copies of variable 𝑥𝑖 , we
say that𝑚 is the multiplicity of 𝑥𝑖 . We define a dependent type Δ ⊩ 𝐵 which we read as a linear
judgement. Inhabitants of this type are pairs of some 𝑏 : 𝐵 as well as a witness that 𝑏 is made up of
the resources in Δ. We therefore aim to construct programs of the following type.

(𝑥1 : 𝐴1) → · · · → (𝑥𝑛 : 𝐴𝑛) → Δ ⊩ 𝐵

Any program with the above type is guaranteed to consume precisely the resources Δ. For example,
we can construct a program with the following type in our system.

safeHead : (xs : List A) → (y : A)→ (if null xs then 𝜄 y else ⋄) ⊗ 𝜄 xs ⊩ A × List A

We write 𝜄 _ for the supply containing a single value, ⋄ for the empty supply, and _⊗_ for the
union of two supplies. Given an input list 𝑥𝑠 and a backup element 𝑦, the supply in our linear
judgment contains the input list 𝑥𝑠 , and 𝑦 only in case null 𝑥𝑠 evaluates to true. We will construct
safeHead by pattern matching on 𝑥𝑠 , which specializes the supply given above to contain a copy
of 𝑦 only in case 𝑥𝑠 is the empty list. Our type system hence offers us a very precise language to
equip programs with resource annotations.

1Some of the theories have affine types to give bounds for how often some variable is used, e.g., in Granule [21], which
implements graded modal type theory, the backup element is annotated [0..1] to capture that it is used at most once.
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All of the examples in this paper have been implemented in the Cubical extension [28] of
Agda [20] and can be further explored in the accompanying artefact2. We make use of a higher
inductive type [25] in our construction, namely finite multisets, sometimes also called bags. While
finite multisets are not necessary to add our construction to a dependently typed language—we
will explain in Section 6.1 how this can be done in the absence of higher inductive types—it gives
us a lot of the necessary structure for our linear type system. We only need to extend our notion of
what it means for two supplies to contain the same resources in order to incorporate data types.

Background. The idea at the heart of this paper, namely the equipment of the codomain of a
dependent function type with a bag of resources is due to Pédrot [22, 23]. He characterises the
Dialectica construction [29] for dependent types as giving the “higher-order dependent graded type
of a term”, and observes that this allows for dynamically computing multiplicities. We show that this
view on linear logic and type theory leads to a practically useful functional programming language,
and contribute to the understanding of the Dialectica translation for positive types. Crucial for our
system is also the finding that in a linear dependent type theory, we ought to ignore the usage of
variables in types, which has been put forward by McBride [18]. Our dynamic multiplicities are
reminiscent of the index terms of Dal Lago and Gaboardi [8], who equip PCF [24] with a linear
dependent type system to capture the complexity of a functional program in its type.

Structure. We start out in Section 2 by giving the basic setup for our linear type system. We
define supplies as heterogeneous bags, give a data type of productions which captures when two
supplies present the same collection of resources, and define our linear judgment Δ ⊩ 𝐴.
We use our framework to program with lists in Section 3. We derive linear folds and unfolds

for lists and use these to construct list functions in a standard way. In particular, we can devise
insertion and selection sort programs whose types ensure that they are linear and therefore do not
drop or duplicate any of the input elements.
We then proceed to exploit the full power of dynamically computed multiplicities in Section 3.

We derive a fold and an unfold for lists which use resources dynamically, and derive standard
list functions such as intersperse and map as instances of these. We show how we can add an
infinite multiplicity to our system, which can be used to construct infinite lists. In Section 5, we
demonstrate how our linear type system straightforwardly allows us to program with dependent
types such as vectors.

We compare our system with other approaches to dependent linear type theory in Section 6 and
close with a discussion of future lines of work in Section 7.

2 Equipping types with bags of resources
We carry out our constructions in the Cubical extension of Agda. We write Type for the type of
all types3 and 𝑎 : 𝐴 if 𝑎 is an element of type 𝐴. In case 𝐵 is a type depending on 𝐴, we write
(𝑥 : 𝐴) → 𝐵 𝑥 for the dependent function type, and Σ 𝐴 𝐵 for the dependent pair type of 𝐴 and 𝐵.
In case 𝐵 does not depend on 𝐴, we write 𝐴 × 𝐵 for the pair type. Elements of the pair type are
written (𝑎 , 𝑏).

Cubical Agda implements higher inductive types [25], which allow us to introduce equalities in
the definition of some inductive type 𝑋 . More precisely, the target of a constructor of 𝑋 can be an
equality 𝑥 ≡ 𝑦 for some 𝑥,𝑦 : 𝑋 . We will use a higher inductive type to define bags, which are lists

2See the zip folder accompanying this submission. If this paper is accepted, we will provide a browsable online artefact.
Note also that the Agda code in this paper linked, which allows for quickly going to the definition of some expression.
3We omit universe levels in the paper to ease readability, but use them in the accompanying artefact.
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whose order of elements does not matter (we will explain in Section 6.1 how we can carry out our
construction in a dependent type theory without higher inductive types).

2.1 Supplies as bags of values
We gather resources that a program must use in a bag, also called finite multiset. In Cubical Agda,
we can use a higher inductive type to define bags as lists which are quotiented under reordering.

data Bag (A : Type) : Type where
⋄ : Bag A
_;_ : A→ Bag A→ Bag A
comm : (x y : A) (xs : Bag A) → x ; y ; xs ≡ y ; x ; xs
trunc : isSet (Bag A)

We always have the empty bag ⋄ and can prepend elements to a bag with the ; constructor. The
higher constructor comm (short for commutative) says that we consider two bags equal if they
contain the same two elements in front, but in different order. This constructor can be applied
repeatedly to obtain any permutation between two lists of elements. In general, there are many
such permutations, the trunc constructor (short for truncation) establishes that we consider all such
permutations the same—in other words, we only care about the existence of a permutation. In the
lingo of homotopy type theory [25], if all equalities between elements of some type are all equal to
one another, this type is a set, which explains the name of the predicate isSet. The important point
for us is that bags behave just like lists—except that their order of elements does not matter—and
possess no higher homotopical structure that we have to worry about.

We can define a function to append one bag to another by recursion on the first bag, just like we
would with lists. We just give the type signature here and refer the interested reader to Choudhury
and Fiore [7] for further study of bags and an explanation of how to define such a function between
higher inductive types.

_⊗_ : Bag A → Bag A → Bag A

We want to put elements of all types in a single bag. For this, we introduce a type that any value
can be made an inhabitant of.4

Value : Type
Value = Σ[ A ∈ Type ] A

A Value is hence a dependent pair of some type 𝐴 and an inhabitant of 𝐴. With this, we have all
necessary things at hand to define heterogeneous bags, which act as our notion of resource and
will be called supplies in the following.

Supply : Type
Supply = Bag Value

We introduce a function to create the unit supply for a given value 𝑎 of type 𝐴, which simply
puts the pair (𝐴 , 𝑎) in front of the empty bag.

𝜄 : A→ Supply
𝜄 a = (A , a) ; ⋄

In the following, we construct supplies using only the unit 𝜄 and append ⊗ operators, for example,
given 𝑎 : 𝐴 and 𝑏 : 𝐵 we might consider the supply 𝜄 𝑎 ⊗ 𝜄 𝑎 ⊗ 𝜄 𝑏 of two copies of 𝑎 and one copy
of 𝑏.
4In the type-theoretic literature, Value is usually called a pointed type.
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We will use Δ, Δ0, Δ1 etc. as names for supplies in the following. The greek letter Δ is usually
used for contexts in the literature, but this clash is intended: the elements of a supply that we care
about are variables from the host type theory, and the number of times a variable is part of some
supply specifies how often we can use this variable.

2.2 Repacking bags
Supplies already satisfy a lot of properties that we would expect from a collection of resources:
adding the empty supply ⋄ to a supply Δ yields the same supply Δ, we do not care about the order
of elements in a supply (i.e., ⊗ is commutative), and we do not care about the brackets around
sequences of appended supplies (i.e., ⊗ is associative). These properties do not need to be postulated
as constructors of the Bag type, but can be derived by induction. We refer to the Cubical library5 for
proofs of these properties. However, we need to introduce additional ways in which two supplies
are considered to contain the same resources to take into account values of some data type. For
example, we want to consider a supply consisting of a pair 𝜄 (𝑎 , 𝑏) to be representing the same
resources as the supply 𝜄 𝑎 ⊗ 𝜄 𝑏.
In order to do this, we introduce a data type that captures all the ways in which we consider

two supplies to contain the same resources. We call this the type of productions, as it allows us to
produce one supply from another supply.

data _◦−◦_ : Supply → Supply→ Type where
id : ∀ Δ → Δ ◦−◦ Δ

_◦_ : ∀ {Δ0 Δ1 Δ2}→ Δ1 ◦−◦ Δ2 → Δ0 ◦−◦ Δ1 → Δ0 ◦−◦ Δ2
_⊗𝑓 _ : ∀ {Δ0 Δ1 Δ2 Δ3}→ Δ0 ◦−◦ Δ1 → Δ2 ◦−◦ Δ3 → (Δ0 ⊗ Δ2) ◦−◦ (Δ1 ⊗ Δ3)

The identity production id establishes that any supply can be turned into itself, while the
composition production ◦ closes productions under transitivity. The constructor ⊗𝑓 acts as a sort
of congruence closure of productions with respect to ⊗.6
The attentive reader will have noticed that there is no symmetry production in our definition.

One might conceivably want to add productions that drop resources (to introduce for example
additive conjunction), which is why we do not in general make ◦−◦ symmetric. For the developments
in this paper, however, ◦−◦ will always be symmetric. We can establish this using swap below,
which in turn follows from commutativity of ⊗ (any equality between supplies can be turned into
a production by substituting one side of the id production). Similarly, we can derive several other
structural productions such as the right unital law for ⋄.
swap : (Δ0 Δ1 : Supply)→ (Δ0 ⊗ Δ1) ◦−◦ (Δ1 ⊗ Δ0)
unitr : (Δ : Supply) → (Δ ⊗ ⋄) ◦−◦ Δ

assoc’ : (Δ0 Δ1 Δ2 : Supply)→ Δ0 ⊗ (Δ1 ⊗ Δ2) ◦−◦ (Δ0 ⊗ Δ1) ⊗ Δ2

We will extend our type of productions ◦−◦ whenever we want to include a data type in our
linear type system. More precisely, we will state rules that allow us to introduce and discard any
constructor of this type as necessary, while keeping all resources contained in the respective
constructor.

For the dependent pair type, which has a single constructor (_ , _), we introduce productions to
capture that having a pair or having both of its elements separately constitutes the same collection
of resources. We hence introduce the following productions, for any given types 𝐴, 𝐵 dependent
on 𝐴 and inhabitants 𝑎 : 𝐴 and 𝑏 : 𝐵 𝑎.
5https://github.com/agda/cubical
6More precisely, ⊗𝑓 is the functorial action of ⊗ considered as a bifunctor, which explains the superscript in our notation.
We spell out this perspective in Section 6.1.
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data _◦−◦_ : Supply → Supply→ Type where
...

opl, : 𝜄 (a , b) ◦−◦ (𝜄 a ⊗ 𝜄 b)
lax, : (𝜄 a ⊗ 𝜄 b) ◦−◦ 𝜄 (a , b)
The names stand for oplax and lax, intuition behind these names will be given in Section 6.1.

2.3 The crux: keeping a packing list
With supplies and productions we have all necessary structure to define a linear judgment in our
system. Saying that something of type 𝐴 can be constructed using a supply Δ amounts to giving an
inhabitant 𝑎 of 𝐴, as well as a recipe which says how 𝑎 can be obtained using the resources in Δ.
This is exactly the following dependent pair type.

_⊩_ : Supply→ Type→ Type
Δ ⊩ A = Σ[ a ∈ A ] (Δ ◦−◦ 𝜄 a)
When constructing a program with a linear type, we hence have to do two things: we have to

construct the output value, and we have to prove that this value is made up of the given resources.
We now introduce several functions which make it convenient to program in our linear type

system. The first rule can be considered an analogue to the variable rule for linear logic (but for
arbitrary values of the host theory), and states that an 𝑎 : 𝐴 is precisely what we need to construct
something of type 𝐴.

. : (a : A) → 𝜄 a ⊩ A

. a = a , id (𝜄 a)

We resolve two tasks in the definition of . above: we give a witness of type 𝐴, which is just the
given 𝑎, and a recipe how to turn 𝜄 𝑎 into 𝜄 𝑎, which is just the identity production.
The second rule that we often use takes a linear judgment over supply Δ0 and a production

from another supply Δ1 to Δ0, and yields a linear judgment over Δ1. In fact, this is just applying
composition of productions.

_by_ : Δ0 ⊩ A → (Δ1 ◦−◦ Δ0) → Δ1 ⊩ A
(a , 𝛿2) by 𝛿1 = a , 𝛿2 ◦ 𝛿1

With these two definitions we can conveniently construct linear programs. For example, we can
write a function which swaps around the two elements of a non-dependent pair.

switch : (z : A × B)→ 𝜄 z ⊩ B × A
switch (x , y) = . (y , x) by prod where prod : 𝜄 (x , y) ◦−◦ 𝜄 (y , x)

prod = lax, ◦ swap (𝜄 x) (𝜄 y) ◦ opl,
In the definition of switch we pattern match on the given element, which means that the type

we need to construct is specialised to 𝜄 (𝑥 , 𝑦) ⊩ 𝐵 × 𝐴. By using the basic variable rule, we give the
pair (𝑦 , 𝑥) as our element of 𝐵 × 𝐴. What remains to show is that the resources given by 𝜄 (𝑦 , 𝑥)
are the same as the ones give by 𝜄 (𝑥 , 𝑦). For this, we give the packing list which first discards the
pair constructor, swaps the elements, and then introduces the pair constructor again.

2.4 Linear functions
The function switch is linear as it consumes the given pair exactly once, we will in this section
introduce definitions which make this linearity obvious in the type signature. First, we introduce
the following abbreviation for functions which consume their input exactly once.
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_⊸_ : Type→ Type→ Type
A ⊸ B = (x : A)→ 𝜄 x ⊩ B

A linear function from 𝐴 to 𝐵 is a dependent function from 𝐴 to 𝜄 𝑥 ⊩ 𝐵, i.e., it takes any 𝑥 : 𝐴 to
the linear judgment that 𝜄 𝑥 is a supply from which we can produce some 𝐵. Using this abbreviation,
we can write the type of switch from Section 2.3 simply as A × B ⊸ B × A.

We can apply linear functions to linear judgments, for which we introduce a linear application
operator @. We slightly generalise our considerations and define our application operator for
linear functions with leftovers [16], which will sometimes appear in our developments below. A
function with leftovers is a dependent function that takes 𝑥 : 𝐴 to the linear judgment that a 𝐵 can
be produced using one copy of 𝑥 and some supply Δ0 (which cannot contain other copies of 𝑥).
We can apply this function to a value 𝑎 : 𝐴 which has been derived using some supply Δ1. The
resulting value of type 𝐵 will then require the joint resources Δ0 and Δ1, as we can readily derive
in our system.

_@_ : ((x : A) → 𝜄 x ⊗ Δ0 ⊩ B) → Δ1 ⊩ A → Δ0 ⊗ Δ1 ⊩ B
f @ (a , 𝛿) = f a by swap Δ0 (𝜄 a) ◦ (id Δ0 ⊗𝑓 𝛿)

We apply the linear function 𝑓 to the given 𝑎 : 𝐴, which yields a linear judgment 𝜄 𝑎 ⊗ Δ0 ⊩ 𝐵. The
production 𝛿 tells us that we can turn Δ1 into 𝜄 𝑎, applying this appropriately using the congruence
production ⊗𝑓 and swapping around the two supplies establishes that the application 𝑓 𝑎 can be
produced using Δ0 and Δ1.
We will often need to apply functions in two arguments in the following. Since we cannot

represent higher-order linear functions in our system, we only consider their uncurried versions.
Given one such function 𝑓 :𝐴 ×𝐵⊸𝐶 , wewill oftenwant to apply 𝑓 not directly to two intuitionistic
terms 𝐴 and 𝐵, but rather to two linear judgments Δ0 ⊩ 𝐴 and Δ1 ⊩ 𝐵. This will yield an element of
𝐶 made up of the joint resources of Δ0 and Δ1. We can turn any 2-ary function into such a function
acting on linear judgments as follows.

◦→⊗ : A × B ⊸ C → Δ0 ⊩ A → Δ1 ⊩ B → Δ0 ⊗ Δ1 ⊩ C
◦→⊗ f (a , 𝛿0) (b , 𝛿1) = f @ . (a , b) by lax, ◦ (𝛿0 ⊗𝑓 𝛿1)

We are given a 2-ary linear function 𝑓 , a value 𝑎 : 𝐴 with production 𝛿0 that turns Δ0 into 𝜄 𝑎,
and a value 𝑏 : 𝐵 with production 𝛿1 that turns Δ1 into 𝜄 𝑏. We evaluate 𝑓 at (𝑎 , 𝑏) considered as a
linear judgment, which gives us an element of 𝐶 using resources (𝑎 , 𝑏). We use 𝛿0 and 𝛿1 and the
lax production for the pair constructor to establish that these are precisely the joint resources of Δ0
and Δ1.

By applying ◦→⊗ to the basic judgment . from Section 2.3, we obtain a more general linear pair
constructor that we will often use.

_,⊗_ : Δ0 ⊩ A → Δ1 ⊩ B → Δ0 ⊗ Δ1 ⊩ A × B
_,⊗_ = ◦→⊗ .

For example, we can define switch from Section 2.3 alternatively as follows, joining together
two basic judgements for 𝑦 and 𝑥 .

switch’ : A × B ⊸ B × A
switch’ (x , y) = (. y ,⊗ . x) by swap (𝜄 x) (𝜄 y) ◦ opl,
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3 Linear functional programming with lists
We will now do some functional programming in our linear type system. In Section 3.1, we discuss
how to make lists amenable to resource-sensitive programming. We then define a linear fold and
unfold in Sections 3.2 and 3.3. These can be derived like the usual fold and unfold for lists, except
that we have to do a little bit of work to show that these functions use the given resources. Once
this is out of the way, we can construct many list programs as the standard folds and unfolds. In
particular, we can derive insertion and selection sort as a fold and unfold, respectively, which we
will do in Section 3.4. Devising a sorting algorithm in a linear type systems gives us a crucial part
of its correctness proof, namely that the algorithm does not drop or duplicate any of the given
elements.

In the following, we use a standard type of lists over 𝐴, denoted List 𝐴, with constructors [] and
𝑥 :: 𝑥𝑠 for given 𝑥 : 𝐴 and 𝑥𝑠 : List 𝐴.

3.1 Linearising lists
In order to reason about lists as resources, we need to extend our definition of the production
type. Similar to what we did with pairs in Section 2.2, we have to introduce productions for any
constructor of our list type to establish that we can freely add or remove it, as long as we keep any
resources that were kept inside the constructor. In the case of lists, this means that the empty list is
not an actual resource that we need to care about; and that the cons constructor can be added or
removed as long as we keep track of the head and tail kept inside a cons constructor.

data _◦−◦_ : Supply → Supply→ Type where
...

opl[] : (𝜄 []) ◦−◦ ⋄
lax[] : ⋄ ◦−◦ (𝜄 [])
opl:: : 𝜄 (a :: as) ◦−◦ (𝜄 a ⊗ 𝜄 as)
lax:: : (𝜄 a ⊗ 𝜄 as) ◦−◦ 𝜄 (a :: as)

These productions give us all we need to program with lists in a linear fashion. For example, we
can now implement the safe head function for lists mentioned in Section 1.

safeHead : (xs : List A) → (y : A)→ (if null xs then 𝜄 y else ⋄) ⊗ 𝜄 xs ⊩ A × List A
safeHead [] y = . (y , []) by lax,
safeHead (x :: xs) y = . (x , xs) by lax, ◦ opl::

In case the given list 𝑥𝑠 is empty, we ought to use the backup element 𝑦 as well as the empty
list. In case the list is not null, we do not have 𝑦 available anymore, we can hence only return the
head and tail of the list, which we turn into a pair by first discarding the cons constructor and then
introducing the pair constructor.

In the following, we will often want to treat the list constructors as linear functions. The empty
list is simply a 0-ary function over the empty supply.

[]◦ : ⋄ ⊩ List A
[]◦ = . [] by lax[]

The cons constructor for lists is a 2-ary function taking an element of 𝐴 and a list over 𝐴 to
another list over 𝐴.

_::◦_ : A × List A ⊸ List A
_::◦_ (x , xs) = . (x :: xs) by lax:: ◦ opl,
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We can apply the function ◦→⊗ from Section 2.4 to turn the linear cons constructor into a more
general version that acts on linear judgments, we will often use this version in the following.
_::⊗_ : Δ0 ⊩ A → Δ1 ⊩ List A→ Δ0 ⊗ Δ1 ⊩ List A

3.2 Linear folding
There are in general many sensible linear folds for a type that are useful, depending on which
resources the different functions corresponding to the constructors use [18]. One possible linear
fold of lists of type𝐴 into some result type 𝐵 could require the cons function to use both the current
head as well as the result linearly, while giving a distinct supply Δ for the nil function. We expect
that this fold yields a linear judgment which uses Δ and the list to be folded, and we can indeed
derive this fold in our system.
foldr1 : (A × B ⊸ B)→ (Δ ⊩ B) → (xs : List A) → Δ ⊗ 𝜄 xs ⊩ B
foldr1 f z [] = z by unitr Δ ◦ (id Δ) ⊗𝑓 opl[]
foldr1 f z (x :: xs) = f @ (. x ,⊗ foldr1 f z xs) by prod where
prod : Δ ⊗ 𝜄 (x :: xs) ◦−◦ 𝜄 x ⊗ Δ ⊗ 𝜄 xs
prod = swap Δ (𝜄 x) ⊗𝑓 (id (𝜄 xs)) ◦ assoc’ Δ (𝜄 x) (𝜄 xs) ◦ (id Δ) ⊗𝑓 opl::
In the nil case we use the linear judgment 𝑧, which uses Δ to produce some 𝐵. We only have

to remove the empty list from the given supply, which stems from the fact that the type we are
currently eliminating into is Δ ⊗ 𝜄 [] ⊩ 𝐵. In case we have a head 𝑥 , we apply 𝑓 to 𝑥 and the
recursive call of foldr1. Note how the cons case of foldr1 leaves the base supply Δ untouched and
passes it down until it can be consumed by the nil case.
Defining our fold required a little work as we had to provide some packing lists, but now that

we have defined it, we can conveniently construct linear programs. For example, we can append
lists linearly as follows, where we use as the base case for our fold the basic judgment for 𝑦𝑠 .
append : List A × List A ⊸ List A
append (xs , ys) = foldr1 _::◦_ (. ys) xs by swap (𝜄 xs) (𝜄 ys) ◦ opl,

We can also program with nested list types in standard fashion, for example, we can construct a
linear concat which uses the given 2-dimensional list exactly once.
concat : List (List A)⊸ List A
concat = foldr1 append []◦

3.3 Unfolding lists
After we have deconstructed lists, we will now construct lists in a linear fashion. Similar to how
there are different useful linear folds, there are many sensible linear unfolds one might use. In this
section, we look at an unfold which is linear in the argument to be unfolded. When unfolding lists,
we have no guarantee that we will at some point reach the base case, which means that unfolds
are in general partial. We therefore have to turn off Agda’s termination checker for the following
constructions.

We define our unfold using a standard Maybe type with constructors nothing and just. In order
to use theMaybe type linearly, we again stipulate that the constructor symbols can be freely added
or removed from supplies, which we do by extending our type of productions with the following
rules.
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data _◦−◦_ : Supply → Supply→ Type where
...

oplnothing : (𝜄 nothing) ◦−◦ ⋄
laxnothing : ⋄ ◦−◦ (𝜄 nothing)
opljust : 𝜄 (just a) ◦−◦ 𝜄 a
laxjust : 𝜄 a ◦−◦ 𝜄 (just a)
Using the lax productions, we can again define linear functions for each constructor, which we

call nothing◦ and just◦.
The unfold that we want to devise uses one copy of the input 𝑥 : 𝐵 to produce a list of elements

of type 𝐴. This means that the recursive go function has to be linear and produce both the head of
the list 𝑦 and the rest 𝑥 ′ : 𝐵 that is still to be unfolded from a given 𝑥 : 𝐵. We define our function
using Agda’s with construct, which can be thought of as Haskell’s case.

unfold1 : (B ⊸ Maybe (A × B))→ B ⊸ List A
unfold1 f x with f x
... | nothing , 𝛿 = []◦ by oplnothing ◦ 𝛿
... | (just (y , x’)) , 𝛿 = . y ::⊗ unfold1 f x’ by opl, ◦ opljust ◦ 𝛿
We evaluate 𝑓 at the given 𝑥 : 𝐵. In case we are told to stop, we return the empty list. The

production 𝛿 given by 𝑓 says that in this case, 𝑥 can be turned into nothing, which we then discard
using the oplax production for this constructor. If the go function tells us to keep going, we are
given an element 𝑦 that we put in front of the result list as well as the rest 𝑥 ′ still to be unfolded. In
this case, 𝛿 establishes that 𝑥 can be turned into just (𝑦 , 𝑥 ′), we therefore just have to rearrange
constructors to complete our construction.

We can use the unfold to define a map function for lists.

map : (A ⊸ B) → List A ⊸ List B
map f = unfold1 go where
go : List A ⊸ Maybe (B × List A)
go [] = nothing◦ by opl[]
go (z :: zs) = just◦ @ (f z ,⊗ . zs) by opl::

The go function for map is defined by induction on the given list. In the recursive case with a
given head 𝑧 of the list, we establish that 𝑓 applied to 𝑧 should be the head of the list, and that we
still need to map the rest of the list 𝑧𝑠 . We only need to use the oplax productions for lists in our
definition, and the other production yoga is taken care of by unfold1.

3.4 Correct-by-construction sorting algorithms
A linear type system gets particularly useful when we construct more complex programs, as it
allows us to be sure that we did not accidentally drop or duplicate any resources. For example, a
sorting function should only permute the given list and not forget or copy any of the elements.
By constructing sorting functions in a linear type system, we can guarantee this. We demonstrate
this by devising insertion and selection sort using the previously defined linear fold and unfold,
respectively.

We assume in the following that we have a base type𝐴 which comes equipped with a computable
total order, and we compare two elements 𝑥,𝑦 : 𝐴 by evaluating 𝑥 ≤? 𝑦, which returns either inl 𝑝
(where 𝑝 is a witness that 𝑥 is less or equal to 𝑦) or inr 𝑝 (where 𝑝 is a witness that 𝑥 is strictly
greater than 𝑦). In Haskell lingo, our assumptions amount to saying that we are given an instance
of the order type class for 𝐴.
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We can define a linear insert function in a standard fashion. Given an element 𝑥 : 𝐴 that we want
to insert into a list 𝑦𝑠 (which we assume is ordered, even though we do not specify this invariant in
the type), we perform pattern matching on 𝑦𝑠 .

insert : A × List A⊸ List A
insert (x , []) = . (x :: []) by lax:: ◦ opl,
insert (x , (y :: ys)) with x ≤? y
... | inl p = . (x :: y :: ys) by lax:: ◦ opl,
... | inr p = . y ::⊗ insert (x , ys)

In case the list that we are inserting into is empty, we just give the singleton list of 𝑥 , which is
using the resources 𝜄 [] ⊗ 𝜄 𝑥 . Otherwise, we compare 𝑥 with the current head of the list. If it is less
or equal, we can simply return the list with 𝑥 in front. In the other case, we insert 𝑦 in front of a
recursive call to insert 𝑥 .
With insert being defined linearly, we have done most of the work and can obtain a linear

insertion sort as the standard fold of insert onto the empty list.

isort : List A ⊸ List A
isort = foldr1 insert []◦

Our type system guarantees that isort produces a list containing the same elements as the input
list. What is left to show is that this list is sorted, which we can do in a standard fashion by showing
that the first projection of isort 𝑥𝑠 is sorted for any input 𝑥𝑠 .
We can use our linear unfold to devise another sorting algorithm, namely selection sort. First,

we define a function which takes the minimum of a non-empty list, which is a pair of an 𝐴 and a
list over 𝐴, where we make use of a helper function insSnd : A⊸ A × List A⊸ A × List A to insert
an element into the second spot of a non-empty list.

getMin : A × List A ⊸ A × List A
getMin (x , []) = . (x , [])
getMin (x , y :: xs) with y ≤? x
... | inl p = insSnd@ (. x ,⊗ getMin (y , xs)) by id (𝜄 x) ⊗𝑓 (lax, ◦ opl::) ◦ opl,
... | inr p = insSnd@ (. y ,⊗ getMin (x , xs)) by prod

We do a case distinction on whether 𝑥 is not smaller than the current head of the list. If this is
the case, we must look for the minimum in the given list and put 𝑥 after the thereby computed
minimum. The other case is symmetric, we have omitted the definition of the production which
requires some reassociating.

Having defined getMin linearly, we again have done most of the work and just need to unfold.

ssort : List A ⊸ List A
ssort = unfold1 go where
go : List A ⊸ Maybe (A × List A)
go [] = nothing◦ by opl[]
go (x :: ys) = just◦ @ getMin (x , ys) by lax, ◦ opl::

In case the given list is empty, we tell unfold1 to stop. Otherwise, we specify that the minimum
of the list should be in front of the list and that we need to recurse on the remainder list given by
getMin.
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4 Dynamic multiplicities
So far, we have used our linear type system only to ensure that some function uses a variable once.
Resource sensitive type systems offer the even greater promise that we can also precisely type
programs which use multiple copies of some variable. Systems like Linear Haskell [3], Quantitative
Type Theory [1] and Graded Modal Type Theory [21] introduce a resource algebra to annotate
variables with such multiplicities. In our approach, we can use the natural number type N as a
resource algebra to obtain quantitative features. Writing zero and suc for its constructors, we can
readily define a recursive function which generates a given number of copies of some supply.

_^_ : Supply → N → Supply
Δ ^ zero = ⋄
Δ ^ (suc n) = Δ ⊗ (Δ ^ n)

We will see in this section that this simple definition gives rise to exactly the structure we expect
from a type system with multiplicities. What is more, using a resource algebra which is part of the
object language offers an advantage over static resource algebras: the natural number argument𝑚
in Δ ^𝑚 is an arbitrary (open) term, which allows us to dynamically compute the multiplicity of
some variable depending on other variables in the context. Using this, we can type programs that
cannot be adequately typed in the systems mentioned above.

In Section 4.1, we introduce notation to conveniently work with linear functions which use their
input several times. We construct several functions which are polymorphic in the multiplicity,
similar to what can be written in, e.g., Linear Haskell. We then proceed to consider novel linear
types with dynamic multiplicities in Sections 4.2 and 4.3 with the example of linear folds and unfolds.
These functions will use some given supply in each iteration, which means we have to compute
how many rounds the fold and unfold take until they are finished. We close with introducing an
infinite multiplicity by using the conatural numbers as a resource algebra in Section 4.4.

4.1 Multiplicities as parameters
Similar to the development of linear functions in Section 2.4, we develop abbreviations that allow
us to conveniently work with functions using arbitrary multiplicities. The following definition
captures linear functions that consume𝑚 copies of the given input of type 𝐴 to produce something
of type 𝐵.

_-〈_〉⊸_ : Type→ N → Type → Type
A -〈 m 〉⊸ B = (x : A) → 𝜄 x ^ m ⊩ B

For example, a copying function requires two instances of the input, which our type system
allows us to capture.

copy : A -〈 2 〉⊸ A × A
copy x = . (x , x) by lax,

We can also work with functions using multiplicities in higher-order functions such as a map for
lists. Given some function that requires𝑚 copies of an 𝐴 to produce a 𝐵, we can derive a function
that requires𝑚 copies of a list over 𝐴 to produce a list over 𝐵.

map’ : A -〈 m 〉⊸ B → List A -〈 m 〉⊸ List B
map’ f [] = []◦ by ⋄^ m ◦ ◦−◦^ m opl[]
map’ f (x :: xs) = f x ::⊗ map’ f xs by ⊗^ m ◦ ◦−◦^ m opl::
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The function is defined by pattern matching as usual, in the productions given above we use
◦−◦^𝑚 to apply a given production𝑚 times, ⋄^𝑚 to discard𝑚 copies of the empty bag, and ⊗^𝑚
to turn (𝜄 𝑥 ⊗ 𝜄 𝑥𝑠) ^𝑚 into (𝜄 𝑥 ^𝑚) ⊗ (𝜄 𝑥𝑠 ^𝑚).
We can apply a function of type 𝐴 -〈m 〉⊸ 𝐵 to a value derived using a supply Δ, the resulting

value of type 𝐵 will need𝑚 copies of Δ. We can establish this similarly to the linear application
operator, applying𝑚 times the given production 𝛿 that turns Δ into some 𝐴.78

_ @〈 _ 〉_ : A -〈 m 〉⊸ B → (m : N) → Δ ⊩ A → Δ ^ m ⊩ B
f @〈 m 〉 (a , 𝛿) = f a by ◦−◦^ m 𝛿

When composing two functions which use 𝑛 and𝑚 copies of their input, respectively, we expect
that we need 𝑛 ·𝑚 copies of the input, where _·_ denotes multiplication of natural numbers. Indeed,
we can derive this composition principle by applying twice the application operator for functions
with multiplicities.

compose : A -〈 n 〉⊸ B → B -〈 m 〉⊸ C → A -〈 n · m 〉⊸ C
compose f g x = g @〈 m 〉 (f @〈 n 〉 . x) by explaw (𝜄 x) n m

The only work necessary to define compose lies in constructing a production that establishes
that taking (𝑚 · 𝑛) copies of some supply Δ is the same as computing (Δ ^𝑚) ^ 𝑛. The proof is not
essentially difficult, but requires multiple inductions, we refer the interested reader to the artefact
for details.

We can use compose to apply our copy function twice to some given value.

copytwice : A -〈 4 〉⊸ (A × A) × (A × A)
copytwice = compose 2 2 copy copy

We do not have to do any work to establish that copytwice uses literally 4 elements of the input,
as Agda reduces 2 · 2 to its canonical form for us.

4.2 A dynamic fold for lists
The fold for lists we introduced in Section 3.2 is only one of several useful linear folds. Another
fold allows the recursive case to also consume some supply Δ. Consequently, we expect that using
such a kind of fold yields a linear judgment which needs Δ as many times as the folded list is
long. We can derive such a fold similar to foldr1 where we make use of a standard length function
len : List 𝐴 → N.

foldr2 : ((x : A)→ (b : B) → 𝜄 b ⊗ 𝜄 x ⊗ Δ ⊩ B) →⋄ ⊩ B → (xs : List A)→ Δ ^ (len xs) ⊗ 𝜄 xs ⊩ B
foldr2 f z [] = z by opl[]
foldr2 f z (x :: xs) = f x @ foldr2 f z xs

The definition of foldr2 is similar to the definition of foldr1, we only neeed to use a different
production to reorder the elements (we have omitted its definition as it requires reassociating, and
refer the interested reader to the artefact). We have assumed that the base element 𝑧 requires no
resources, we could also pass down a supply to the base case like we did in foldr1 and thereby
obtain a more fold generalising both foldr1 and foldr2.
7The function argument 𝑓 and multiplicity𝑚 are of course the wrong way around in the type signature presented here and
are in opposite order in the artefact, where we make use Agda’s syntax feature to be able to write function application in
this way.
8The attentive reader will have spotted that application for functions with multiplicities does not allow for functions with
leftovers. It is not difficult to derive such a more general application principle, but using this requires more guidance for the
type-checker. To avoid having to write supply annotations explicitly, we only work with the simpler application principle
in the following.
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We can use foldr2 to give an exact type for a function that interleaves an element 𝑥 with the
elements of some list 𝑦𝑠 .

intersperse : (x : A) (ys : List A)→ 𝜄 x ^ (len ys) ⊗ 𝜄 ys ⊩ List A
intersperse x = foldr2 (𝜆 y xys → . x ::⊗ . y ::⊗ . xys by prod y xys) []◦ where
prod : (y : A) (xys : List A)→ 𝜄 xys ⊗ 𝜄 y ⊗ 𝜄 x ◦−◦ 𝜄 x ⊗ 𝜄 y ⊗ 𝜄 xys

The linear intersperse gives as the base case an empty list. Otherwise, we are given the current
head of the list 𝑦 and the list 𝑥𝑦𝑠 which has 𝑥 interspersed throughout the tail of the list, and put 𝑥
and 𝑦 in front of that list. We hence use one copy of 𝜄 𝑥 in each step of the fold, which is precisely
what foldr2 allows us to do.

The above intersperse is not exactly the same as Haskell’s intersperse from Data.List since
we also put 𝑥 in front of the list. If we want to have a proper interspersing function, we have to do
three-way pattern matching. Using the predecessor function predN (which sends zero to zero), we
can derive this interspersing function.

intersperse’ : (x : A) (ys : List A) → 𝜄 x ^ predN (len ys) ⊗ 𝜄 ys ⊩ List A
intersperse’ x [] = . []
intersperse’ x (y :: []) = . (y :: [])
intersperse’ x (y :: y’ :: ys) = . x ::⊗ . y ::⊗ intersperse’ x (y’ :: ys)

In the first two cases of intersperse’, the proof goal normalises such that it is immediate that we
do not have available any 𝑥 . We can hence directly return the given input list. Only in the third
case we have available an 𝑥 which we put in front 𝑦 and the rest of the interspersed list.

4.3 Unfolding lists, or: counting the rounds
With our dynamic multiplicities can also devise more complex unfolds, for instance one which
consumes a supply Δ each time it creates an element of the result list. To give an adequate type
signature for such an unfold, we need to know the number of rounds that a given go function
𝑓 : B →Maybe ((Δ ⊩ A) × B)) takes takes until it returns nothing. Here we assume that the result
type 𝐵 is not a relevant resource; again, this is not a crucial constraint, and we could combine
unfold1 and unfold2 into a single, more general unfold. The function 𝑓 returns a pair of a linear
judgment turning Δ into 𝐴, as well as the next element to be unfolded separately outside of the
linear judgment. We compute the number of rounds until 𝑓 returns nothing by repeatedly applying
it to the input.

rounds : (B → Maybe ((Δ ⊩ A) × B))→ B → N
rounds f x with f x
... | nothing = zero
... | just (_ , x’) = suc (rounds f x’)

Using the rounds function, we can dynamically compute the number of copies we need of the
supply Δ, which allows us to give the correct type for our unfold2.

unfold2 : (f : B → Maybe ((Δ ⊩ A) × B))→ (x : B)→ Δ ^ rounds f x ⊩ List A
unfold2 f x with f x
... | nothing = []◦
... | just ((y , 𝛿) , x’) = . y ::⊗ unfold2 f x’ by 𝛿 ⊗𝑓 id (Δ ^ rounds f x’)

The definition of unfold2 is similar to unfold1, Agda’s type-checker realises that since 𝑓 𝑥 did not
return nothing, our counting function rounds 𝑓 𝑥 will return a number greater than zero, which
means that we have available a copy of Δ which we can turn into 𝑦 using the given 𝛿 .
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An important example of a type 𝐵 whose values are not resources from the point of view of
linear logic is the natural number type. We can intuit this by observing that any natural number
consists only of constructor symbols (namely zero and suc), and therefore contains no resources. A
natural numbers argument𝑚 is unfolded in the replicate function to put𝑚 copies of an element 𝑥
into a list.

replicate : (m : N)→ A -〈 m 〉⊸ List A
replicate m x = unfold2 go m by prod where
go : N →Maybe ((𝜄 x ⊩ A) × N)
go zero = nothing
go (suc m) = just (. x , m)
prod : 𝜄 x ^ m ◦−◦ 𝜄 x ^ rounds go m

The definition of the go function is straightforward. To convince the type-checker that our
construction is linear, we only have to prove that it takes exactly𝑚 rounds to turn𝑚 into zero, the
inductive construction of prod follows directly via pattern matching and recursion.

4.4 Using a variable infinitely often
We can also draw multiplicities from other types than the natural numbers. To reflect infinite use
of some variable, we will in this section adapt the definition of supply exponentiation _^_ and
linear function types to take a conatural number as multiplicity. The conatural numbers N∞ can be
defined in Cubical Agda using guarded corecursion [4, 19]. Crucially, the conatural numbers have
a value ∞ : N∞ which is equal to its successor. This property allows us to derive the following
production, which captures that we can always take another copy of a supply with multiplicity ∞.

∞prod : (Δ : Supply)→ (Δ ^∞) ◦−◦ (Δ ⊗ (Δ ^∞))

Using our ∞ multiplicity, we can adequately give a linear type to a repeat function which
produces an infinite list from a given element 𝑥 : 𝐴.9

repeat : A -〈 ∞ 〉⊸ List A
repeat x = . x ::⊗ repeat x by ∞prod (𝜄 x)

The repeat function is defined like the usual repeat of Haskell, we only need to convince the
type-checker that we are using the specified resources using the derived production for∞. Similarly,
we can iterate a linear function on a given element 𝑥 , making again use of∞-many copies of 𝑥 .

iterate : (A ⊸ A)→ A -〈 ∞ 〉⊸ List A
iterate f x = . x ::⊗ (iterate f @〈 ∞ 〉 (f @ . x)) by∞prod (𝜄 x)

Note that using a variable an infinite number of times is different from using a variable without
any resource annotation (which we can do in our setting by not including it in our linear judgment,
as we have done for type 𝐵 in unfold2). The multiplicity ∞ requires that some variable really is
used infinitely often in a program.

5 Linear dependent programming
While we have made use of dependent types to devise our linear type systems, we have so far
not actually programmed with dependent types. We will demonstrate in this section that we can
seamlessly do this in our system. Since our linear type system lives in an ambient dependent type
theory, we actually have no problems to integrate dependent types, and can linearise these just like
9If we were working in a lazy language in which∞ is represented by a non-terminating program yielding suc (suc (. . .)),
we could also write repeat and iterate as instances of unfold2 as the rounds function would then compute∞ for us.
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we linearised non-dependent data types. In particular, all definitions and constructions for linear
functions introduced in Sections 2.4 and 4.1 generalise to dependently typed functions. For example,
we can derive an application operator for linear functions from type 𝐴 to a type 𝐵 dependent on 𝐴

in exactly the same way as the non-dependent operator.

_@_ : ((x : A) → 𝜄 x ⊗ Δ0 ⊩ B x)→ ((a , _) : Δ1 ⊩ A)→ Δ0 ⊗ Δ1 ⊩ B a
f @ (a , 𝛿) = f a by swap Δ0 (𝜄 a) ◦ id Δ0 ⊗𝑓 𝛿

Using dependent types when programming allows us to guarantee that certain programs are
linear, in contrast to their non-dependent relatives. Consider for example the usual zip function for
lists, which might drop elements if the input lists have differing lengths. This case can be excluded
by using a dependent type to capture length-indexed lists, usually called vectors or Vec in short.
We can work with vectors in the same way as lists, and after imposing productions similar to the
ones for lists in Section 3.1, we can define a linear zip in the usual way.

zip : {n : N} (xs : Vec A n) → (ys : Vec B n) → 𝜄 ys ⊗ 𝜄 xs ⊩ Vec (A × B) n
zip {zero} [] [] = []◦ by opl[]’ ⊗𝑓 opl[]’
zip {suc n} (x :: xs) (y :: ys) = (. x ,⊗ . y) ::⊗ zip xs ys

6 Discussion & related work
We will in the following recapitulate our approach and situate it in the rich landscape of dependent
linear type theories. We will sketch the semantics of our theory (without going into any detail)
as this will make it easier to explain how the construction can be added in the absence of higher
inductive types in Section 6.1, and to compare it with related work in Section 6.2.

6.1 Sketching the semantics
The basic idea behind our linear type system was to deeply embed the rules of linear logic into
dependent type theory. Semantically, we can trace this as follows: given a model of dependent
type theory (for example categories with families [12]), we equip each context Γ with a symmetric
monoidal category SupplyΓ whose hom-set is given by the productions _◦−◦_. The monoidal unit of
SupplyΓ is given by ⋄, and _⊗_ acts as the bifunctor of Γ with its action on morphisms captured by
⊗𝑓 . We then embed any term of the host theory into our linear logic using a natural transformation
𝜄, which is moreover strong monoidal with respect to products of types in the host theory and
SupplyΓ . The structural morphisms of a strong monoidal functor are called lax and oplax, which
explains the names we gave to the productions corresponding to each constructor of a data type.
This semantic picture of course requires that we equate certain productions, for example, that

composition of productions is associative. However, in practice we do not have to worry about
equalities between productions, since we only care about the existence of some production to derive
a linear judgment. This means we can simply stipulate the construction rules for supplies and
productions using a data type. For example, in standard Agda we can define supplies with three
constructors for the empty supply, the singleton supply and the union of two supplies.

data Supply : Type where
⋄ : Supply
𝜄 : {A : Type} (a : A)→ Supply
_⊗_ : Supply → Supply→ Supply

For the productions, we have to introduce additional constructors on top of the ones of the data
type given in Section 2.2 since the stipulated union of supplies ⊗ does not satisfy commutativity,
associativity and unital laws any more. The following set of rules is sufficient to characterise
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the structural productions used in this paper, and the productions for specific data types can be
appended to the following data type as before.

data _◦−◦_ : Supply → Supply→ Type where
id : ∀ Δ → Δ ◦−◦ Δ

_◦_ : ∀ {Δ0 Δ1 Δ2}→ Δ1 ◦−◦ Δ2 → Δ0 ◦−◦ Δ1 → Δ0 ◦−◦ Δ2
_⊗𝑓 _ : ∀ {Δ0 Δ1 Δ2 Δ3}→ Δ0 ◦−◦ Δ1 → Δ2 ◦−◦ Δ3 → (Δ0 ⊗ Δ2) ◦−◦ (Δ1 ⊗ Δ3)
unitr : ∀ Δ → Δ ⊗ ⋄ ◦−◦ Δ

unitr’ : ∀ Δ → Δ ◦−◦ Δ ⊗ ⋄
swap : ∀ Δ0 Δ1 → Δ0 ⊗ Δ1 ◦−◦ Δ1 ⊗ Δ0
assoc : ∀ Δ0 Δ1 Δ2 → (Δ0 ⊗ Δ1) ⊗ Δ2 ◦−◦ Δ0 ⊗ (Δ1 ⊗ Δ2)

The types Supply and _◦−◦_ can similarly be added to other dependently typed systems such as
Rocq [2] or Lean [11], and thereby enable linear reasoning in these systems.

Our approach crucially relies on dependent pattern matching whenever we derive some witness
of the linear judgment Δ ⊩ 𝐴. Adding our system to, e.g., Haskell means we either have to stipulate
linear elimination rules, or make changes to the type-checker.

6.2 Related work
There has been a wide range of work combining linear with dependent type theories, in the
following we compare our approach with the main strands of work.

Linear dependent type theories. Our theory follows the insight of McBride [18] that we need not
be concerned about the occurrence of terms in types when tracking variable use. This makes it
easier to combine dependent and linear types, and is more expressive than other theories which
distinguish between intuitionistic (i.e., dependent) and linear variables, where dependent types
cannot mention linear variables [6, 14, 26]. Our system is hence more similar to theories which
ignore variable use in types such as Quantitative Type Theory (QTT) of Atkey [1], implemented as
Idris by Brady [5], or Graded Modal Type Theory (GMTT) implemented as Granule by Orchard et al.
[21]. These systems equip the structural rules of dependent type theory with multiplicities, which
are elements of some resource algebra. In our theory, we follow the insight of Pédrot [22, 23] that
we can introduce linearity in dependent type theory through the Dialectica construction, which in
the case of function types equips the output with copies of the inputs. This allows us to use types of
the underlying theory such as the natural number type as a resource algebra, which means we can
dynamically compute multiplicities to capture if the use of some input depends on another input.
On the other hand, our system does not offer an unrestricted multiplicity akin to, e.g., the

multiplicity 𝜔 in Idris. In our system, we always have to precisely state how often some variable is
to be used. Furthermore, our system does not offer linear function types, in contrast to QTT and
GMTT. We work around this fact by using functions of the host theory to capture higher-order
functions, which is surprisingly practical as we have seen in our programming examples. However,
this cannot resolve the fact that we do not have linear higher-order functions and cannot reason
about function variables as resources—e.g., in the map function from Section 3.3, we might want to
represent how often the mapped function is used, but this is not possible in our present system. In
summary, our system offers some features that QTT and GMTT do not possess, but is more limited
in other ways.

Dynamic multiplicities. Similar features to our dynamic multiplicities are offered by the index
terms of dℓPCF developed by Dal Lago and Gaboardi [8], which is a dependent linear type system
for PCF [24]. Index terms can be build using (partial) functions and can thereby compute how often
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a program uses some argument. The set of functions that can be used to compute an index term is
a parameter to their type system to take into account a trade-off between expressivity of index
terms and undecidability of the typing relation. Something similar emerged in our setting: when
deriving compose in Section 4.1, we had to give an explicit proof of an exponentiation law for _^_.
Since equality of open terms of the natural numbers is undecidable, we also have in this sense an
undecidable type system. We can however always carry out manual proof work to establish that
some program is of a given type.

The type system of Dal Lago and Gaboardi [8] was developed to capture computational complex-
ity, which is a different objective from ours. For example, the types of dℓPCF allow for specifying the
number of evaluation steps of a function between the natural numbers. In our system, the natural
numbers are not considered resources since they only consist of constructor symbols. Instead, we
are concerned with the uses of variables of some collection of base types. Furthermore, our base
theory is a (total) dependent type theory with data types such as lists, and our productions explain
how such data types can be used in a linear setting.
Dal Lago and Gaboardi prove relative completeness of their type system, which states that any

reducing term 𝑡 can be typed in their system with some index term which is smaller than the
number of reductions used for 𝑡 by Krivine’s machine [15]. We expect that in our system, it is
also the case that any program can be given a linear type since the language we use to compute
multiplicities is the same language in which we program, but more work is necessary to establish
such a result. In general, more research is necessary to understand the precise relationship between
dℓPCF and our system, which is blurred by the fact that both type systems have been developed on
top of different programming languages.

7 Conclusions & future work
We have added a linear type system to dependent type theory by leaving its structural rules
unchanged, but instead deeply embedding the rules of linear logic. Programming in this system
is practical, and we can devise programs the same way as we would in any other functional
language. Like systems which make their typing rules substructural using a resource algebra—such
as Linear Haskell [3], Quantitative Type Theory [1] or Graded Modal Type Theory [21]—we can
write functions that are polymorphic in the multiplicity of some variable. But in contrast to these
systems, our system has the advantage that we can compute multiplicities dynamically, which
enables precise typing of functions which require some number of copies of a variable depending
on some other variables.
Our approach has limitations, however: the production type has to be extended for any data

type that we are using; productions which justified linearity of our programs had to be constructed
manually; and we do not have linear dependent function types and a multiplicity for unrestricted
use. In the following we discuss how these issues can be addressed, and point to some other lines
of future work.

Deriving productions automatically. While we could program in our system in a usual functional
way, we had to manually construct productions to convince the type-checker that we have indeed
used the presumed resources. Most of the productions are straightforward to derive as they were just
chaining together constructor productions, unital and commutativity laws and reassociations. It is
hence natural to devise a tactic using Agda meta-programming which constructs such productions
automatically. A simple ring solver which normalises supplies to lists of variables, using oplax
productions for term constructors where necessary, would be enough to find that most of the
programs in this paper are linear. Further study is needed to see which class of productions is
decidable, and if we have a practical tactic to also derive productions involving the congruence ⊗𝑓 .
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Furthermore, it is tedious to extend the type of productions with constructors for any data type
that one introduces. It would be convenient if this can be carried out automatically using Agda
meta-programming.

Dependent function spaces and unrestricted variable use. The system we have presented has no
support for linear higher-order functions. In order to add linear function spaces to our theory, we
need to close the symmetric monoidal categories that we equip our type theory with. Furthermore,
we need a variable abstraction principle for supplies, which requires changing the host dependent
type theory. The author has work in progress to this effect. One prospect of introducing linear
function spaces is that we can also keep track of how often some function variable is used. For
example, we could represent in the type of map from Section 3.3 that the mapped function is used
as often as the given list is long.
We can also add an exponential comonad to our categories, which would allow us to freely

drop and duplicate supplies which are annotated with a bang ! operator. This would give us an
equivalent of the multiplicity 𝜔 from Idris [5].

Integrating other substructural logics. We expect that the approach of deeply embedding the
structural rules of some logic in dependent type theory is useful beyond linear logic. We can for
instance have an affine dependent type system by adding contraction to our production data type.
Further study is needed to study if all substructural logics can be integrated into type theory with
the present approach.

Dynamic multiplicities in the compiler. Another big prospect of linear type systems is that they
make the compiler’s life easier to find efficient ways to execute a program. This is not at all leveraged
by the present approach since the compiler of Agda does not know about the resource annotations
that we have made. Further research is needed to understand how a compiler can make use of
dynamic multiplicities when constructing an executable.

Complexity analysis. One intriguing application of linear type theories lies in analysing the
complexity of programs inside type theory. For instance, we can make the comparison function
used in our sorting algorithms in Section 3.4 resource-relevant, which means that we need to
give a sufficient supply of comparison operations to type a sorting program. This would give us a
way to reason about the complexity of different algorithms. Further study is needed to see if this
approach is practical to analyse the complexity of programs in the spirit of implicit complexity
theory [9, 10, 13, 27]. This would bring our approach also closer to the work of Dal Lago and
Gaboardi [8].
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