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Chapter 1

Introduction

In the seminal HoTT Book (2013), it is maintained that constructive reasoning
is not necessary when formalizing mathematics in homotopy type theory
(HoTT):

It is worth emphasizing that univalent foundations does not
require the use of constructive or intuitionistic logic.

— HoTT Book (2013):p. 13

The law of excluded middle (LEM) and the axiom of choice can be as-
sumed consistently in appropriate form and hence, HoTT is not committed
to constructive mathematics. Since the backbone of HoTT is intuitionistic type
theory developed by Per Martin-Löf, the question arises which repercussions
the combination of an intuitionistic formal theory with LEM has for the
philosophy of mathematics — the LEM has been the bone of contention for
intuitionistic mathematicians from the beginning and led to the development
of a distinctively anti-realist stance on the nature of mathematics, which
seems in conflict with employing the LEM. This question provided the start-
ing point for this thesis to investigate the different notions of constructivity
used in HoTT and how classical reasoning relates to these notions.

It is uncontroversial among many mathematicians who find the law of
excluded middle not problematic that nevertheless, a constructive proof is
preferable to a proof not yielding the witness of an existential or disjunctive
statement. This view is shared by some of the researchers working on
constructive mathematics, this pragmatic position has been termed “liberal
constructivism” in the literature by Billinge (2003). The roots of this liberal
standpoint can be seen to go back to Errett Bishop, who revived constructive
mathematics in Bishop (1967) by showing that constructive reasoning does
not have to be cumbersome. Bishop maintained that using the LEM where
necessary is not incoherent, but did not present a philosophy of mathematics
underpinning his approach, as Billinge attests. The author is not aware of a
systematic account that explains what liberal constructivism means for the
semantics, epistemology and ontology of mathematics. In particular, such an
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account has to answer the following questions: Is the constructively proven
part and the classically proven part of mathematics about the same subject
matter? How is the status of constructively proven theorems different from
theorems that are only classically valid?

When answering these questions, one has to lay down how the logical
constants are understood. In the intuitionistic tradition, the meaning of an
expression is determined by its use, whereas classically minded logicians
specify the meaning of the logical constants by investigating the conditions
under which they are true. A reconciliation of both views seems necessary
when employing the law of excluded middle in an intuitionistic formal
system.

In order to formulate such a reconciliation we need to understand what
has changed since the initial development of intuitionistic logic by Heyting
and Kolmogorov. We will see in the course of this thesis that intuitionistic
type theory has distinctively more features than what is commonly called
intuitionistic logic — the HoTT Book (2013) introduces for this purpose the
distinction between constructivity in the “algorithmic” sense and constructiv-
ity in the “intuitionistic” sense. We will argue that algorithmic constructivity
can be seen as standing in the tradition of the intuitionistic approach to
logic, but also introduces new concepts that cannot be explained by the BHK
meaning explanations of intuitionistic logic. In particular, modern construc-
tive type theory treats proofs as algorithms and assigns them a central role
in the system as first-order objects. Furthermore, intuitionistic type theory
presents a highly intricate treatment of identity. This treatment of identity
remains mysterious to this day, we want to highlight the features of it and
appreciate why they come unexpected even for the creator of intuitionistic
type theory, Per Martin-Löf.

Both intuitionists and realists are faced with a fundamental problem:
Intuitionists need to explain how subjective mental constructions can be
communicated intersubjectively and how mathematics is so successful if it is
solely a product of the mind, whereas realists need to explain how it is that
we can interact with “abstract” entities. This thesis can be seen as trying the
reconcile intuitionistic methodology with a realists view on the semantics
of mathematics. We will not be able to argue for the realistic point of view
or solve the epistemological problems of realism, but hope to formulate a
convincing account to the semantics of mathematics. As reason to insist on
using realistic mathematics we are content with the fact that constructive
mathematics is not able to prove various theorems that seem intuitively
valid, and that constructive mathematics might be too weak to carry out all
work in the empirical sciences1.

In liberal constructivism, we want to combine the best of both worlds —

1 See, for example, Hellman (1993a); Hellman (1993b). More recently, Davies (2003) has shown
that large parts of quantum mechanics can indeed be carried out in a constructive setting —
it seems like an open question if classical reasoning is necessary in the sciences.
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1 .1 outline

to use constructive reasoning when possible, and allow for the use of the law
of excluded middle where necessary. Crucially, we want that both reasoning
principles are possible in the same system, in contrast to Davies (2005), who
has argued that classical and constructive reasoning are both coherent, but
should be carried out in different frameworks. A pluralism of frameworks is
unsatisfactory for an all-encompassing philosophy of mathematics, since we
want a “unity of mathematical reasoning” (Tait, 1983:p. 173). Our proposal
is related to Tait’s account:

[...] a critique of the intuitionistic conception of meaning and
logic leads, I think, to a promising conception of mathematics on
the basis of which these difficulties are resolved and according
to which constructive mathematics appears as a part of classical
mathematics rather than as a separate science dealing with an
entirely disparate subject matter.

— Tait (1983):p. 173

In the account that we will present, classical mathematics rather appears
as a part of constructive mathematics: Since we adopt the intuitionistic
account to the meaning of the logical constants, classical theorems are those
whose proofs lack computational content. We take the formal machinery
developed by intuitionism and collapse its constructive character when
reasoning classically. It is open for debate if our explanation of what this
means for the semantics of mathematics is satisfactory.

1.1 Outline

In Chapter 2, we will present all formal tools that we will use throughout the
thesis. We will highlight the juxtaposition of judgements and propositions
that is integral to intuitionistic type theory. We will explain the intuitionistic
conception of propositions and contrast this with the classical conception
of propositions, which can also be reflected in HoTT. Finally, we will get to
know the peculiar realization of equality in HoTT.

Afterwards, we will take a closer look at the development of intuitionistic
logic in Chapter 3. We will trace the history of intuitionism and see how logic
was conceived in this school of thought. We will highlight the difference
between formal systems and meaning explanations thereof to understand
the relation between the BHK meaning explanations and intuitionistic logic.

Martin-Löf’s intuitionistic type theory was initially developed without
meaning explanations, only in 1982 we can find a first justification of the
system. Chapter 4 is devoted to tracing Martin-Löf’s meaning explanations
and giving them a modern disguise for HoTT. We will close with highlighting
some connections to other developments in proof theory.

Crucially, the informal justification of type theory invalidates the charac-
teristics of identity in intensional type theory, which is at the core of HoTT.
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1 .2 open problems

There are several attempts to resolve this problem, we will introduce them
in Chapter 5 and see that no attempt is quite satisfactory for explaining the
constructive character of identity in HoTT. We will not be able to formu-
late such a an account as well, but hint at what is required to formulate a
satisfying solution.

The final Chapter 6 is devoted to sketching a liberal constructivists
philosophy of mathematics. In particular, we will develop a semantical
theory that does justice to the importance of constructive proofs while still
allowing for the application of the law of excluded middle. We will see which
form of the LEM can be used in HoTT and spell out what the assumption of
a determinate mathematical universe means for the meaning explanations
of intuitionistic type theory.

1.2 Open Problems

The expositions in this thesis seldom commit to one solution of the afore-
mentioned problems, the main contribution should be considered in the fact
that these problems are pointed out. The most prevalent problem is that
intuitionistic type theory has been developed with an the inferentialistic
understanding of the logical constants, while an application of the law of
excluded middle seems to ask for a truth-conditional take on semantics.
Bridging what could be considered “truthmaker” semantics with truth-
conditional semantics could not be carried out in this thesis, but we hope
that the groundwork for such a bridge has been laid. A unified semantical
theory is necessary if HoTT wants to claim a foundational status and allow
for the LEM where necessary. The author is not aware of an issue that would
fundamentally impede the development of a coherent theory of meaning
for liberal constructivism, but there certainly is an acute need for more
explication.

Another issue that we could not resolve is the fact that identity in in-
tensional type theory remains somewhat mysterious. The homotopy inter-
pretation of identity is very fruitful and highly interesting, but falls short
of justifying identity as a logical constant. Should we take literal the spa-
tial notions of the homotopy interpretation? Or can we develop a different
understanding that does justice to the intricate structure of identity while
remaining “logical”, in a sense to be spelled out?

Is the present project located in the philosophy of mathematics or in
the philosophy of logic? An intuitionist might say that this does not make
any difference, since logic is just a very general part of mathematics. Since
we are realists and maintain that the mathematical expressions of HoTT
refer, whereas the logical expressions do not refer, we face the challenge of
drawing a meaningful line between logic and mathematics. The conflation
of logical and mathematical notions is what makes intuitionistic type theory
so powerful, so we might have to adapt our understanding of what discerns
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1 .2 open problems

logic from mathematics in this context.
These are only the most blatant problems, HoTT provides a plenitude of

highly interesting new ideas that require further investigation. Remarkably,
in the debate on whether HoTT can serve as a foundation for mathematics,
held, e.g., by Ladyman and Presnell (2016a) and Tsementzis (2017a), its
constructive nature has so far not been a matter of concern. A mathematical
foundation should allow for classical reasoning where necessary, this thesis
can be seen as an assurance that this is unlikely to be an impediment for
HoTT becoming an all-encompassing mathematical foundation.
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Chapter 2

Judgements and Propositions

The basic entities in intuitionistic type theory are the eponymous types.
A type is understood as a structurally defined collection that yields “no
surprises”1: When introducing a type, it should be evident if an element is an
inhabitant of a type or not. In contrast to set theory, where the membership
of some element in a set needs to be proven explicitly, the membership of
some term x in a type A, denoted x : A, does not require the construction
of an intricate proof. Consequently, the statement x : A is not considered
a proposition in type theory, but instead called a judgment. In particular,
we cannot build more complex statements from judgements, for example,
¬(x : A) is a meaningless expression in HoTT. We only state a judgement if
it is the case, and we do not give a proof of a judgement since it is evident,
which we will explicate by requiring that judgements can be decided by a
terminating algorithm. Asserting that a judgment is the case is also called a
demonstration.

Membership of a term in a type is not the only judgment expressible
in intuitionistic type theory, another important judgment is the postulation
of an equality, aptly called judgmental equality. We will introduce all four
kinds of judgments devised by Per Martin-Löf in Section 2.1. We will then
turn to the understanding of propositions in type theory2 in Section 2.2,
where we will also introduce all types that are used to represent the logical
constants. In intuitionistic type theory, propositions and proofs thereof are
first-order mathematical objects on the same level as mathematical objects
such as the natural numbers. We introduce how the natural numbers are
represented in HoTT in Section 2.3. The aforementioned judgmental equality
is a weak identity that only works on the level of syntax, identity between

1 This is related to structural definitions most prevalent in category theory. The relevance
of these have been brought to the philosophical discourse, e.g., by Awodey (1996) and
McLarty (1988).

2 We will call the common core of Martin-Löf’s intuitionistic type theory, as presented in
Martin-Löf (1975), Martin-Löf (1982) and Martin-Löf (1984), and which is used in HoTT
Book (2013), simply “type theory” in the following, ignorant of other type theories such as
Russell’s ramified theory of types.
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2 .1 judgements

mathematical objects can be expressed as a proposition in HoTT by means
of introducing a special type. We will turn to the exposition of this identity
type in Section 2.4 and highlight the differences between judgmental and
propositional equality in Section 2.5. Equipped with this fine-grained han-
dling of equality, we will return to our discussion of propositions and see
how we can recover a “classical” understanding of propositions in HoTT in
Section 2.6. We will close this chapter with introducing univalence, one of
the novel features of HoTT, in Section 2.7.

2.1 Judgements

The basic mathematical statements expressible in Martin-Löf’s type theory
are judgments. In Martin-Löf (1982), we can find the first comprehensive
exposition of the four kinds of judgments. If a proposition P is proved to be
true, we will have a judgment “P is true”, signifying that the proposition
has been proved. The idea that the assertion of a proposition is different
from a proposition has already been formulated by Arend Heyting:

Die Behauptung einer Aussage ist selbst wieder nicht eine Aus-
sage.

(The assertion of a proposition is itself not a proposition.)

— Heyting (1931):p. 113

Martin-Löf (1987) gives a detailed account of the etymology and philo-
sophical significance of judgments. We will only give an abridged account
of the concept here and will deviate from Martin-Löf in a crucial point: If a
judgment is valid, it should be evident — hence, we do not give proofs for a
judgment, but can only require self-explanatory demonstrations. In explain-
ing what “evident” means, Martin-Löf (1987) draws from phenomenological
traditions and emphasizes that evidence is a highly subjective notion. Since
the subjectivity of intuitionistic mathematics is what we want to depart
from in Chapter 6, we want to take another conception of evident statement
as basis: Judgments should be decidable by a computer. This means that
in a finite time, a computer can check if a judgment holds by following a
fixed and unequivocal set of instructions. What more can we desire from a
criterion of evidence, but that a mindless machine can verify it? In particular,
this gives us an objective specification of evidence.

We can make the following four kinds of judgments in intuitionistic type
theory:

• A type (A is a type)

• a : A (a is a term of type A)

• A ≡ B (A and B are equal types)

7



2 .1 judgements

• a ≡ b (a and b are equal terms of type A) 3

The first judgment states that A is a valid type, which corresponds to
it being well-formed according to the type formation rules. The second
statement corresponds to the statement “A is true”, which we can only
establish by giving an object a that acts as a proof of A (we will discuss the
interpretation of types as propositions in Section 2.2). In the literature on
intuitionistic type theory, the notions “element”, “term” and “inhabitant”
are used more or less interchangeably for entities such as a. In general, we
will refrain from using “element” in this context to emphasize the difference
to set theory. The word “term” has a distinctively syntactical character, we
will often use it due to its conciseness. This should not introduce some
juxtaposition to types as less syntactical entities, as types carry the same
semantic weight as terms (where the exact weight of both terms and types
depends on the underlying meaning theory as we will see in the course of
this thesis). The most apt notion we will try to use when doing conceptual
work is “inhabitant”.4

The two latter judgments introduce equalities between types and terms,
respectively, which are commonly called judgemental equalities. The meaning
explanations which we will introduce in Chapter 4 will ensure that judg-
mental equality for both types and terms is an equivalence relation. In this
chapter, we will also make precise how a judgment can be demonstrated.
For example, the judgments s(0) : N and s(s(0)) ≡ s(s(0), s(0)) can be
demonstrated automatically.

In the course of building up a mathematical theory, a mathematician will
utter more and more judgments. This ordered list of judgments builds up
the context. For example, we can postulate the following context:

A type, a : A, B type, A ≡ B, b ≡ a

Note that the above assertions extend the judgmental equality relation:
In b ≡ a, the definiendum b is defined to be equal to the definiens a, which
we already know to be an inhabitant of A. We may sometimes emphasize
a definition by writing b :≡ a, but in general, HoTT does not distinguish
between definiens and definiendum. For example, both A and B have been
introduced before stating A ≡ B.

We may use Γ as a variable signifying an arbitrary context. In a context,
we may establish that another judgment holds, for example:

Γ ` b : B
3 We follow the symbol convention of the HoTT Book (2013). In his original presentation, Per

Martin-Löf writes A = B for A ≡ B and a = b : A for a ≡ b. Since both terms always belong
to the same unique type, we can omit the type information in judgmental equality.

4 In the exploration of HoTT as a foundation for mathematics, Ladyman and Presnell (2016a)
have argued for using “token” for inhabitants of a type. We think that the analogy to the
philosophy of language is misleading, since under this reading, both 2 and 4 are tokens of
the same kind, which suggests that the difference between 2 and 4 is only one of instantiation
— but obviously, both expressions have a very different meaning.
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2 .2 propositions

If we take the above list of judgments as context Γ, this is a correct
assertion. Note that ` is not understood as the derivability predicate as
common in logic today. Rather, it is the postulation of an assertion, which
also stands in the intuitionistic tradition of Heyting:

Dass eine Aufgabe gelöst ist, wird angegeben, indem man das
Zeichen ` davor setzt; eine Formel, die diese Zeichen enthält,
stellt keine Aufgabe mehr dar, sondern eine Mitteilung über die
Lösung einer Aufgabe.

(The solution of a task is indicated by prepending the sign `; a formula
containing this sign is not a task anymore, but the announcement of
the solution of a task.)

— Heyting (1934):p. 14

2.2 Propositions

Under the intuitionistic view, a proposition is defined by laying down what
counts as a proof of the proposition, and a proposition is true if a proof for it
can be given. Hence, truth and provability are conflated (remember that we
will consider how a more classical conception of truth can be incorporated in
HoTT in Chapter 6). While under the classical conception, a proposition only
has a truth value, there are in general many different proofs of a proposition
in intuitionistic systems. Consequently, a proposition is identified with the
set of its proofs in most constructive formal systems, as we can find for
example in Tait:

There are, at first blush, two kinds of construction involved:
constructions of proofs of some proposition and constructions of
objects of some type. But I will argue that, from the point of view
of foundations of mathematics, there is no difference between
the two notions. A proposition may be regarded as a type of
object, namely the type of its proofs. Conversely, a type A may be
regarded as a proposition, namely the proposition whose proofs
are the objects of type A. So a proposition A is true just in case
there is an object of type A.

— Tait (1994):p. 51

In Martin-Löf’s intuitionistic type theory, some of the proofs of a propo-
sition have a distinct character, namely the canonical proofs. We will take a
closer look at the canonical proofs in Chapter 4 and note for the time being
that Martin-Löf identifies a proposition with the set of its canonical forms:

If we take seriously the idea that a proposition is defined by
laying down how its canonical proofs are formed (as in the

9



2 .2 propositions

second table above) and accept that a set is defined by prescribing
how its canonical elements are formed, then it is clear that it
would only lead to unnecessary duplication to keep the notions
of proposition and set (and the associated notions of proof of
a proposition and element of a set) apart. Instead, we simply
identify them, that is, treat them as one and the same notion. This
is the formulae-as-types (propositions-as-sets) interpretation on
which intuitionistic type theory is based.

— Martin-Löf (1984):p. 13

We will get to know how the canonical proofs of the logical constants
can be built in Section 2.2.2. Before, we need to become acquainted with
dependent types, which can be seen to represent predicates in intuitionistic
type theory in Section 2.2.1.

2.2.1 Dependent types

Under the classical view, a predicate maps each object of a collection to a
truth value. In intuitionistic type theory, a proposition is not conceived as a
truth-apt sentence, but as the set of its proofs. Consequently, a predicate in
type theory maps each object of a collection to a collection of objects. More
formally, it maps any inhabitant of a type to a distinct type. For example,
Even(n) may express the predicate of being an even number. We can write

n : N ` Even(n) type,

to denote that for any n : N, Even(n) is a valid type. We may also denote
a dependent type as a function Even : N→ U , where the function arrow→
and the universe U will be explained below in Section 2.2.2 and Section 2.7.

Under appropriate definition, Even(n) will contain at most one inhabitant,
namely, when the given n is even. Hence, Even can be seen to just convey a
classical proposition as will explained in Section 2.6. In general, a dependent
type contains more structure. For example, if we want to represent a date in
type theory, we can express the collection of all months with type M. The
number of days in a month depends on the respective month, which we can
represent with a type dependency:

m : M ` d : D(m)

For example, the type D(1) representing January will contain the inhabi-
tant 31D(1), whereas February, represented by D(2), does not contain such
an inhabitant. Even though both types D(1) and D(2) contain a term for the
first day of the month, the terms are different: 1D(1) : D(1) is distinct from
1D(2) : D(2). Inhabitants of different types cannot be investigated in terms of
judgmental or propositional equality, they simply live in different realms.
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2 .2 propositions

The intuitionistic reading of predicates can be extended to relations, for
example, a dependent type R : (A→ A)→ U can be considered a reflexive
relation if we can prove that for all x : A, there is an inhabitant of R(x, x).
We will now see how the logical constants are captured in HoTT.

2.2.2 The logical constants in HoTT

In proof-relevant systems, defining the meaning of the logical constants
amounts to laying down how proofs of propositions containing the con-
stants can be built. Since proofs and objects are identified, the rules for
constructing elements of a type are seen to correspond to the usual rules
of inference for propositions in a deductive calculus. In this section, we
will introduce the basic types that will represent conjunction, disjunction,
implication and universal and existential quantification. We will investigate
the exact correspondence between the type formers and the logical constants
in Section 3.2 and Section 4.1.

We will prototypically introduce the dependent function type, which can
be seen to introduce universal quantification in HoTT. The type formation
rule specifies how well-formed types look, in case of the dependent function
type Π we assume that well-formed types A and B(x) are given to introduce
a well-formed dependent function type:

Γ ` A type Γ, x : A ` B type
Γ ` ∏x:A B(x) type

(Π-formation)

The introduction rule specifies how inhabitants of a type can be built:

Γ, x : A ` b : B
Γ ` λ(x : A).b : ∏x:A B(x)

(Π-introduction)

An inhabitant of the dependent function type should produce for any
given x : A an inhabitant of B(x). When reading B(x) as a proposition, this
confirms with the reading of the dependent function type as universal quan-
tification. Note that we have left implicit that A type etc., in the following,
we will mostly assume that all types are well-formed.

The elimination rule defines how we may use inhabitants defined by the
introduction rules. In the case of the dependent function type, we may want
to receive the value of B(x) for a given x, where B[a/x] indicates that we
have replaced all occurrences of x in B with a5:

Γ ` f : ∏x:A B(x) Γ ` a : A
Γ ` f (a) : B[a/x]

(Π-elimination)

The computation rules relate the introduction and elimination rule by
defining how the elimination rule operates on the inhabitants generated by

5 The formal definition of substitution can be found in HoTT Book (2013):A.2.2.
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2 .2 propositions

the introduction rules. For the dependent function type, we will replace any
occurrence of x in b by a when applying a function:

Γ, x : A ` b : B Γ ` a : A
Γ ` (λ(x : A).b)(a) ≡ b[a/x] : B[a/x]

(Π-computation)

Note that we have extended the judgmental equality relation with the
above rule: Whenever an expression contains a function that is supplied
with an argument, we can evaluate the function. This turns judgmental
equality from a symmetric relation to something directed, as the evaluation
of a function will in general not be reversed. We will see in Chapter 4 how
this notion of direction gives rise to view judgmental equality as a reduction
relation.

In case type B does not depend on the value of x, we can recover classical
functions. A function produces for any x : A an inhabitant of B where B
is now a constant type independent of the given x. We can introduce the
classical notation for functions:

A→ B :≡∏
x:A

B

In a similar fashion to the dependent function type, we can introduce
the dependent pair type to capture existential quantification:

∑
x:A

B(x)

Elements of such a type are pairs (a, b), where a : A can be seen as the
witness of the proposition expressed by B(x) and b as the proof that a is
indeed a witness, i.e., we have b : B(a). In the following, the scope of the
dependent function and pair type will be until the rest of the expression,
unless contained with parentheses.

If the type B is constant for any given x : A, we can recover the cartesian
product type from the dependent pair type:

A× B :≡ ∑
x:A

B

Since B does not depend on A, an inhabitant of A× B is simply a pair
(a, b) with a : A and b : B.

The last type missing for an account of the logical constants is one that
captures disjunction. The type representing disjunction is commonly called
coproduct, since in categorical semantics of type theory, it is dual to the
product. We write coproducts as follows:

A + B

Inhabitants of A + B are either of type A or type B, and we want to
keep track of which type has been injected. This is done by introducing two
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distinct introduction rules for inl(a) : A + B if a : A and inr(b) : A + B if
b : B.

We have seen above for the dependent function type how a lambda term
λ(x : A).b is dispatched with a computation rule. Term constructors that will
be dispatched by computation rules are in general called recursors. Recursors
allow for concise definition of functions since they specify what should
happen to any possible inhabitant of a type. In the case of the coproduct,
when defining a function that takes as input A + B, we need to give a
function za that specifies what happens if we are given an inhabitant of A,
and a function zb that specifies when given an inhabitant of B. The recursor
is then evaluated as follows:

R+(inl(a), za, zb) :≡ za(a)
R+(inr(b), za, zb) :≡ zb(b)

We refer to HoTT Book (2013):A.2 for a concise definition of all rules of
HoTT.

In addition to types capturing the logical constants, we will also want to
represent truth and falsity in the system. Since in intuitionistic type theory,
a true proposition is one that is inhabited, falsity is represented with a type
that has no constructors:

0

The elimination principle for the empty type states that given an inhabitant
of 0, we can construct an inhabitant of any type. Hence, ex falso sequitur
quodlibet is a valid inference rule in intuitionistic type theory. As is common
in intuitionistic systems, negation is not a primitive logical constant, but
introduced by means of implication and negation:

¬A :≡ A→ 0

The dual to the empty type is the unit type:

1

The unit type has exactly one inhabitant ? : 1, and no other inhabitant.
We will explain in Section 2.6 how the unit type can be seen to reflect the
traditional understanding of a proposition as a simple truth value.

2.3 Natural Numbers

As we have seen in Section 2.2, proofs are treated just in the same way as
mathematical objects. In the intuitionistic tradition, logic and mathematics
are deeply intertwined and treated with the same tools. In this section, we
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will introduce how the prototypical mathematical object, the set of natural
numbers, is dealt with in HoTT. For this, we introduce N type and two
terms over the natural numbers, representing 0 and the successor function,
respectively:

0 : N

s : N→N

With these terms we can construct infinitely many inhabitants of the
natural numbers, e.g., the term s(s(0)) represents the natural number 2. In
order to define functions over the set of all natural numbers, we introduce
the following recursor:

RN(0, z0, zs) :≡ z0

RN(s(n), z0, zs) :≡ zs(n, RN(n, z0, zs))

The recursor for the natural number can be seen to embed induction:
Any primitive recursive function over the natural numbers can be defined
by stating the result for 0 and the result for s(n) for an arbitrary n. In
order to compute the result of the recursor for a number s(n), the result of
applying the recursor to the predecessor n is computed. This will be iterated
recursively until the base case for 0 is computed. For example, addition can
be formulated as follows:

add :≡ RN(λ(n : N).n, λ(n : N).λ(g : N→N).λ(m : N).s(g(m)))

This unfolds in the following natural definition of addition:

add(0, n) ≡ n
add(s(m), n) ≡ s(add(m, n))

In this way, all of arithmetic can be formalized in HoTT.

2.4 Propositional Equality

Judgmental equality, which we have introduced in Section 2.1, has a limited
power: All judgmental equalities need to be evident in the sense of being
demonstrable by a mechanical procedure. Mathematics, however, is full of
equality statements that are very much not evident. In order to capture
these propositional equalities, we will introduce a dedicated type. Under the
intuitionistic dogma, a proposition is identified with the collections of its
proofs, hence, we will have in general a set of proofs for identity. Since proofs
are first-order mathematical objects, we might again investigate the relation
among the identity proofs. This gives rise to a behaviour of identity that is
highly unfamiliar from a traditional perspective, which will occupy us in
Chapter 5.
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We have the following type representing identity between two inhabitants
a, b of type A:

IdA(a, b)

There is only one term constructor, which states that any element x : A
is identical to itself:

reflx : IdA(x, x)

On a first reading, this seems to suggest that there is only one inhabitant
of an identity type. However, the family of identity types is defined by the
term constructor above, and since an identity type depends on a, b and A,
there are in general multiple inhabitants of the identity type. This means
that we might have a proof of identity p : IdA(a, b) different from both refla
and reflb. Since proofs are again mathematical objects, we can investigate the
equality between p and refla by means of the following type:

IdIdA(a,b)(p, refla)

For example, if we consider the integers modulo 2, Z/2Z, as a groupoid,
we have non-trivial identity proofs: We have a proof p : IdZ/2Z(0, 2), but p is
not judgementally equal to both refl0 and refl2. However, we can identify all
proofs of equality on a propositional level for this specific type, e.g., we will
be able to provide an inhabitant of IdIdZ/2Z(0,2)(p, refl0).

In general, proofs of identity do not need to be propositionally equal. This
means that investigating identity between identity proofs can be continued
indefinitely which yields a very rich structure known in category theory as
an ∞-groupoid and in algebraic topology as a homotopy type.

Just like the elimination rules for the logical constants sketched in Section
2.2.2, there is an elimination rule for the identity type, commonly referred
to as the J-rule. The J-rule specifies how an identification p : IdA(x, y) of
two elements x, y : A may be used. If we have proven that an arbitrary
dependent type C(x) is inhabited for x, we expect that it is also inhabited
for y, since both terms are equal. In other words, we want that any type C
respects propositional equality. In general, the type C might not only depend
on x, but also refer to y and the identification p between both terms.

More precisely, the J-rule states that we only need to provide an element
of C for element x and the trivial self-identification:

c : ∏
x:A

C(x, x, reflx)

Then the J-rule ensures that C(x, y, p) holds for all x, y and proofs of
their equality p:

f : ∏
x,y:A

∏
p:IdA(x,y)

C(x, y, p)

The function f will yield the given proof c when only x is provided, i.e.,
we have the computation rule f (x, x, reflx) :≡ c(x). The homotopical reading
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of HoTT interprets the J-rule as path induction in a homotopy space, we will
explain this interpretation in Section 5.2.

When applying the J-rule, the type C(x, y, p) is sometimes called the
motive. For example, if we take as motive the type P(x) → P(y) for an
arbitrary dependent type P : A → U , we can prove indiscernibility of
identicals as follows: We can construct a function c : ∏x:A P(x)→ P(x) with
the identity function:

c :≡ λ(x : A).idP(x)

The J-rule then gives rise to the following function:

f : ∏
x,y:A

∏
p:IdA(x,y)

P(x)→ P(y)

Under the propositions-as-types interpretation, the function f expresses
the indiscernibility of identicals: Whenever we have a proof of x and y being
equal and know that P(x) holds, we also know that P(y) holds. Topologically,
this construction is known as transport.

One can quickly show that the J-rule ensures that propositional equality
is symmetric and transitive (HoTT Book, 2013:Lemma 2.1.1, Lemma 2.1.2),
reflexivity follows trivially from the existence of reflx for any x : A. Hence,
propositional equality is an equivalence relation as expected.

Of interest in the course of this thesis will be a variant of the J-rule which
is equivalent to the rule above. This variant is termed based path induction
in the HoTT Book (2013), since one of the endpoints of the identity path is
fixed. We formulate identity elimination for a fixed a : A and variable x : A.
This means that given a type family:

C : ∏
x:A

IdA(a, x)→ U

We need to construct a proof of C for the fixed element a and the trivial
self-identification:

c : C(a, refla),

Based path induction then yields a function that produces a witness of C
for any x : A that can be identified with a:

f : ∏
x:A

∏
p:IdA(a,x)

C(x, p)

In particular, if we apply f to the base point a, we will just retrieve the
constructed proof c of C for a, i.e., f (a, refla) :≡ c. Based path induction is
equivalent to path induction stated above (HoTT Book, 2013:Sect. 1.12.2).
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2.5 Equality, Revisited

We have seen two kinds of equality, judgmental equality in Section 2.1 and
propositional equality in Section 2.4. We want to further compare both
notions of equality in this section. Propositional equality has been charac-
terized as “internal”, in contrast to judgmental equality as an “external”
equality (Ladyman and Presnell, 2014). Indeed, propositional equality can
be seen as identifying mathematical objects, whereas judgmental equality is
generated by how the mathematician sets up the system. In more traditional
terms, we can regard judgmental equality as equality of sense, and proposi-
tional equality as equality of reference. The idea of associating the different
equalities with a Fregean distinction between intension/sense/meaning and
extension/reference/value can be already found in Martin-Löf’s expositions:

We then have four kinds of equality:

(1) ≡ or =de f .,

(2) A = B,

(3) a = b ∈ A,

(4) I(A, a, b).

Equality between objects is expressed in a judgement and must
be defined separately for each category, like the category sets,
as in (2), or the category of elements of a set, as in (3); (4) is
a proposition, whereas (1) is a mere stipulation, a relation be-
tween linguistic expressions. Note however that I(A, a, b) true is
a judgement, which will turn out to be equivalent to a = b ∈ A
(which is not to say that it has the same sense). (1) is intensional
(sameness of meaning), while (2), (3) and (4) are extensional
(equality between objects). As for Frege, elements a, b may have
different meanings, or be different methods, but have the same
value. For instance, we certainly have 22 = 2 + 2 ∈ N, but not
22 ≡ 2 + 2.

— Martin-Löf (1984):p. 59–60

However, in our presentation, which aligns with the HoTT Book (2013),
we conflate equalities (1) with (2) as judgmental equality between types and
(1) with (3) as judgmental equality between terms. Common to all these
equalities is that they solely rely on the comparison of symbols. Hence, we
can carry out a mechanic reduction process to decide ≡ for both terms and
types, as we will see in Chapter 4. As Martin-Löf points out, I(A, a, b) (in our
notation IdA(a, b)), is a proposition, whereas the assertion of a proposition
is a judgment, as discussed in Section 2.1.

From the modern perspective of HoTT, we have to revise the example
given by Martin-Löf in the quote above: We have 22 ≡ 2 + 2 as a judgmental
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equality. This is due to the fact that when unfolding the definition of expo-
nentiation and addition, both sides of the equation can be reduced to the
same syntactical expression, namely, the term representing 4. Arithmetical
statements with fixed numerals can always be decided. With this updated
knowledge of what counts as an evident equality, we can fully subscribe to
the following characterization of the two equalities by Martin-Löf:

Definitional equality ≡ is a relation between linguistic expres-
sions; it should not be confused with equality between objects
(sets, elements of a set etc.) which we denote =. Definitional
equality is the equivalence relation generated by abbreviatory
definitions, changes of bound variables and the principle of sub-
stituting equals for equals. Therefore it is decidable, but not in
the sense that a ≡ b ∨ ¬(a ≡ b) holds, simply because a ≡ b is
not a proposition in the sense of the present theory.

— Martin-Löf (1984):p. 31

Since we conflate definitional equality and the other intensional equal-
ities, we use judgmental equality, definitional equality and intensional equality
interchangeably. Judgmental equality implies propositional equality, e.g., if
we have a ≡ b for a, b : A, then we have IdA(a, b) witnessed by refla. This
goes well with the reading of ≡ being the equality of sense, since if the sense
of two expressions is the same, the reference of both expressions certainly
will have to be the same, as well.

Note that in general, a statement about arbitrary natural numbers cannot
be proven by means of judgemental equality. For example, commutativity
of addition needs to be proven by providing an inhabitant of the following
type:

∏
m,n

IdN(m + n, n + m)

In conclusion, propositional equality statements can be seen as those
statements requiring creative proof work, whereas judgmental equality is a
syntactical equality that can be taken care off by a machine. This provides a
neat demarcation between meaningful equalities of the form “a = b”, and
evident equalities of the form “a = a”. Frege posed the question of why
we are interested in equality statements if they just express something as
trivial as identity: Equalities that hold by definition are indeed trivial, but
identifying different presentations of the same structure is everything but
trivial and a worthwhile mathematical endeavour.

2.6 Mere Propositions and Propositional Truncation

Under the classical view, a proposition is a truth-apt sentence. In general,
types in HoTT are not only truth-apt, but might contain a plenitude of
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inhabitants. However, a class of types does resemble classically conceived
proposition: Types with at most one inhabitant. This is captured by the
following type, which characterizes all types that are mere propositions:

isProp(A) :≡ ∏
x,y:A

IdA(x, y)

Mere propositions have no inner structure since the identity type over x
and y is trivial. The collapse of the identity type is upwards-closed, i.e., the
identities between identity proofs of inhabitants of a mere proposition are
also trivial.

We can transform any type into a mere proposition, this transformation
is called propositional truncation. The truncated version of a type is denoted:

‖A‖

‖A‖ is inhabited if and only if the original type A is inhabited, and con-
tains no other inhabitants. Formally, every x : A is mapped into an element
|x| : ‖A‖. For any x, y : A we have Id‖A‖(|x|, |y|). Thereby, ‖A‖ contains
exactly one inhabitant iff A is inhabited, and no inhabitants otherwise.

Note that propositional truncation can be generalized to truncation of
the identity type at any level. If we require equality between two inhabitants
of a type to be a mere proposition, we recover classical sets. This generalizes
to homotopy n-types, which are introduced in HoTT Book (2013):Ch. 7. Inter-
estingly, truncation at any level induces a different extensional equality: If
we truncate all types to mere propositions, propositional equality amounts
to logical equivalence. Truncating all types to sets means that propositional
equality captures equinumerousity.

2.7 Universes and Univalence

Above, we have only stated A type if A was a well-formed type. This was a
simplification since in HoTT, every type lives in a universe. More specifically,
we have an infinite sequence of universes:

U0 : U1 : U2 : ...

Every type lives in one Ui. The universes are “cumulative” in the sense
that if A : Ui, then also A : Uj for all j > i. This means that every type is itself
inhabitant of infinitely many universes, in contrast to terms, which always
belong to one unique type. This should be seen as a primarily technical
feature of HoTT without great conceptual significance. In this work, we can
be content with leaving the index implicit and always writing A : U .

The universe can be seen as a “big” type in the sense of big categories
in category theory. In particular, HoTT is strictly predicative: There is no
universe containing itself. Consequently, there can be no function λ(i : N).Ui,

19



2 .7 universes and univalence

since we have no universe that could encompass such a function containing
all types (and itself in particular). The indices i are different from the type of
the natural numbers and can be seen as external to the mathematical objects
represented in HoTT.

A crucial new insight presented in the HoTT Book (2013) is the princi-
ple of univalence, which Vladimir Voevodsky devised after concepts from
homotopy theory. There has been considerable interest in the philosophical
repercussions of univalence, see for example Awodey (2014), Awodey (2018),
Ladyman and Presnell (2016b) and Tsementzis (2016). Univalence can be
seen to give formal justification to the dogma of mathematical structuralism:
Isomorphic objects can be identified. For example, type theory cannot dis-
tinguish between different isomorphic presentations of the natural numbers
such that problems in the style of Benacerraf (1965) cannot arise. Unfortu-
nately, we can only touch on the relevance of univalence for our undertakings
in Chapter 5, and will only give a technical exposition here. A self-contained
technical presentation of univalence can also be found in Escardó (2018).

As a first intuition, univalence can be seen to state that “isomorphic
objects might be identified”. The notion of isomorphism is generalized to
the notion of homotopy equivalence which is defined as follows:

(A ' B) :≡ ∑
f :A→B

∑
g,h:B→A

( f ◦ g ∼ idB)× (h ◦ f ∼ idA)

The notion ∼ used above can be seen to capture equality between func-
tions, stemming from homotopy theory: Two functions are considered homo-
topic if they can be continuously transformed into each other. For this, let
f , g : ∏x:A P(x) be two functions over the dependent type P : A→ U . Both
functions are then considered homotopic, f ∼ g, if the following holds:

( f ∼ g) :≡∏
x:A

IdP(x)( f (x), g(x))

The inhabitant of f ∼ g can be seen to be the continuous transformation,
since for any given x it shows how f and g can be identified.

For A and B being sets as defined above in Section 2.6, homotopy equiv-
alence boils down to the traditional definition of isomorphism. The more
cumbersome formulation above is used to solve some coherence problems
for types with more structure than sets, as there might be several ways to
prove an isomorphism between types more complex than sets. The formula-
tion of ' ensures that there is at most one witness of an equivalence.

In all flavours of intuitionistic type theory, propositional equality implies
equivalence, i.e., we can construct the following function:

idtoequiv : IdU (A, B)→ (A ' B)

The univalence axiom states that the converse also holds, i.e., that we
can conclude from the equivalence of two types that both types are equal:

ua : (A ' B)→ IdU (A, B)
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In particular, both functions induce an equivalence between equivalence
and identity, which leads to the following formulation of univalence:

IdU (A, B) ' (A ' B)

A universe U in which the above type is inhabited is said to be univalent,
i.e., univalence is a property of universes.

Univalence can be seen to establish a one-to-one mapping between
identity and equivalence — consequently, the identity type has to be as rich
in structure as equivalence between types. This means that there need to be
identity proofs different from trivial self-identifications to capture this rich
structure. Awodey concludes:

Rather than viewing it [the univalence axiom] as identifying
equivalent objects, and thus collapsing distinct objects, it is more
useful to regard it as expanding the notion of identity to that of
equivalence.

— Awodey (2014):p. 9

Crucially, it is not possible to construct a term ua in the version of type
theory presented in HoTT Book (2013). There is plentiful research effort on
devising a type theory were univalence is given a constructive character, i.e.,
where it is possible to construct a function ua. There are very auspicious
cubical type theories in which univalence holds as a theorem.
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Chapter 3

Constructive Logic

In the upcoming chapters, we will investigate Martin-Löf’s meaning expla-
nations and the purported view on the constructive content of proofs. To
put Martin-Löf’s work in context, we will sketch in this chapter the his-
toric development leading to the development of intuitionistic type theory.
As the name suggests, the development of intuitionistic mathematics and
logic provides the background against we can make sense of Martin-Löf’s
meaning explanations. We will shortly look at the genesis of intuitionism
with the works of Brouwer in Section 3.1 and turn to the first systematic
formalization of intuitionistic reasoning in Section 3.2, commonly referred
to as the BHK interpretation. We will see how the BHK account can be made
formally precise in Section 3.3, before sketching in Section 3.4 the works of
Bishop, which called Martin-Löf’s attention to the need of formulating a
more powerful language for formalizing constructive mathematics.

3.1 Brouwer and the Advent of Intuitionism

The idea that a proof of an existential assertion has to be accompanied
with a construction of the respective object goes back to Kronecker in the
19th century. The main developer for and advocate of intuitionism in the
Grundlagenstreit, Luitzen Brouwer, took this idea and formulated a systematic
criticism of mathematical practice at that time. Under his view, talking
of a mathematical universe that is mind-independent was metaphysical
speculation that should be stripped from mathematics. Instead, he treated
mathematics as a product of the mind, and mathematical objects as nothing
but mental processes. Since mathematical objects do not exist independently
of a mind, but are developed incessantly, statements about those objects
are not determinately true or false. Instead, the truth of a mathematical
statement needs to be “experienced” by a mathematical subject. Brouwer
traced his skepticism towards the use of the law of excluded middle back
to Immanuel Kant. Based on the Kantian view of time as a sequence of
moments, Brouwer developed the first act of intuitionism to construct the
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natural numbers. The second act of intuitionism recovers the continuum in
accordance with the infinite divisibility of moments. Based on this idea, free
choice sequences give rise to the real numbers.

The apparatus developed by Brouwer contradicts parts of classical math-
ematics, for example, every total function on the continuum is continuous in
his framework. In other cases, classically valid theorems cannot be proven
constructively. For example, there cannot be an algorithm that produces
for a continuous function f on the closed interval [0, 1] with f (0) < 0 and
f (1) > 0 the point x such that f (x) = 0. Even though the lemma seems
intuitively true and can be proven classically, the representation of the real
numbers as only potentially infinitesimal hinders a constructive proof of the
intermediate value theorem.

Brouwer rejected the idea of developing a core language for intuitionistic
mathematics and sustained a rather idiosyncratic style of reasoning. In his
view, natural or logical language may approximate the mental constructions
that have been carried out by a mathematical subject, and using language
is obviously necessary to work with other subjects, but language cannot be
identified with the mental constructions that are mathematics. It is irony of
history that the originator of today’s framework for formalizing mathematics
in a computer was deeply skeptical towards the formalization of mathematics
in general.

3.2 Heyting and Kolmogorov, and the Formalization
of Intuitionism

It was only Brouwer’s student Arend Heyting who set out to develop a
formal system that could capture the reasoning principles of intuitionism
and specified what should be considered an intuitionistically valid proof.
Independently of Heyting, Andrey Kolmogorov developed his own formal-
ization of Brouwer’s reasoning principles. Later, Heyting and Kolmogorov
agreed that their characterizations were essentially equivalent.

Under the impact of Brouwer, Heyting downplayed the role of intuition-
istic logic for intuitionism. According to him, intuitionistic logic was merely
a tool, but not a foundation for mathematics since logic itself lacks a founda-
tion. In an imagined debate about the mathematical foundations, Heyting
lets the prototypical intuitionist maintain:

The process by which [a logical theorem] is deduced shows us
that it does not differ essentially from mathematical theorems;
it is only more general, e.g. in the same sense that “addition
of integers is commutative” is a more general statement than
“2 + 3 = 3 + 2”. This is the case for every logical theorem: it is
but a mathematical theorem of extreme generality; that is to say,
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logic is a part of mathematics, and can by no means serve as a
foundation for it.

— Heyting (1956):p. 6

Hence, Heyting subscribed to Brouwer’s conviction that mental construc-
tions of mathematical objects are prior to logic, and the logical laws just
happen to be common to many mathematical statements. The project of
Kreisel, the father of modern proof theory, is portrayed by Sundholm as
follows:

We may compare his [Kreisel’s] programme with a common
interpretation of the logicist programme:

(1) to define mathematical concepts in terms of logic, and

(2) to derive the mathematical theorems as truth of logic.

The parallel is obvious:

(1) to define the logical constants in terms of constructions, and

(2) to derive the truths of logic as theorems of the theory of
constructions.

— Sundholm (1983):p. 156

This can be seen to take serious Heyting’s project of reversing the logicist
programme: Logic is not fundamental, instead the mental constructions are
basic and logic can be recovered from these mental constructions.

Heyting referred to a proposition as an “expectation” an “intention” of
being proved, Kolmogorov saw a proposition as a “problem” or “task” that
needs to be solved. Consequently, a logical constant such a disjunction A∨ B
expresses the expectation that either a proof of A or a proof of B is given.
This extends to what is commonly referred to as the BHK interpretation.
Troelstra and Dalen (1988):p. 9 recapitulate this definition of the logical
constants as follows:

• Absurdity ⊥ has no proof.

• A proof of P ∧Q is given by presenting a proof of P and a proof of Q.

• A proof of P ∨Q is given by presenting either a proof of P or a proof
of Q.1

• A proof of P→ Q is a construction which permits us to transform any
proof of P into a proof of Q.

1 Troelstra and Dalen (1988) omit in this representation that usually, a proof of P ∨Q also is
required to evince which of the disjuncts has been proved.
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• A proof of ∀x.Q(x) is a construction which transforms a proof of d ∈ D
into a proof of P(d).

• A proof of ∃x.Q(x) is given by providing d ∈ D, and a proof of Q(d).

The clauses can be read as biconditionals: For example, if we have proved
that P ∧Q holds, we can obtain a proof of P and a proof Q and, vice versa,
given a proof of P and Q, we can construct a proof of P ∧Q.

This account makes apparent the conflation of proofs and objects in the
intuitionistic tradition: In the clauses for the quantifiers, D is the domain that
variables x range over. Giving a proof is then nothing but giving an object of
the domain D. Other logicians maintained a difference between objects and
proofs in their constructive systems, e.g., we can find in Scott’s “Constructive
Validity”, which can be considered a predecessor of Martin-Löf’s type theory:

The construction is an object of the theory while the proof is an
elementary argument about the theory.

— Scott (1970):p. 261

However, Scott is not able to maintain the distinction between proofs
and objects and concludes in the Postscript of his paper that “the attempt to
eliminate ‘proofs’ (as abstract objects) and to concentrate on ‘pure’ construc-
tions is not successful” (Scott, 1970:p. 272). We will return to the ontological
character that intuitionistic theories attribute to proofs in Section 4.4 and
Chapter 6.

A negated formula ¬P is not defined primitively in the BHK account,
instead it is represented with P implying absurdity. We could add a clause
for negation as follows:

• A proof of ¬P is a construction which transforms any hypothetical
proof of P into a proof of a ⊥.

It should be noted that the above characterization of intuitionistic rea-
soning was not without controversy, for example, some intuitionists like
Griss did not accept that negation is a sensible mental construction at all
(Heyting, 1956:p. 10).

This account to intuitionistic mathematics is informal and uses the no-
tions “proof” and “construction” pre-theoretically without further explica-
tion. The term semantics is hence not an adequate description of the BHK
account, if one understands semantics as a translation from one formal
language to another formal language. Rather, the term meaning explanations
seems like an adequate term for the BHK account to constructive reason-
ing. The informal account helps to understand the meaning of the logical
constants, but does not give a straightforward recipe to reason intuitionis-
tically. Semantics, in contrast, pin down the exact behaviour of a system.
Often, semantics are articulated in set theory, such as Kripke’s semantics for
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intuitionistic logic, but we will use the term in general for translation into
any formal language. The differentiation between semantics and meaning
explanations will be of use for us in the following, and is in accordance with
current philosophical nomenclature, e.g., by Atten (2017).

We will now get to know a semantics which gives a clear account of the
informal notions of the BHK meaning explanations.

3.3 The Lambda Calculus and Propositions-as-types

One way to make the BHK meaning explanations formally precise is based
on the simply typed lambda calculus. The development of the lambda
calculus goes back to the 1930s, where Alonzo Church developed it to
provide a syntactical model of computation. The discovery that the lambda
calculus can be used as a semantics for the implicative fragment of BHK
was made by Haskell Curry (1934).

The fundamental insight of Curry is that the types of the lambda calculus
can be regarded as the propositions of intuitionistic logic, and terms of a
type as proofs of the associated proposition. This allows for identifying a
proposition with the set of its proofs, instead of just a truth value. If one
wants to maintain the classical view of a proposition as a truth-apt sentence,
the correspondence can also be formulated by identifying each type with
the proposition that the type is inhabited.

The types are formed according to the following rules2:

τ ::= τ → τ | t

where t is a an element of T, a set of atomic types.
The terms of the simply typed lambda calculus can be formed according

to the following rules:
e ::= x | (x)e | e(e) | c

where x is a variable from a set of infinitely many variables x, y, ... , (x)e is
function abstraction over a variable x (which is implicitly assigned some
type τ), e(e) denotes function application, and c is a constant from a given
set of constants C. The type assignment is defined as follows: If x is of type
τ and e of type τ′, then (x)e is of type τ → τ′. The term e(e′) can only be
formed if e is of type τ → τ′ and e′ is of type τ, the type of e(e′) is then τ′.

There is one computation rule specifying how function abstraction and
application interact, which is commonly called β-reduction:

((x)e)a −→ e[a/x]

where e[a/x] denotes the result of substituting all occurrences of x in e by a.
Since x and a have the same type if the expression ((x)e)a is well typed, the
reduction step preserves the type of the expression.

2 We will use the Backus-Naur form for concise grammar definitions in the following.
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3 .4 bishop’s constructive mathematics

With this formal system we can give an explication of the implicative
fragment of the BHK account of intuitionistic logic: For the propositions
P and Q we introduce atomic types A and B. A proposition P → Q will
then be represented with the type A→ B. In order to prove the proposition
P→ Q, we have to construct a closed term (x)e, where x is of type A and
e is of type B. A “construction” is hence explicated with the notion of a
function, and “transformation” is interpreted as computation of a function.

For example, to prove the proposition P→ (Q→ P), we can construct a
term (x)((y)x) of type A→ (B→ A). Since this function is closed, we have
proved that the proposition A→ (B→ A) is a tautology.

Note that abstraction is commonly denoted λx.e, where sometimes the
type of x is stated explicitly, i.e., λ(x : τ).e. We will make use of our definition
of the lambda calculus later in Section 4.2, where the absence of any special
characters in the calculus will come in handy to distinguish the lambda
calculus from HoTT.

Howard (1980) extended the idea of Curry to capture predicates and
to formalize the full account of BHK. We will present a part of Howard’s
account in the modern disguise of HoTT in Section 4.1.

3.4 Bishop’s Constructive Mathematics

The formalization of the BHK conception of intuitionistic logic allowed
for some useful applications, e.g., Heyting’s account to arithmetic seemed
promising since a large part of the theorems of Peano arithmetic could
be carried over to the intuitionistic system. However, in other fields such
as analysis the proofs turned out to require significantly more work, if
they could be carried out constructively in the first place. The evident
success of classically pursued mathematics in the decades following the
Grundlagenstreit made the reservations of Brouwer seem like unnecessary
philosophical concerns. The intuitionistic project had stalled.

Only in 1967, Errett Bishop drew the attention of the mathematical
community back to constructive mathematics. In Foundations of constructive
analysis, he reconstructed large parts of analysis solely by constructive means.
Bishop agreed with Brouwer’s criticism of the classical mathematicians
disregard of the importance of constructive proofs, but did not adhere to
Brouwer’s philosophy of mathematics: “There are no dogmas to which we
must conform” (Bishop, 2012:p. ix).

Bishop divides mathematics in a “realistic” and an “idealistic” part,
where the realistic part corresponds to the constructively proven theorems.
The law of excluded middle is an idealistic assumption that is consistent
with the realistic body of theorems. Alternatively, the realistic part can be
extended to capture the intuitionistic body of mathematics, such that, for
example, all total functions on the continuum are continuous.
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3 .4 bishop’s constructive mathematics

In Foundations of constructive analysis, Bishop pursues an informal style
that allows for a concise and comprehensive presentation of constructive
proofs. Bishop also worked on transforming his proofs into a semi-formal
and eventually completely formal language to be entered into a computer.
As Petrakis (2018) has discovered, Bishop gave some sort of dependent
type theory already in 1968, but did not publish his system. The informal
constructive mathematics pursued by Bishop was going well beyond of
what could be captured by intuitionistic logic in the spirit of BHK. There
have been multiple attempts at formalizing the semi-formal exposition of
Brouwer: For example, John Myhill developed with Peter Aczel and Harvey
Friedman intuitionistic set theory, which is based on classical set theory, but
changes the logic and axioms of ZFC. Important for us, Martin-Löf also set
out to formalize constructive mathematics in the style of Bishop:

The theory of types with which we shall be concerned is intended
to be a full scale system for formalizing intuitionistic mathematics
as developed, for example, in the book by Bishop.

— Martin-Löf (1975):p. 73
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Chapter 4

Computational Content

After we have seen the conception of constructive logic in the works of the
early intuitionists in the previous Chapter 3, we will now turn to the modern
development of constructive type theory. Per Martin-Löf was well aware
of the correspondence between the lambda calculus and logical formulae
discovered by Curry and Howard, and was the first one to directly link the
lambda calculus with natural deduction proofs (Sundholm, 2012). After-
wards, he set out to develop systems in the spirit of the lambda calculus, but
with more expressive power than first-order logic. The work of Bishop (1967)
gave new life to the project of constructive mathematics and subsequently,
Martin-Löf set out to provide a formal system for constructive mathematics
done in the style of Bishop. Bishop had drawn the attention of the mathe-
matical community to the pragmatic content of proofs, or, as we will call it
in the following, the computational content of proofs. The level of importance
paid to constructive proofs changes from field to field, number theorists
for example pay special attention to what they call “effective” proofs: Alan
Baker received the Fields medal in 1970 for carrying out an effective proof of
a theorem which had already been proved by Klaus Roth in 1958. However,
the development of constructive foundations has been mostly unnoticed
by number theorists and it seems that the prevalent view on constructive
reasoning still is that it forbids use of the law of excluded middle and is
very cumbersome. As we will see in this chapter, this is an insufficient
description of Martin-Löf’s type theory: The theory has expressive power
going well beyond intuitionistic logic, and the BHK interpretation only ex-
plains some aspects of constructive type theory — we will see in Section 4.1
that a fragment of HoTT can be seen to internalize intuitionistic first-order
logic, namely the fragment of HoTT where all types are propositionally
truncated. Crucially, the BHK meaning explanations are unable to motivate
the untruncated version of HoTT. In HoTT, a type can have multiple proofs,
and the proofs themselves can be investigated again. Hence, intuitionistic
type theory gives a more fine-grained view on the computational content
of proofs and we need a refinement of the BHK conception of constructive
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reasoning to explain the features of intuitionistic type theory. Per Martin-Löf
presented his meaning explanations as such a refinement, in which the com-
putational content of proofs is pinned down by singling out canonical forms
and explaining the meaning of non-canonical types and terms by reducing
them to canonical forms. We will retrace his meaning explanations in Section
4.2.

Afterwards, we will introduce an interesting result for homotopy type
theory, namely, homotopy canonicity: The computational content of some
proofs can be recovered, even if they are obtained by non-constructive means.
This refined view on the computational content of proofs will be relevant in
our discussion in Chapter 6.

The meaning explanations developed by Per Martin-Löf loosely stand in
the Wittgensteinian tradition of determining the meaning of an expression
by its use, which has been made precise by Gentzen in proof theory: The
introduction rules of his calculus determine the meaning of the logical constants
(and elimination rules are just corollaries of the introduction rules). There
are important parallels of Martin-Löf’s meaning explanations and the ideas
of proof-theoretic semantics. We will look at these connections in Section 4.4
so we can make use of them in our development of a meaning theory for
HoTT in Chapter 6.

In this chapter, we will completely ignore identity. Martin-Löf’s expla-
nation of identity was not able to explain its features in intuitionistic type
theory, we will take a closer look at the defects of Martin-Löf’s meaning
explanations and investigate how we could make sense of identity in the
context of homotopy type theory in the next Chapter 5.

4.1 BHK in Homotopy Type Theory

In Section 3.3, we saw how the simply typed lambda calculus can be used to
make precise the BHK meaning explanations. For that purpose, propositions
are interpreted as types in the calculus and proofs as terms of the respective
type. To be precise, every type corresponds to the proposition that the type is
inhabited. A truncated version of dependent type theory can also be seen to
model BHK, as discovered and spelled out by Pfenning (2001) and Awodey
and Bauer (2004). The latter work introduces bracket types for erasing the
computational content of a type in a dependent type theory. In the HoTT
Book (2013), type truncation is used to the same effect, which we introduced
in Section 2.6. With truncation, we can make all types to mere propositions, i.e.,
to types with at most one inhabitant. The correspondence between truncated
type theory and BHK has sometimes been coined propositions-as-some-types
since all propositions are expressed by a corresponding type, but not all
types express a proposition. We will prototypically present how three clauses
of the BHK meaning explanations can be made precise in truncated HoTT.

We can explicate absurdity by representing the proposition ⊥ with the

30



4 .2 martin-löf’s meaning explanations

type 0 : U . Since there is no constructor of 0, we can formulate the following
clause to capture absurdity:

• Absurdity 0 has no proof.

In order to represent the other clauses, we will consider arbitrary propo-
sitions P and Q(x) to be represented with types A : U and B(x) : A → U .
We assume A and B(x) to be propositionally truncated for any x, hence,
A and B(x) have at most one inhabitant. We can explicate universal quan-
tification with the dependent function type. The introduction rule for the
dependent function type states that if we have a function λ(x : A).y that
takes any element x : A to a y : B(x), then we have constructed a term of
type ∏x:A B(x). Hence, we can represent universal quantification with the
following clause to make the BHK interpretation precise:

• A proof of ∀x.Q(x) is a function λ(x : A).y : ∏x:A B(x) which maps
any inhabitant x of A into an inhabitant y of B(x).

We can recover simple functions from the dependent function type
∏x:A B(x) if B(x) does not depend on x:

• A proof of P→ Q is is a function λ(x : A).y : ∏x:A B which maps any
inhabitant x of A into an inhabitant y of B.

The extension to the other type formers and clauses of BHK is straight-
forward. Even though this explication of the BHK interpretation resembles
the one in the lambda calculus presented in Section 3.3, there is an important
difference: The line between types and terms is blurry in dependent type
theories, since terms may be used in the definition of a type. We conclude
that BHK can be made precise in truncated HoTT and conversely, that the
clauses of BHK can be seen as an adequate meaning explanation for the
fragment of homotopy type theory were all types are mere propositions,
i.e., where all computational content is stripped from a type. This raises the
question:

How can we understand the full system of homotopy type theory?

4.2 Martin-Löf’s Meaning Explanations

Univalence implies the existence of a type with non-trivial identity proofs,
hence, univalence is inconsistent with the requirement that all types are mere
propositions. As we saw previously, the BHK meaning explanations can only
explain the meaning of some types, namely the truncated ones. However,
HoTT has strictly more expressive power then intuitionistic first-order logic
since we can refer to all proofs as objects in the system itself and investigate
the relation between those proof objects.
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4 .2 martin-löf’s meaning explanations

Per Martin-Löf introduced the meaning explanations for intuitionistic
type theory in Martin-Löf (1982) and Martin-Löf (1984) to justify the con-
structive validity of his system. He wanted to show that the rules of inference
are evident (in a sense to be explained). The meaning explanations of Per
Martin-Löf are not only informal intuitions for his type theory, but can be
stated in terms of a semantics, namely by translating all terms and types
of intuitionistic type theory into a simply typed lambda calculus. This ap-
proach has recently been given a concise presentation by Dybjer (2012), we
will extend this approach and follow the conviction that a formal model of
the meaning explanations will help us to make our intuitions precise:

It is sometimes said that the meaning explanations are noth-
ing but a realizability interpretation (in the sense of Kleene),
but this is fundamentally misleading. Realizability provides a
meta-mathematical and not a pre-mathematical interpretation!
Nevertheless, it helps us to be precise and to understand the
details involved in the meaning explanations.

— Dybjer (2012):p. 223

Notably, the meaning explanations presented in Martin-Löf (1982) and
Martin-Löf (1984) invalidate intensional type theory, which is the bedrock of
homotopy type theory. We will leave aside this issue here and turn to the
quest of giving meaning explanations for identity in intensional type theory
in Chapter 5. Extending the meaning explanations to higher inductive types
and universes is highly interesting, but beyond our analysis of the logical
constants.

Following Martin-Löf’s approach, we will first explain the meaning of
the four kinds of judgments of type theory in Section 4.2.1. Afterwards, we
will introduce types and terms into the meaning explanations by translation
from HoTT into the simply theory of expressions in Section 4.2.2 and Section
4.2.3. The meaning explanations of the judgments give us a clear criterion
for deciding if a type has been defined successfully, this criterion will be
introduced in Section 4.2.4.

4.2.1 The meaning of the judgments

Of special status in the system of intuitionistic type theory are the so-called
canonical forms, which can be either terms or types. According to Martin-
Löf’s conception of types, to know that A is a type is to know what counts
as a canonical term of A and to know how to show that two canonical
terms of the type A are equal1. The meaning of the four kinds of judgments
introduced in Section 2.1 follows from this conception of a type.

1 It should be noted that this does not mean that we have to give rules that exhaustively
produce all canonical forms — in some cases this is not possible, for example for functions.
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4 .2 martin-löf’s meaning explanations

Below in Section 4.2.2, we will introduce a translation of homotopy type
theory into the simply typed lambda calculus, which we will call the theory of
expressions in accordance with Dybjer (2012). Since the lambda calculus has
a very simple syntax and primitive notion of computation, the translation
should ease the project of justifying the rules of HoTT. In this translation,
every term a of HoTT will be translated into a corresponding term a of the
theory of expressions. The reference of a can then be retrieved by evaluating
a to canonical form, say, v. The canonical form relation is denoted a⇒ v and
is vacuous for the time being, we will extend the relation as we consider all
types of interest for us. Importantly, the canonical form of a term is unique,
which goes well with the reading that the canonical form is the reference of
the term (this understanding will be explained further in Chapter 6).

We can now formulate the meaning of the judgments in terms of the
canonical form relation:

• The meaning of a judgement A type is that A⇒ V.

• The meaning of a judgement x : A is that x⇒ v, A⇒ V and v : V.

• The meaning of a judgement A ≡ B is that A⇒ V and B⇒ V.2

• The meaning of a judgement x ≡ y is that x⇒ v and y⇒ v.

Intuitively, the meaning of A type is that A is a valid type, which is
evident if A evaluates to a canonical form V. In order to see if x : A is
meaningful, we have to evaluate both x and A and check if the canonical
form of x is an inhabitant of the canonical form of A.

The judgmental equalities establish an equality of meaning. For example,
if two terms add(s(s(0)), s(s(0))) and double(s(s(0))) both evaluate to the
same term s(s(s(s(0)))), we consider both terms to be equal in meaning
and the judgmental equality to hold. Naturally, we want the judgmental
equalities to be equivalence relations, which we can verify quickly:

• If we have x : A such that x⇒ v, A⇒ V and v : V, we obviously have
x ≡ x.

• Assume x ≡ y, hence x⇒ v and y⇒ v, i.e., y ≡ x.

2 Note that in the original presentation of the meaning explanations in Martin-Löf (1982),
judgmental equality between types is defined extensionally:

Two canonical types A and B are equal if a canonical object of type A is also a
canonical object of type B and, moreover, equal canonical objects of type A are
also equal canonical objects of type B. — Martin-Löf (1982):p. 163

We will follow Dybjer (2012) in having an intensional treatment of judgmental equality since
it mirrors judgmental equality between terms. Furthermore, judgmental equality defined
intensionally can be checked by simple type checking algorithms and hence is consistent
with the idea that judgements should be evident.
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• Assume x ≡ y and y ≡ z. Hence, x⇒ v and y⇒ v, and y⇒ w and
z⇒ w. Since canonical forms are unique, we infer that v and w must
have been the same canonical forms, thus, x ≡ z.

The same explanation can be stated, mutatis mutandis, for judgmental
equality between types. Granström (2008):p. 74 introduces the difference
between meaning determining inference rules and justified inference rules, where
the former rules are evident directly and the latter rules require further
justification; for our definition of the meaning of the judgments, all properties
of ≡ follow directly so we do not need to introduce any difference in
epistemological immediacy.

The above judgments were all made in the empty context, they are called
categorical judgements. The meaning explanations of categorical judgments
are extended to hypothetical judgments, i.e., judgements which are made in a
context. To argue that hypothetical judgements are meaningful, we need to
carry out an induction on the number of assumptions in the context. We will
not repeat the argument here and refer to Martin-Löf (1982):p. 163–166 for
an exposition of how to extend the meaning of the categorical judgements
to hypothetical judgements. For us it will suffice to read a judgment such as

x : A ` B(x) type

as “in context x : A, B(x) is a valid type”.

4.2.2 The theory of expressions

We will translate the terms and types of HoTT into the simply typed lambda
calculus as defined in Section 3.3, which we will call the theory of expressions.
Both terms and types of HoTT will be represented as terms in the theory of
expressions. We will write the interpreted terms in typewriter font, e.g., a, to
distinguish them from the terms and types of HoTT, e.g., a. For all type and
term symbols, we introduce the following constants in the calculus, typed
over a set of atomic types consisting only of type ι:

0 : ι, 1 : ι, ? : ι, R1 : ι→ ι→ ι,

N : ι, s : ι→ ι, 0 : ι, RN : ι→ ι→ (ι→ ι→ ι)→ ι

∏ : ι→ (ι→ ι)→ ι, λ : (ι→ ι)→ ι, App : ι→ ι→ ι

∑ : ι→ (ι→ ι)→ ι, pair : ι→ (ι→ ι)→ ι, RΣ : ι→ (ι→ ι→ ι)→ ι

+ : ι→ ι→ ι, inl : ι→ ι, inr : ι→ ι, R+ : ι→ (ι→ ι)→ (ι→ ι)→ ι

Note that 0 and 1 denote the empty type and the unit type, respectively,
while 0 denotes the 0 symbol of the natural numbers.

The type assignments can be understood as follows: A dependent func-
tion type ∏x:A P(x) takes an element of type A, here simply ι, a dependent
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type P : A→ U , represented ι→ ι, and yields a type in the universe, again
of type ι. Hence, the type of ∏(A, (x)P) is ι→ (ι→ ι)→ ι.

The dependent sum type ∑x:A P(x) takes as input a type A and a de-
pendent type P : A→ U, and yields a dependent pair (a, p) with a : A and
p : P(A). We will represent pairs also as basic entities in the universe and
type them with ι. Hence, we type ∑(A, (x)P) with ι→ (ι→ ι)→ ι. The type
of pair stems from the fact that we will represent dependent pairs, i.e., the
second element of the pair is a function that takes as input the first element
of the pair and hence, the type of pair is ι→ (ι→ ι)→ ι.

Recall that we can define function and product types as non-dependent
cases of dependent function and dependent pair types, hence, the above
theory allows us to interpret a significant part of homotopy type theory
consisting of all type formers corresponding to the logical constants.

Now that we have introduced the types, we define the terms of the theory
of expressions:

a ::= 0 | 1 | ? | N | 0 | s(a) | RN(a, a, a) |

∏ x : a.a | λ(a) | App(a, a) | ∑ x : a.a | pair(a, a) | RΣ(a, a) |
a+ a | inl(a) | inr(a) | R+(a, a, a)

Recall again that in the theory of expressions, abstraction is written (x)a
and application is written f(a). In the definition of the grammar, we have
written f(a1, ..., an) instead of f(a1)...(an). We have also used the more intu-
itive notations ∏ x : A.B instead of ∏(A, (x)B), ∑ x : A.B instead of ∑(A, (x)B),
and a+ a instead of +(a, a).

In the following, we will use various kinds of letters as variables in the
calculus to ease the legibility of the rules, including letters with subscripts
such as z0.

The translation of HoTT into the theory of expressions is straightforward.
We will only give a few examples:

0 ! 0

s(a) ! s(a)

∏
x:A

B(x) ! ∏ x : A.B

λx : A.a ! λ((x)a)

...

Note that expressions generated by the above grammar will always be
finitary, e.g., there is no infinite term ...s(s(0)) representing infinity.

4.2.3 Canonical forms

In order to explicate the meaning explanations of the judgments as stated
above in Section 4.2.1, we have to distinguish certain terms of the theory of
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expressions, which we will call the canonical forms. The canonical forms are
exactly those terms that have been introduced with a type formation or term
introduction rule. To be precise, the canonical forms are generated by the
following grammar:

v ::= 0 | 1 | ? | N | 0 | s(a) |

∏ x : a.a | λ(a) | ∑ x : a.a | pair(a, a) |
a+ a | inl(a) | inr(a)

We will have v, w and V denote canonical forms in the following, where
v, w are terms and V is a type in HoTT. The term a denotes a closed,
but not necessarily canonical term. Hence, only the outermost term con-
structor is relevant when determining if an expression is in canonical form,
whereas the inner contents of a term do not need to be evaluated further.
This evaluation strategy is known as “lazy” in functional programming. For
example, λ((x)add(x, s(0))) is considered a canonical form, even though
(x)add(x, s(0)) is not in canonical form. Also, the terms s(add(s(0), s(s(0))))
and add(s(s(0)), s(s(0))) are both not fully evaluated, but the first term is
considered to be in canonical form since s(a) is in canonical form for any a.

Non-canonical forms in the system reduce to canonical forms by employ-
ing the computation rules of the respective type formers. To represent this
in our meaning explanations, we introduce the relation

a⇒ v

between closed terms a and v, which is read as “a has canonical form v”.
We define the canonical form relation with inference rule notation:

v⇒ v
(every canonical form has itself has canonical form)

a⇒ ? z⇒ v

R1(a, z)⇒ v

n⇒ 0 z0 ⇒ v

RN(n, z0, zs)⇒ v

m⇒ s(n) zs(n, RN(n, z0, zs))⇒ v

RN(m, z0, zs)⇒ v

f⇒ λ(b) b(a)⇒ v

App(f, a)⇒ v

c⇒ pair(a, b) z(a, b)⇒ v

RΣ(c, z)⇒ v

c⇒ inl(a) za(a)⇒ v

R+(c, za, zb)⇒ v

c⇒ inl(b) zb(b)⇒ v

R+(c, za, zb)⇒ v

Let us look at a few examples. Recall that the recursors are used to define
functions in HoTT. For example, if we define

double(x) :≡ RN(x, 0, λn.λy.s(s(y))),
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we can evaluate double(s(0)) to canonical form by unfolding the definition
of double and translating the resulting term into the theory of expressions:

RN(s(0), 0, λ((n)λ((y)s(s(y)))))

This term can be evaluated by applying the first reduction rule of the natural
numbers recursor, which requires us to first evaluate

RN(0, 0, λ((n)λ((y)s(s(y))))),

which yields 0 if we apply the first reduction rule for RN. Plugging this result
in the previous recursor, we retrieve the expected result:

RN(s(0), 0, λ((n)λ((y)s(s(y)))))⇒ s(s(0))

All instances of the recursors will be eliminated by the above compu-
tation rules and all terms are reduced to canonical forms in the theory
of expressions. By similar unfolding we can see that s(s(s(s(0)))) and
s(add(s(0), s(s(0)))) are in canonical form, and add(s(s(0)), s(s(0))) com-
putes to canonical form s(s(s(s(0)))).

4.2.4 The validity of the types

Now that we have examined the meaning of the judgements and we know
when a judgement is made successfully, we can justify the inference rules of
Martin-Löf’s type theory. In Martin-Löf (1982), there is very little elaboration
of why the inference rules are sensible:

For each of the rules of inference, the reader is asked to try to
make the conclusion evident to himself on the presupposition
that he knows the premises. [...] there are also certain limits
to what verbal explanations can do when it comes to justify-
ing axioms and rules of inference. In the end, everybody must
understand for himself.

— Martin-Löf (1982)

In Martin-Löf (1984), there is more explanation of the inference rules.
Common to all justifications is the idea that the inference rules should
preserve the meaning of the judgments, i.e., it should remain evident that a
judgment holds after new inference rules for a type are given. The meaning
of the judgments relies on the fact that all terms are reducible to canonical
forms, so newly introduced types needs to respect this property.

A type is introduced into the system by presenting the following set of
rules3:

3 For some rules, additional uniqueness principles are stated to avoid distinguishing terms
that are morally equal, such as f and λx. f (x). This is known as η-reduction, we will not be
concerned with it in the following.
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• A formation rule specifying how new types with the type symbol can
be built.

• One or several introduction rules specifying how new inhabitants of the
type can be introduced.

• One or several elimination rules stating how an inhabitant may be used.

• One or several computation rules specifying what happens when elimi-
nation rules are applied to inhabitants of the type.

We have used the computation rules already in the definition of the
canonical forms above in Section 4.2.3. They encode the whole behaviour
since they bind together introduction and elimination rules. If we specify
how any term of a type inhabitant may be used, we have extended the
system in a sound way. This is captured by the following criterion:

Successful definition of a type:
A set of inference rules for a type is successful iff:

1. For all A that can be constructed according to the formation
rule of the type, we have a canonical type V such that A⇒ V.

2. For all a : A, we have a term v : V such that a⇒ v.

In other words, we require that every type and every term that we have
introduced in the system can be reduced to a canonical form in the theory
of expressions. This property is also called canonicity.

A consequence of canonicity is that judgmental equality between terms,
respectively types, is decidable. Hence, the above criterion ensures that
newly introduced types do not impede the meaningfulness of all forms of
judgments.

For example, let us consider the product type, which is a special case
of the dependent sum type. If we have two inhabitants (a, b) : A× B and
(c, d) : A× B, then we should be able to recognize if both inhabitants are
judgmentally equal. This is the case since in order to check (a, b) ≡ (c, d),
we can check a ≡ c and b ≡ d by reducing all terms to canonical forms and
comparing them.

If we understand the canonical form as the reference of a term, the suc-
cessful definition of types ensures means that all terms are meaningful,
i.e., denote something. We will further inspect this understanding in the
discussion in Chapter 6.

4.3 Breaking Canonicity and Propositional
Canonicity

We have seen how intuitionistic logic can be modelled in the truncated
version of HoTT in Section 4.1. This gives rise to what is called “intuitionistic
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constructivity” in HoTT Book (2013):Introduction. Another kind of construc-
tivity, namely “algorithmic constructivity” is characterized by the meaning
explanations and the insistence that all terms reduce to canonical forms.
Under the traditional view, the antagonist of constructive reasoning is the
law of excluded middle (LEM), and we will investigate in Chapter 6 how
the law of excluded may be assumed in HoTT. However, constructivity in
the algorithmic sense, i.e., the property that all proofs exhibit computational
content, may be broken also in other ways than by applying the LEM. By
postulating the existence of terms without giving a way to eliminate them,
canonicity is broken, which we will investigate in Section 4.3.1. Afterwards,
we will introduce an interesting formal result in Section 4.3.2: For some
simple types such as the natural numbers, it is possible to obtain canonical
forms of terms even if they contain axioms and hence do not reduce to
canonical forms. This allows for recovering computational content from
proofs which are not constructive in the algorithmic sense.

As a side note, proof theorists have been concerned with extracting
computational content from classical proofs for quite some time. Kreisel
has initiated the “unwinding program” to recover constructive content
of seemingly non-constructive proofs (Kreisel, 1951; Kreisel, 1952). In a
discussion of Kreisel’s program, Feferman (1996) accredits only a limited
success to Kreisel’s program. However, it has some interesting applications in
proof theory as exemplified by Kohlenbach and Oliva (2003) and Berger and
Schwichtenberg (1995). The Dialectica interpretation of Gödel (1958) can also
be used to extract proofs from non-constructive programs. Unfortunately,
investigating the connections to homotopy canonicity lies behind the scope
of this work.

4.3.1 Breaking canonicity

Intuitionistic type theory as presented in Section 4.2 enjoys canonicity since
it is not possible to construct a term that does not reduce to a canonical form.
However, we can break canonicity of the system by postulating the existence
of a term without explicitly constructing it. For HoTT as presented in the
HoTT Book (2013), univalence does not hold as a theorem. In order to use
univalence in proofs, the existence of a term of the appropriate type needs
to be postulated as follows:

ua : (A ' B)→ IdU (A, B)

This means that we purport to have a function that takes any witness of an
equivalence to a witness for identity, even though we do not have constructed
such a function. When a proof term contains ua, we cannot reduce it any
further. This has practical repercussions, for example, Brunerie (2018) has
proven that the 4-th homotopy group of the 3-sphere behaves like the integers
modulo some natural number n, but since his proof employs the univalence
axiom, it is not possible to reduce the n to a canonical numeral, in this case
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2. Hence, using an axiom in a proof destroys the computational content of a
proof.

This gives us two notions of non-constructivity at our hands: The exis-
tence of non-canonical forms, and proofs employing the law of excluded
middle. The latter version will also break algorithmic constructivity since
we need to assume LEM as an axiom, as we will see in Chapter 6.

4.3.2 Propositional canonicity

Since univalence does not hold as a theorem in HoTT, significant research
activity is directed towards constructing a type theory where univalence
gets a constructive characterization and does not need to be assumed as
an axiom. There has been significant progress towards this goal with the
development of cubical type theory.

Simultaneously, Vladimir Voevdosky has conjectured that a weakened
form of canonicity also holds for HoTT where univalence is assumed as an
axiom. The conjecture states that every inhabitant of the natural numbers
a : N, maybe containing the univalence axiom, is propositionally equal to
a canonical form n : N, i.e., there exists a proof p : IdN(a, n). The homo-
topy canonicity conjecture (called like that since propositional equality is
interpreted as homotopical equivalence in HoTT) was proved recently by
Christian Sattler4. It is an open question whether a constructive proof of the
conjecture can be given, i.e., if there is a procedure that transforms any a : N

into a canonical n : N. Furthermore it is unclear if homotopy canonicity can
be extended beyond the natural numbers to all set-like types.

Of interest for us is that homotopy canonicity shows that it is possible
to retrieve computational content from proofs not evidently reducible to a
canonical form. If the homotopy canonicity conjecture can be proven con-
structively, this retrieval can be carried out mechanically. If we understand
a⇒ v as a having the reference v, then homotopy canonicity may have reper-
cussions for our understanding of computational content and Martin-Löf’s
meaning explanations. We will further elaborate on this question in Chapter
6.

4.4 Proof-theoretic Semantics and the Meaning
Explanations

Martin-Löf’s approach to justifying intuitionistic type theory has been called
the “syntactico-semantical approach to meaning theory” (Dybjer, 2012:p.
217). In contrast to the traditional view according to which syntax and
semantics should be kept apart, intuitionistic type theory is not supposed to
be without any content. Martin-Löf states in one of his lectures:

4 There exists no published proof yet, the result was presented at the conference HoTT-UF at
the Center of Advanced Study in Oslo in June 2019.
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We will avoid keeping form and meaning (content) apart. Instead
we will at the same time display certain forms of judgement and
inference that are used in mathematical proofs and explain them
semantically. Thus we make explicit what is usually implicitly
taken for granted.

— Martin-Löf (1984):p. 3

This is perpetuated in the portrayal of Martin-Löf’s philosophy by Sund-
holm:

[...] constructive type theory is an interpreted formal language.
[...] the expressions used are real expressions that carry meaning.
In a nutshell, the language is endowed with meaning by turning
the proof-theoretic reductions into steps of meaning explanation.
Just like the formulae of Frege’s ideography, or of the language of
Principia Mathematica, the type-theoretic formulae are actually
intended to say something.

— Sundholm (2012):p. xx

Similar convictions can be found in the project of proof-theoretic semantics,
which has been developed in recent decades by Dag Prawitz and Peter
Schroeder-Heister, among others. The main idea of proof-theoretic semantics
is to specify the meaning of formal languages not by looking at an external
system, but by investigating the formal system itself. It is closely related to
the development of intuitionism, since both schools of thought understand
the meaning of expressions by investigating the conditions under which
they are provable, and not by investigating the conditions under which they
are true. In order to better understand Martin-Löf’s meaning explanations,
we will look at some connections between proof-theoretic semantics and
intuitionistic type in the following.

Proof theory and intuitionism are closely intertwined. Kreisel for example
considered the central challenge of proof theory to elucidate the “mapping”
between mental acts and derivations. Prawitz’ general proof theory can be
seen as combining an inferentialistic view on logic with an intuitionistic
conception of mathematics. One reason for the confluence of inferentialism
and intuitionism is that proof theory is biased towards intuitionistic logic
since the main tool for proof-theorists, natural deduction, gives naturally
rise to intuitionistic logic5.

5 Schroeder-Heister (2018) invokes that classical logic in natural deduction violates the subfor-
mula property and has multiple logical constants in some inference rules. Additionally, it
violates the counterpart of canonicity in natural deduction: The rules for classical logic do
not ensure that any derivation be reduced to one which uses an introduction rule in the last
step. Intuitionistic logic satisfies all these requirements.
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The meaning explanations of Martin-Löf single out canonical forms as
distinguished terms of the theory. If a new type is introduced, it has to be
ensured that every term that can be constructed is reducible to a canonical
form. This is closely related to the notion of proof-theoretic validity as proposed
by Prawitz (1973); Prawitz (1974). Schroeder-Heister (2018) characterizes
proof-theoretic validity as incorporating the following principles:

• The priority of closed canonical proofs.

• The reduction of closed non-canonical proofs to canonical ones.

• The substitutional view of open proofs.

The first two principles play a crucial role in Martin-Löf’s meaning
explanations. We have reduced the meaning of all non-canonical terms to
that of canonical forms. The third point of determining the meaning of
open proofs by substituting open variables by closed terms has not been
worked out by Martin-Löf, but has been implemented by Dybjer (2012).
Dybjer considers program testing procedures as meaning explanations for
intensional type theory and specifies procedures that allow for injecting
closed terms into open terms to check the validity of open terms.

According to the proof-theoretic view, inference rules are valid if they
only allow for deriving constructively valid proofs from constructively valid
proofs. The successfully defined types as defined in Section 4.2.4 are exactly
those that ensure that any constructible term may be reduced to canonical
form. Hence, valid proofs correspond to canonical forms in Martin-Löf’s
system. According to Schroeder-Heister, valid proof have the following
special status:

The definition of validity singles out those proof structures which
are ‘real’ proofs on the basis of the given reduction procedures.

— Schroeder-Heister (2018)

Crucially, proofs and objects are conflated in intuitionistic type theory.
For example, a natural number has the same status as the proof of a math-
ematical proposition. The unifying view on objects and proofs means that
not only derivations can be considered valid as in proof-theoretic semantics,
but that we can also consider objects to be canonical. In the same way as
a canonical proof represents the “most direct proof”, the presentation of
the natural number 4 as s(s(s(s(0)))) is more “direct” than the presentation
add(s(s(0)), s(s(0))). Intuitively, we would consider the answer to the ques-
tion “How many automorphisms exist on the group Z+

12?” to be 4, and not
2 + 2. Hence, Martin-Löf’s meaning explanations give rise to distinguishing
special mathematical objects as the “real” objects, and to determine the
meaning of other expressions with respect to those distinguished objects.
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In conclusion, there is significant overlap between Martin-Löf’s meaning
explanations and the ideas prevalent in proof-theoretic semantics. In con-
trast to most other work in proof-theoretic semantics, proofs are given an
ontological character in type theory by treating them on equal footing with
mathematical objects — this can be seen as the most resolute execution of
proof theory, since it treats proofs as first-order mathematical objects.
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Chapter 5

Constructive Identity

The original formulation of BHK, as portrayed for example in Troelstra
and Dalen (1988), has no clause for identity. In Martin-Löf’s intuitionistic
type theory, every proposition is expressed by a type and consequently,
identity is represented with a dedicated primitive type, the identity type.
The elimination principle for identity types, commonly referred to as the
J-rule, stipulates the existence of inhabitants of the identity type that are
not in canonical form — which suggests that the identity type is set up
unsuccessfully according to our exposition in Section 4.2.4. This behaviour
was not intended by the creator of intuitionistic type theory, which led
Martin-Löf to work on an extensional version of type theory which conflates
propositional equality and judgmental equality (Martin-Löf, 1982). However,
this conflation provokes that the judgments are not decidable anymore, such
that Martin-Löf returned to working out intensional type theory afterwards.
We will lay out how Martin-Löf’s meaning explanations invalidate identity in
both intensional and extensional type theory in Section 5.1. Martin-Löf was
not able to answer the following question: How can the unusual structure of
the identity type be explained?

The first insightful explanation of the J-rule has been carried out by
regarding it as path induction in a topological space. The homotopy interpre-
tation of type theory is the fundamental insight of the HoTT Book (2013)
and allowed for a highly fruitful use of Martin-Löf’s type theory. It seems
auspicious to draw from this connection to give better meaning explanations
for intensional type theory, we will sketch how this might be done in Section
5.2.

When defining identity in intensional type theory, Martin-Löf shows as
a direct corollary that “the law of equality corresponding to Leibniz’s prin-
ciple of indiscernibility holds, namely that equal elements satisfy the same
properties” (Martin-Löf, 1984:p. 61). It seems that Martin-Löf only set out to
incorporate this very principle in his type theory when defining identity and
formulating the J-rule. This raises the question if indiscernibility is enough
to understand identity in intensional type theory and if the correspondence
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between identity and indiscernibility might give rise to an adaption of the
meaning explanations which do validate identity. Ladyman and Presnell ar-
gue in their 2015 paper that indiscernibility does justify the “epistemological
and methodological status” of the J-rule, but work out in their 2017 paper
that the identity type cannot be derived from a type expressing indiscerni-
bility — which is unsurprising since the predicativity of Martin-Löf’s type
theory impedes that the identity type can be defined without introducing
primitive rules in the system. We will reconstruct the arguments of Ladyman
and Presnell (2015) and Ladyman and Presnell (2017) in Section 5.3 and
argue that indiscernibility is an unlikely candidate to patch Martin-Löf’s
meaning explanations since it cannot elucidate the behaviour of identity in
intensional type theory.

We will close with an outlook on what a constructive justification of
identity could look like, and a digression to the relevance of univalence for
our project in Section 5.4.

One other project should be mentioned in this context: Walsh (2017)
works on justifying the J-rule from a different perspective, namely by arguing
that the behaviour of the J-rule can be understood from categorical grounds.
He gives a new criterion of proof-theoretic harmony based on adjoints, a
ubiquitous concept in category theory. The newly introduced notion of
categorical harmony does indeed validate the J-rule. While this is a highly
interesting explanation of identity in HoTT, we focus on the constructive
validity of identity in in our work and will not go into more detail of the
work of Walsh (2017).

Another recent work on the justification of the J-rule has been brought for-
ward by Klev (2017) — however, his meaning explanations require that there
are no non-canonical proofs of the identity type and hence, his approach is
not compatible with univalence and homotopy type theory.

5.1 Identity in Martin-Löf’s Meaning Explanations

The treatment of identity has changed throughout Per Martin-Löf’s works: In
Martin-Löf (1975), we can find the first exposition of intuitionistic type theory
with an identity type representing propositional equality. Here we can also
find the J-rule for the first time. Martin-Löf (1982) gives the first exposition of
the meaning explanations of the judgments, but conflates propositional and
judgmental equality. Martin-Löf (1984) presents a system without further
committing to a specific set of rules and gives more explicate motivations for
the rules. However, there is a mismatch between these motivations and the
properties of identity in intuitionistic type theory. Consider the following
two rules:

p : IdA(a, b)
a ≡ b

(ER)
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p : IdA(a, b)
p ≡ refl

(UIP)

The rule ER conflates the two equalities of type theory since it enables
us to conclude from the proof of a propositional equality a judgmental
equality (the converse of ER is true in any version of Martin-Löf’s type
theory). The principle UIP states that the identity type yields no interesting
structure since all identity proofs are equal to the trivial identity proof.
Note that in this rule, the canonical element refl does not depend on a or b
(as it is the case in Section 2.4), since a and b are judgmentally equal and
there is only one unique proof of identity. A version of intuitionistic type
theory validating both principles ER and UIP is commonly called extensional,
whereas a type theory invalidating ER is called intensional. Homotopy type
theory furthermore invalidates UIP since univalence requires the existence
of non-trivial identity proofs1.

In Section 5.1.1, we will retrace why Martin-Löf’s meaning explanations,
as presented in Section 4.2, are in conflict with intensional type theory
since it invalidates UIP. In Section 5.1.2, we will argue that the meaning
explanations also invalidate an extensional treatment of identity since ER is
incompatible with the requirement that judgments should be evident.

It should be noted that the meaning explanations do not lead to trouble
for simple types decidable equality. For example, propositional equality
in the natural numbers is decidable, i.e., we can give an inhabitant of the
following type:

∏
m,n:N

IdN(m, n) + (IdN(m, n)→ 0)

It is not a problem for the natural numbers that judgmental and propositional
equality are conflated since we are still able to decide all judgments. It has
been shown by Hedberg (1998) that UIP holds for all types in which equality
is decidable. Hence, all such simple types do not pose a problem for Martin-
Löf’s meaning explanations — neither to extensional type theory (since
judgments continue to be decidable), nor to intensional type theory (since
there are no non-trivial identity proofs).

5.1.1 Intensional type theory and the meaning explanations

In order to extend the meaning explanations given in Section 4.2 with
identity, we could try to introduce the following constants in our theory of
expressions:

Id : ι→ ι→ ι, refl : ι→ ι, R= : ι→ ι→ ι

Note that we make refl dependent on a specific element since ER is not
validated. The grammar of the theory of expressions could then be extended

1 See, e.g., HoTT Book (2013):Example 3.1.9
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as follows:
a ::= ... Id(a, a) | refl(a) | R=(a, a)

The translation of HoTT into the theory of expressions is straightforward.
As canonical forms we consider the identity type and the trivial-self

identification:
a ::= ... Id(a, a) | refl(a)

The computation rule for identity eliminates the recursor of identity,
thereby we extend the canonical form relation with the following rule:

c⇒ r t⇒ v

R=(c, t)⇒ v

Univalence implies that we have a type A with a, b : A such that
p : IdA(a, b), but neither p⇒ refl(a) nor p⇒ refl(b). Hence, there is no
canonical form v : IdA(x, y) such that p⇒ v. This is in conflict with our
criterion for the successful definition of a type proposed in Section 4.2.4.

A possible explanation for why canonicity fails for identity types is that
we have set up identity in the wrong way. Per Martin-Löf seemed to have
shared this view for a few years, which is why he pursued a different version
of his type theory in Martin-Löf (1982).

5.1.2 Extensional type theory and the meaning explanations

In extensional type theory, UIP is validated. Hence, there are no non-
canonical identity proofs and the criterion for the successful definition of a
type is satisfied. Martin-Löf’s meaning explanations are commonly consid-
ered to validate extensional type theory2 and this is true if we consider the
informal explanations of the set of rules in Martin-Löf (1984) as the meaning
explanations. However, extensional type theory invalidates the meaningful-
ness of the judgments: The judgments are not decidable anymore. We cannot
decide judgmental equality with a mechanic procedure, and type-checking
is also not decidable anymore. This is in stark contrast with the intuitionistic
dogma:

We recognize a proof if we see one.

— Kreisel (1966):p. 202

Martin-Löf subscribed to the same paradigm, in Martin-Löf (1987) we
can find the conviction that judgments should be evident. The best charac-
terization of evidence is that we have a terminating mechanical procedure
deciding judgments, but such a procedure does not exist for extensional
type theory.

2 We can find this conviction, for example, in a talk of Peter Dybjer: https://www.youtube.
com/watch?v=dJF-iW5Gav8.
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We conclude that extensional type theory is also incompatible with the
meaning explanations for intuitionistic type theory. Even though extensional
type theory seems at first sight more “well-behaved” than intensional type
theory, the lack of distinction between judgmental and propositional equality
is not only impractical, but also has conceptual disadvantages over inten-
sional type theory. The success of intensional type theory in the univalent
foundations program should motivate us to pursue intensional type theory
and justify its behaviour.

5.2 Homotopical Interpretation of Identity

Identity in intensional type theory seemed ill-behaved for a long time, im-
plementations of the type theory in theorem provers often got rid of its
unusual behaviour by assuming UIP. Hofmann and Streicher (1998) formu-
lated a concise countermodel for UIP by showing that the identity type in
intensional type theory exhibits the structure of a groupoid. This prepared
the ground for the insight that the internal structure of types in intensional
type theories can be modelled by ∞-groupoids, which in turn are a model
of homotopy types. The connection was drawn independently by Awodey
and Warren (2009) and Voevodsky (2006) and led to the formulation of
many important new concepts such as univalence. Since the homotopy in-
terpretation was so crucial in making use of intensional type theory, we will
investigate in this section what lessons we can learn from this connection
in order to justify the constructive validity of identity. We will briefly recap
the homotopy interpretation in Section 5.2.1 and then discuss how this is
relevant to our project of adapting Martin-Löf’s meaning explanations in
Section 5.2.2.

5.2.1 The homotopy interpretation

The fundamental insight developed in the HoTT Book (2013) is the profound
correspondence between intuitionistic type theory and homotopy theory:
Types can be regarded as abstract topological spaces, inhabitants of the type
as points in the space and identifications between terms as paths between
points.

Consider Figure 5.1: The type A is regarded as a space. Inhabitants
a : A and x : A are points in that space (to be precise, functions from the
respective single point into the space). The identity proofs refla : IdA(a, a)
and p : IdA(a, x) are interpreted as paths r and p in the space A, i.e., as
functions from the unit interval I = [0, 1] into the space with adequate
endpoints:

r : I → A with r(t) = a for all t ∈ I
p : I → A with p(0) = a, p(1) = x
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a
x

r
p

A

Figure 5.1: The homotopy interpretation of type theory

We can define a homotopy h, i.e., a continuous transformation, between
r and p by h(t, x) = p(tx). The transformation is depicted in Figure 5.1 with
the dotted points: Every point on p can be mapped into the singe point a.
Homotopies can be seen as the notion of identity in homotopy theory, every
statement can only be made up to homotopy. This justifies why the analogue
of the J-rule is valid in the homotopical picture: We want to prove that the
property C holds for any point x and path p starting from point a. We have
proved that C holds for the constant path r. Since r and p are homotopical,
we can retract x along p to a. Hence, the property C also holds for p.

The name path induction stems from the fact that, informally speaking,
we only need to prove that C holds for the base case of the constant path r.
Since p is identical to r, the induction step is given to us for free.

Regular path induction, which is equivalent to based path induction, can
be interpreted by a similar argument, where we vary both ends a and x of
the path.

5.2.2 Meaning explanations based on the homotopy
interpretation

The homotopy interpretation gives nice geometrical intuitions for the pecu-
liarities of intuitionistic type theory and allows to reason about homotopical
spaces in an axiomatic way. Can this be used to provide meaning explana-
tions for intensional type theory?

If we interpret meaning explanations loosely in the sense of giving some
meaning to the rules of type theory, the homotopy interpretation is adequate.
Tsementzis (2019) abandons Martin-Löf’s meaning explanations all together
and goes on to develop a new kind of meaning explanations based on spatial
notions such as “shape”, “path” and “point”. This can be seen as the attempt
at articulating the metaphysical subject matter of type theory, similar to
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collections as the metaphysical underpinning of set theory. However, this is
of little use for our project of formulating a constructive account of identity.
The meaning explanations of Martin-Löf are concerned with explaining the
computational content of constructive logic, where the puzzling point is
that the principle that all proofs should reduce to some canonical form is
not valid. Understanding why this is sensible and possibly adapting the
definition of constructive validity are the main challenges we are facing.
Discarding Martin-Löf’s original meaning explanations seems like throwing
out the baby with the bathwater since we want to retain his perspective on
computational content — which does not mean that we should not take
inspirations from the homotopical interpretation of type theory, but put
bluntly, spaces and points are not the subject matter of logic.

5.3 Indiscernibility and Identity

One natural way to think about identity has been put forward by Leibniz
and states that identity can be defined in terms of indiscernibility: If it is
not possible to discern two entities by any property, the two entities must
in fact be identical. When giving meaning explanations for type theory, it
is natural to investigate if indiscernibility can illuminate the behaviour of
propositional equality in HoTT. Ladyman and Presnell (2015); Ladyman and
Presnell (2017) deal with this very question in the course of evaluating if
HoTT can serve as foundation for mathematics. According to Ladyman and
Presnell, a foundation should not only give methodological guidance, but is
required to answer more questions regarding the ontology and epistemology
of mathematics. In particular, all concepts in such a foundation have to be
justified independently of mathematics, i.e., the concepts of the foundation
must be derived from first principles. In particular, Ladyman and Presnell
disregard path induction as a justification for the J-rule since it presumes
notions from algebraic topology. The idea of a pre-mathematical justification
stems from Linnebo and Pettigrew (2011), who introduced this criterion
in the debate on whether category theory can serve as a foundation for
mathematics.

The requirements that Ladyman and Presnell set for a pre-mathematical
justification are more restrictive than what we could use as meaning expla-
nations for identity in intensional type theory. In our presentation of the
meaning explanations in Section 4.2, we have introduced another (albeit very
basic) formal system to pin down the semantics of homotopy type theory
and, prima facie, the homotopical interpretation is not ruled out as a meaning
explanation for identity in intensional type theory.

So while the premises and motivation of Ladyman and Presnell are
different from our project of justifying the constructive validity of identity
in intensional type theory, their results might still provide insight in the
features of identity and is highly relevant for our project. In particular, a
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successful justification should also explain why there are non-canonical
identity proofs.

In the following, we will quickly introduce what has been called Leibniz’
law in Section 5.3.1 and then reconstruct the argument of Ladyman and
Presnell (2015) in Section 5.3.2. We will conclude in Section 5.3.3 that, in
fact, the argument is not convincing and the authors do not live up to their
aspirations of providing a pre-mathematical justification. Relevant to our
project, we will quickly recap Ladyman and Presnell (2017) and concur
with them that indiscernibility only gives limited insight into identity in
intensional type theory.

5.3.1 Leibniz’ law

Going back to Leibniz, identity is traditionally defined by stating that two
things are identical if and only if the share all their properties.3 His principle
gives a sufficient criterion for identity of two objects by stating that if they are
indiscernible, they must be equal. The principle of the identity of indiscernibles
can be phrased like this:

If P(x)↔ P(y) for all properties P, then x = y. (PII→)

In other words, if we cannot distinguish two elements, we should consider
them identical. The converse of this principle states that if two objects are
equal, they cannot be distinguished by any property, sometimes called the
principle of the indiscernibility of identicals:

If x = y, then P(x)↔ P(y) for all properties P. (PII←)

Note that two judgmentally equal types or terms are interchangeable in
all contexts and hence, PII← holds without any constraints for judgmental
equality. The converse, PII→, does not hold for judgmental equality since one
can not prove a judgmental equality by investigating the properties of types
or terms. Judgmental equality should be thought of as the equality evident
from symbol manipulation and has a distinctively intensional character.
Hence, it is not meant for investigating equality between mathematical
objects and cannot be explained with indiscernibility.

Propositional equality on the other hand characterizes non-trivial identi-
fications between objects and is obtained by an explicit proof object. We will
now investigate if it can be characterized satisfactorily by Leibniz’ law, for
which we will first investigate if the J-rule corresponds to PII←. In combina-
tion with univalence, propositional equality can be thought of as a highly
extensional equality that identifies structurally equal objects, which suggests
that it incorporates PII→, which we will discuss in Section 5.4.

3 Strictly speaking, only the principle of the identity of indiscernibles has been formulated by
Leibniz. Since we are not concerned with historic cherry picking here, we will also attribute
the converse of this principle to Leibniz.
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5 .3 indiscernibility and identity

5.3.2 Justifying the J-rule

In order to pre-mathematically justify the J-rule in HoTT, Ladyman and Pres-
nell (2015) attempt to derive the J-rule from two primitive concepts which
they consider comprehensible from intuitive grounds. We will introduce the
two principles in the following.

We will consider an arbitrary type A and a : A in the following and
derive based path induction for a. We introduce the abbreviation E(a) to
refer to all inhabitants of A that are equal to a:

E(a) :≡ ∑
x:A

IdA(a, x)

Recall that the elements of a sigma type ∑x:A B(x) are tuples (x, p) where
x : A and p : B(x), i.e., when viewing the type as a proposition, x is the
witness of the existential statement and p the proof that x is indeed a witness.
Inhabitants of E(a) are tuples (b, p) where b : A and p : IdA(a, b).

The first principle relevant for the argument is the uniqueness principle
for identity types (not to be confused with the uniqueness of identity proofs
discussed above in Section 5.1). In general, uniqueness principles can be
seen as sanity checks to ensure that a type has been defined appropriately:
A uniqueness principle asserts that the only inhabitants of a type are those
which can be constructed from the term constructors. For identity, the
uniqueness principle reads as follows:

∏
(b,p):E(a)

IdE(a)((a, refla), (b, p)) (UPI)

Intuitively, UPI states that all elements equal to a should be equal to a,
and the proof of that fact should be equal to the trivial self-identification
reflA. Crucially, this does not mean that there is only one inhabitant of
E(a) as Ladyman and Presnell point out — but only one inhabitant “up
to identity” (Ladyman and Presnell, 2015:p. 403). Hence, this seemingly
innocent principle does have a very subtle meaning, which we will further
examine in the discussion in Section 5.3.3.

The second ingredient for the derivation of based path induction is what
Ladyman and Presnell call substitution salva veritate. For this, let Q : B→ U
be an arbitrary predicate over the type B. The following type expresses that
if two elements s, t are proven to be equal and there is an inhabitant of Q(t),
then we also have an inhabitant of Q(s):

∏
s:B

∏
t:B

IdB(s, t)→ Q(t)→ Q(s) (SSV)

Read as a proposition, this is just PII← from above, the indiscernibility
of identicals. Ladyman and Presnell claim that since indiscernibility is an
adequate account of identity, we can introduce a term of the above type. We
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5 .3 indiscernibility and identity

will an inhabitant of the above type in SSV ssvB,Q, indexed by B and the
predicate Q.

If we consider E(a) for type B and plug in (b, p) and (a, refla) into ssv,
we have a function

ssvE(a),Q((b, p), (a, refla)) : IdE(a)((b, p), (a, refla))→ Q(a, refla)→ Q(b, p)

Given that UPI also holds, we can construct the following function:

Q(a, refla)→ Q(b, p)

Hence, for any predicate Q and a witness that Q holds for a and the trivial
self-identification refla, we can produce a proof of Q for any other inhabitant
of the identity type. This corresponds to based path induction.

5.3.3 Discussion

We want to argue that the argument that “based path induction can be justi-
fied on the basis of pre-mathematical principles”, as claimed and conducted
by Ladyman and Presnell (2015), is not valid.

Crucial defect of the approach of Ladyman and Presnell (2015) is that
they cannot motivate the uniqueness principle of identity types. While the
principle of indiscernibility of identicals, introduced as SSV above, can very
well be argued to only rely on pre-mathematical intuitions of what identity
is, the uniqueness principle of identity types UPI presumes the intricate
structure exhibited by identity in HoTT. As Ladyman and Presnell (2015)
correctly acknowledge, UPI does not state that there is only one inhabitant
∑x:A IdA(a, x), namely (a, reflA), but that this is the only inhabitant up to
identity. This unusual notion is borrowed from the homotopical formulation
“up to homotopy”, and is highly surprising without knowing about the
homotopy interpretation.

Indiscernibility of identicals is a corollary of the J-rule as shown in
Section 2.4, but the J-rule says something different than PII←. In particular,
indiscernibility does not give insight in why there are several inhabitants of
the identity type and why those in turn can be identified. An obstacle seems
to be that Ladyman and Presnell look at the elimination rule of identity in
isolation, but we would need to make sense of all characteristics of identity
to justify the J-rule specifically.

In Ladyman and Presnell (2017), the authors try to reduce identity to
indiscernibility in a more direct way. While the goal pursued by Ladyman
and Presnell (2015) only required the motivation of the J-rule from pre-
mathematical grounds, the 2017 paper demands to directly recover the
properties of the identity type from indiscernibility, which is defined as
follows:

IndisA(a, b) :≡ ∏
P:A→U

P(a)↔ P(b)
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The authors are not able to derive the properties of the Id type from
the definition above. This does not come as a surprise: In predicative type
theories such as Martin-Löf’s type theory, quantification over all predicates
is not strong enough to allow for the definition of the identity type, which
is why Martin-Löf had to introduce it as a primitive type with dedicated
introduction, elimination and computation rules.

It should be noted that it is possible to define identity via Leibniz’ law in
another class of type theories, namely those with impredicative universes, i.e.,
where the universe of all types contains itself. The calculus of constructions
(CoC) (Coquand and Huet, 1986) is such an impredicative type theory, a
variant of the CoC forms the basis of the popular theorem prover Coq. In
the CoC, identity does not need to be introduced as a primitive type, but
can be defined similarly to the definition of Indis above.

We conclude that even though indiscernibility explains some aspects of
identity in intensional type theory, it gives little insight in why there are
several, non-canonical inhabitants of the identity type. Hence, indiscernibility
underdetermines the characteristics of the identity type in HoTT and can
only be part of the motivation for it. This is also recognized by Ladyman
and Presnell (2017):

Hence we conclude that, as is standardly supposed in work on
HoTT, “identity” types really do express identity. So, unavoid-
ably, this potential new foundation for mathematics has at its
heart a radical new way of thinking about identity, which throws
up new questions to be studied and, potentially, unexpected
new applications to the many philosophical problems involving
identity.

— Ladyman and Presnell (2017):p. 242

5.4 Outlook

We have seen that neither Martin-Löf’s meaning explanations, nor the char-
acterization of identity as indiscernibility gives a satisfying answer to why
there are non-canonical inhabitants of identity types. The homotopical inter-
pretation does give an answer to that question by drawing from geometric
intuitions, but while this is very fruitful for formalizing topology, it cannot
justify the constructive character of identity in intensional type theory.

It seems that the criterion for a successful definition of a type as proposed
in Section 4.2.4 needs refinement to incorporate identity types. We have
seen in Section 5.3.2 that the uniqueness principle for identity types plays
a crucial role for the motivation of the J-rule. UPI essentially ensures the
uniqueness of identity proofs on the level of propositional equality. An ad-hoc
adaption of the meaning explanations would be to extend the canonical form
relation to propositional equality. This would ensure that all terms have a
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canonical form, but would destroy the decidability of the judgments, akin to
the problems that extensional type theory face. Nevertheless, it seems that
we have to weaken the insistence on canonical proofs to justify the structure
of the identity type.

Ladyman argues that objects are only treated “up to identity” — this
notion is exactly what we need to explain, since it only makes sense in the
homotopical interpretation. Merely changing the terminology from paths to
“computational deformations” seems to give little insight, but might be used
as a basis for a constructive interpretation of identity.

The complex behaviour of identity in constructive type theory is not
just legerdemain: Proof-irrelevant systems are only able to characterize
decidable equality of simple sets, whereas intensional type theory allows
for representing mathematical objects in a more fine-grained way. It seems
inevitable that equality evinces an intricate structure if one asks:

In which way are things equal?

Univalence as identity of indiscernibles?

We will close with a short digression on the relevance of univalence for our
project. Roughly speaking, univalence can be regarded as the principle that
“isomorphic objects can be identified”. This sounds a lot like the principle of
the identity of indiscernibles stated in Section 5.3.1 — isomorphic objects
cannot be discerned by any property, so we consider them the be equal.
Unfortunately, we do not have enough time to further investigate univalence
in this work, but it is worthwhile to assess the role of univalence for justifying
the structure of identity in intensional type theory.

At first glance, the J-rule and univalence seem to be converse principles:
The J-rule is the elimination rule of propositional equality, while univalence
allows for establishing a propositional equality after observing that two
things are equivalent. However, both principles work on different levels:
Univalence is a property of a universe, hence it allows for identifying types.
The J-rule in contrast is applied to properties and allows for using an
identification between terms.

A constructive explanation of identity in HoTT does not necessarily have
to incorporate univalence, since it is the structure induced by the identity
type that we need to explain. However, the intense research effort on giving
a constructive account to univalence might yield insight for our project,
more investigation in the conceptual status of cubical type theories seems
advisable for that purpose.
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Chapter 6

Liberal Constructivism

Meaningful distinctions need to be preserved.

— Bishop (1973)

The distinction between constructive and non-constructive proofs is often
not made clear, in fact, many mathematicians are unaware of when they em-
ploy proof steps that destroy the computational content of a proof. Brouwer
and later Bishop have prominently called attention to this issue. In Bishop’s
view, constructive proofs are not only useful, but have a different status
than non-constructive proofs since they directly give rise to mathematical
objects satisfying the theorem under question. In Chapter 4, we have seen
how Martin-Löf’s meaning explanations attribute special status to canonical
forms since they characterize the computational content of proofs. When
developing a theory of meaning for mathematics, we want it to reflect the
distinction between constructively valid and only classically valid proposi-
tions.

We also want more careful differentiation in another point: The fact that a
statement cannot be proven constructively does not imply that the statement
is invalid. Committed intuitionists in the tradition of Brouwer equate validity
with constructability. Even though the focus on mental constructions gives
a clear view on the epistemology of mathematics, it has a serious defect:
Intuitionists have difficulty to explain why mathematicians converge in their
ideas. Since the existence of a mind-independent mathematical universe
is rejected, mathematical truths are not determinate. It seems difficult to
explain why mathematics is so successful in creating an accepted body of
knowledge if any mathematicians entertains her own mental constructions.
We want to abandon the subjective view of intuitionism on mathematics in
order to formulate a satisfying view on the semantics of mathematics. The
assumption of a determinate universe is necessary if we want to maintain
that the law of excluded middle (LEM) may be used coherently.

Already Bishop diverted from the intuitionistic conviction that the as-
sumption of a mind-independent mathematical universe should be dis-
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missed as “metaphysical”. The view that a mathematical universe is ex-
plored by the mathematician is not only consistent, but necessary for his
understanding of the nature of mathematics. As Goodman (1983):p. 65 puts
it: “Bishop’s insistence on objectivity ought to force him to accept classical
logic”, a view that is also supported by Beeson (1980): “the ontological
viewpoint of Bishop is that mathematical objects (as well as mathematics in
general) are objective”. Bishop recognizes in the preface to his seminal Foun-
dations of constructive analysis that the idealistic component of mathematics
(namely the use of LEM) allows for simplifications and “opens possibilities
which would otherwise be closed” (Bishop, 2012:p. viii). Bishop’s work
criticizes that classical mathematics neglects the importance of constructive
reasoning, but it does not maintain that classically pursued mathematics is
incorrect or incoherent.

It seems that nowadays, a significant part of researchers working in
constructive mathematics share Bishop’s lenient perspective on classical
reasoning. The term liberal constructivism has been adopted by Billinge (2003)
for this conviction, we will adopt this terminology. For example, Goodman
has formulated the view of liberal constructivism as follows:

[...] we must recognize that the theorems we prove are true about
a determinate structure which we do not dream, but which is
actual and independent of which of us is studying it.

— Goodman (1983):p. 65

To the knowledge of the author, there has been no concise attempt at for-
mulating a philosophy of mathematics that combines Goodman’s stance with
something that explains the special importance of constructive content of a
proof. When investigating the writings of Bishop, Billinge (2003) concludes
that Bishop did not bring forward a concise philosophy of mathematics.
We want to provide an initial attempt at formulating such a philosophy
of mathematics. In particular, we have to reconcile the different views on
the semantics of mathematics, as intuitionists have a different view on the
meaning of mathematical expressions than classically minded mathemati-
cians. Is a proposition just a truth-apt sentence, or is it the set of its proofs?
What is the reference of a theorem that has not been proven constructively?
What do the logical constants mean? If we take as basic the view that has
been indicated by Martin-Löf and is worked out in proof-theoretic semantics,
then the meaning of the inference rules is determined solely by their use
and not by referring to something outside of the formal system. However,
applying the law of excluded middle presumes the existence of some deter-
minate mathematical universe and requires to attribute the meaning of a
mathematical statement to something outside of the formal system.

How can these views be reconciled? The different theories of meaning
maintained by intuitionists and classical mathematicians seem incompatible
at first glance, and it has been argued by Davies (2005) that constructive
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6 .1 law of excluded middle

and classical mathematics are simply different frameworks with different
subject matters. If the Univalent Foundations Program wants to succeed in
providing a basis for all of mathematics, it will need to provide a unified
semantical theory. An application of the Carnapian principle of tolerance is
not acceptable if we want to create unified foundations for a fixed subject
matter, in this case, mathematics. Hence there is a need for reconciliation
between constructive and classical accounts to the meaning of mathematical
expressions. A challenge will be that “any adequate philosophical defence
of constructivism will also be an argument for the illegitimacy of classical
mathematics” (Billinge, 2003:p. 150). We have to make the balance act of
embracing constructive reasoning while maintaining that the LEM is a valid
principle of reasoning.

In the HoTT Book (2013), it has been worked out how the law of excluded
middle can be assumed consistently in intuitionistic type theory. We will
trace this account in Section 6.1, where we will see why the LEM fails
constructively and how assuming the LEM destroys the computational
content of proofs. Afterwards, we will sketch a theory of meaning for HoTT
that incorporates theorems proved by using the LEM in Section 6.2. We
will discuss some open problems in Section 6.3 and conclude in Section 6.4,
where we will argue that HoTT is very apt formal framework to realize the
amalgamation of constructive and classical mathematics.

6.1 Law of Excluded Middle

As we saw in Chapter 3, the intuitionistic conception of logic did not result
from devising a logic from first principles, but rather, intuitionistic logic has
been developed to capture the canon of proofs that are acceptable from an
intuitionistic point of view. Accordingly, intuitionists do not a priori regard
the law of excluded middle as invalid, it is just that employing the LEM
breaks the constructive content of proofs. We want to trace this incident in
the context of HoTT in Section 6.1.1 and then investigate in Section 6.1.2
which commitments are carried by postulating the LEM in HoTT.

6.1.1 The constructive invalidity of LEM

The law of excluded middle states that each statement is either true or false.
A formulation of LEM under a naïve propositions-as-types interpretation
might be put forward as follows:

LEM∞ :≡ ∏
A:U

A + (A→ 0)

This formulation of LEM is inconsistent with univalence, see for HoTT
Book (2013):Theorem 3.2.2. Actually, this is also not the formulation of LEM
that we want: We want to claim that any proposition is either true or false,
but not that any type is inhabited or empty. Otherwise, proving that A
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6 .1 law of excluded middle

cannot be inhabited and then applying LEM∞ would yield a specific element
of A → 0 — but since there may be several inhabitants of that type, there
cannot be a canonical way to obtain such an element.

As we have seen in Section 2.6, we can recover the classical understanding
of propositions in HoTT by means of propositional truncation, yielding for
any type A a truncated type ‖A‖ that conflates all inhabitants to a unique
inhabitant. Hence, any type can be transformed to a mere proposition, and
all mere propositions are equal to either the empty or the unit type, i.e.,
mere propositions are truth-apt. With propositional truncation, we can give
an adequate formulation of the LEM:

LEM :≡ ∏
A:U
‖A‖+ (‖A‖ → 0)

Type LEM expresses the proposition that any type, when regarded as
a mere proposition without any computational content, can be proved or
disproved. Under more considerate formulation, an inhabitant of LEM is an
effective procedure that produces for any type either an inhabitant of its truncated
version or shows that, assuming there was an inhabitant, falsity can be derived.
Obviously, we cannot in general construct such a procedure for a formal
system with the proof-theoretic strength of intuitionistic type theory. It is
not a surprise the LEM is not a theorem in HoTT — instead, the constructive
reading of the universal quantifier makes it necessary that the LEM is false.

It should be noted that for some types, the law of excluded middle does
hold as a theorem, namely, for all type where there is an effective procedure
that can decide a certain property. For example, equality between natural
numbers is decidable (which we laid out in Section 5.1). Therefore, we do
have an inhabitant of the following type in HoTT:

∏
m,n:N

IdN(m, n) + (IdN(m, n)→ 0)

This fact has already been pointed out by Tait (1994):p. 47.

6.1.2 Assuming the LEM

We have seen that the understanding of the LEM as an effective procedure
deciding any proposition evinces that it cannot hold constructively. In this
section we will see that it is nevertheless consistent to postulate the existence
of such a procedure. If we assume the existence of an independent mathe-
matical universe in which all propositions do have a determinate truth value,
such a postulation is not harmful or incoherent. Hence, proving something
classically in HoTT amounts to saying that assuming that we would have an
effective procedure deciding all propositions, we can derive the truth or falsity of a
particular proposition. This assumption is done by postulating that there is an
inhabitant of LEM:

lem : LEM
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Proof terms that contain lem will lack computational content, but since
we are interested in propositions as truth-apt sentences, we cannot expect
more than retrieving a truth value from a proof that has not been carried
out constructively. Note that type-checking remains decidable even if the
existence of lem is postulated. This means that we still adhere to the principle
that we should recognize a proof when we see one.

Let us illustrate the application of the law of excluded middle in an
example. The real numbers are traditionally subtle to introduce in construc-
tive system, the HoTT Book (2013) presents two ways of constructing the
real numbers by Cauchy sequences and Dedekind cuts. When the LEM is
assumed, both formulations are equivalent in HoTT, so for the purpose of
the example it does not matter which formulation of the real numbers we
use, we refer to HoTT Book (2013):Ch. 11 for an introduction to the reals in
HoTT.

Consider the intermediate value theorem, which states that for any func-
tion that is continuous on the unit interval and that changes its sign between
0 and 1, there exists a root. In HoTT, we can express the theorem as follows:

IV :≡ ∏
f :[0,1]→R

[ f (0) < 0∧ f (1) > 0)→ ∑
x:[0,1]

f (x) = 0]

The canonical proof of the theorem proceeds by bisecting the interval
step by step and hence approximating the root:

x0 =
1
2

xn =


xn−1

2 , if f (xn−1) > 0
1+xn−1

2 , if f (xn−1) < 0
xn−1, if f (xn−1) = 0

The limit of the sequence x1, ..., xn will the yield a value x for which
f (x) = 0. Constructively, the proof does not go through since it is not
possible to give an algorithm that decides if a real number is larger, smaller
or equal to 0. Since real numbers are given as only potentially infinitesimal,
we can only inspect a finite number of digits of a number. In order to check
if a real number x equals to 0.00..., we would have to decide equality for an
infinite number of digits. Assuming that we would have such an algorithm,
we could in particular decide the halting problem.

When assuming lem, the unit interval is as “compact as it could be”
(HoTT Book, 2013:p. 478). Hence, we can provide an inhabitant of the
following type:

EQ0 :≡∏
x:R

(x < 0) + (x > 0) + Id(x, 0)

With this lemma, the above bisection method can be formalized in HoTT
and an inhabitant of IV can be presented. Since the inhabitant of EQ0 contains

60



6 .2 a unified theory of meaning

lem, the proof of IV will also contain lem. Since the term lem cannot be
eliminated, we will not be able to produce a canonical form of the proof
of IV, which means that we cannot extract a method that produces a x : R

such that f (x) = 0. So while we cannot in general give a root of f , we can
still claim that it is true that there is a root (note that approximate versions
of the algorithm will of course work in HoTT, but we wanted to prove the
existence of an exact solution).

We conclude that when we assume the law of excluded middle, we can
establish the truth of a proposition, but will not have computational content in
the proof. This is how it should be and everything we can ask for. Crucially,
the assumption of LEM only destroys the constructive character of proofs
that contain lem, whereas the other proofs remain unaffected. Hence, it is
possible to discern between constructive proofs and classical proofs inside
the same theory.

6.2 A Unified Theory of Meaning

Now that we have seen how we can employ the law of excluded middle in
intuitionistic type theory, we want to explore the repercussions of such a
procedure for our understanding of mathematics. We will try to give a theory
of meaning for mathematical expressions that takes serious the insistence
on giving constructive proofs while allowing for the application of the law
of excluded middle. We will need to define what we consider the reference
of both constructive and non-constructive proofs and lay down what we
consider the meaning of the logical constants.

Martin-Löf’s “syntactico-semantical” approach to meaning theory nicely
characterizes the special status of canonical forms. However, a “contentual
language” is an oxymoron from a classical point of view: A language is
comprised of linguistic expressions and might only refer to some content
outside of the language. This “outside” is what intuitionists discard as meta-
physical speech, but we need some sort of determinate mathematical reality
to make coherent the postulation of the LEM. Hence, we will try to keep
form and meaning apart and understand type theory as an uninterpreted
formal language (which is of course very apt to capture mathematics). We
will still incorporate the intuitionistic account to the meaning of the logical
constants and attributing a special status to canonical forms in our approach.

Note that the opposite of the syntactico-semantical approach does not
consist in reducing the meaning of type theory to some set-theoretic model,
such as Kripke frames as a semantics for the BHK meaning explanations.
Rather, we only want to maintain that mathematical objects exist indepen-
dently of the theory of types (we completely ignore the problems that result
from stating the existence of abstract objects in this work). We can only hope
that the types and terms we postulate in our type theory do refer to the
mathematical objects under investigation.
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6 .2 a unified theory of meaning

We have to do the balancing act of combining traditional theories of
reference with an inferentialistic view on the meaning of the logical constants
and the special status of canonical forms. The following exposition should
not be seen as a definite account, but rather as an outline of which questions
need to be answered to provide a semantics for liberal constructivism.

Propositions and truth

The first decision that we need to make is how we define “proposition” — do
we adopt the intuitionistic account of identifying a proposition with the set
of its (canonical) proofs, or do we consider propositions to be simply truth-
apt sentences? Since the LEM only makes sense for the latter understanding,
we will adopt the traditional understanding of propositions as truth-apt
sentences. We consider a proposition to be reflected with multiple types in
the system, namely all those types that intuitively capture the proposition.
For example, “P(x) holds for some x” is represented both with Σx:AP(x)
and ‖Σx:AP(x)‖. We can then establish the following truth-condition for a
proposition:

A proposition P is true iff a corresponding type A is inhabited,
a : A.

Since a is not required to be canonical, we may employ the law of
excluded middle in establishing the truth of P. The constructively valid
propositions are those whose proofs can be reduced to canonical forms:

A proposition P is constructively valid iff a corresponding type
A is inhabited, a : A, and a⇒ v for some canonical form v.

A proposition is constructively valid if a type corresponding to that
proposition can be proved, and that proof evinces computational content.
With this distinction between validity and constructive validity, we have at
hand a very simple theory of reference. Going back to Frege and Carnap,
the reference of a proposition is its truth-value. Hence, the reference of a
proposition is true if an associated typed can be shown to be inhabited. For
example, the intermediate value theorem has been proved above by means
of the LEM, and we can establish the following reference pattern:

IV ↪→ true

In our theory of reference, we want to single out the canonical forms
since they give direct access to the objects under investigation, as we have
sketched in Section 4.4. We will incorporate Martin-Löf’s meaning explana-
tions by considering canonical forms as references of non-canonical terms
and types. The reference of a canonical form in turn lies outside of the formal
theory. For example, the reference of add(s(s(0))s(s(0))) is its canonical form
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s(s(s(s(0)))). We then maintain that this is still only a linguistic expression
that has a reference lying outside of the language, namely in our intuitive
conception of the natural number 4. This yields the following reference
pattern.

add(s(s(0))s(s(0))) ↪→ s(s(s(s(0)))) ↪→ 4

The natural number symbol N has an intended interpretation, but we
leave it just as that: A symbol that refers to the structure that we have in
mind when talking about the natural numbers. Types of HoTT are hence
interpreted via the theory of expressions as follows:

N ↪→ N ↪→ Natural numbers

So far for a theory of meaning for liberal constructivism. Since we as-
serted a determinate mathematical universe and interpreted the expressions
with respect to that universe, it is coherent to use the LEM. Our theory takes
serious the intuitionistic insistence on the special status of canonical forms,
since we consider the reference of non-canonical expressions to be canon-
ical forms. Canonical forms in turn have a reference in the mathematical
universe and thereby give a direct connection to the mathematical objects
under investigation.

The meaning of the logical constants

We not only have to specify the meaning of propositions and mathematical
objects, but also of the constituent parts of mathematical sentences, namely
the logical connectives. Hellman (1989) has argued that the logical symbols
in intuitionistic logic differ in meaning from the ones used in classical logic,
in particular, he argues that the existential quantifier ∃ and Σ are distinct in
meaning. If we want to give a unified theory of meaning, we have to commit
to one meaning of the logical constants.

Since the operation of propositional truncation introduced in Section 2.6
allows for removing the computational content of a type, it seems expedient
to only retain the intuitionistic logical symbols and introduce classical quan-
tifiers not as primitive symbols, but as abbreviations for truncated types. For
example, the existential quantifier can be defined as follows:

∃x.P(x) :≡ ‖∑
x:A

P(x)‖

The above type will be a mere proposition and will not contain any
constructive content. Similarly, the classical conception of a disjunction can
be recovered by:

P ∨Q :≡ ‖P + Q‖

Since P ∨ Q is propositionally equal to either 1 or 0, we cannot retain
any information of which disjunct holds from a proof of P ∨Q.
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If we adopt this convention, the demarcation line between classically and
constructively valid proofs is not drawn by using different logical constants,
but solely by the structure of the proofs. If we only have one inhabitant of a
type, the proposition represented by the type is true.

This account seems to suggest that we have to subscribe to the inferen-
tialistic understanding of the logical constants. The meaning of the symbols
is understood in terms of how they are used, i.e., by the inference rules, and
not by the conditions under which they are true. It needs to be investigated
whether this leads to tensions with the referential theory stated above: The
logical constants are defined in terms of constructability, whereas the mean-
ing of the propositions is specified in terms of truth-conditions with respect
to a mathematical universe — this discrepancy needs to be resolved. We
want our semantic theory to be compositional in the sense that the meaning
of the logical constants determines the meaning of more complex statements,
if this can be maintained with the above expositions is unclear. Maybe, we
need to delineate between referring and non-referring expressions in HoTT:
Mathematical expressions refer to mathematical objects, whereas the mean-
ing of the logical symbols lies inside the formal system. As an upshot, this
would make apparent the “contentlessness” of logic. Additionally, we could
employ proof-theoretic concepts such as harmony to justify the validity of
the rules of type theory.

6.3 Drawbacks

The above exposition raises multiple concerns. In this section we want to
present some breaking points of the theory, which are partially inherited
from the incongruities of Martin-Löf’s meaning explanations.

Propositional equality as equality of reference

In Section 2.5 we have sketched how propositional equality can be thought of
as equality of reference, since from a structuralist point of view, isomorphic
objects can be identified and propositional equality identifies precisely all
structurally equal types. Complementary, we have characterized judgmental
equality as equality of sense or presentation. This distinction has already
been made by Per Martin-Löf and gives a fruitful way to think about both
equalities.

If we adequately define a type M as containing an initial element and a
successor element, we can establish that IdU (N, M) is inhabited, i.e., that the
type M is identical to the natural numbers type N. It is then natural for a
structuralist to claim that the reference of M is the natural numbers as well:

M ↪→ Natural numbers

However, if M is not defined to be judgmentally equal to N, we cannot
establish the above denotation by means of translating M in the theory of
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expressions and evaluating it to canonical form — M is only propositionally
equal to N, but not judgmentally. This seems to suggest that we should take
into account propositional equality when investigating if two expressions
are coreferential.

This might also solve some other inherent problem in Martin-Löf’s
meaning explanations, which we have investigated in depth in Chapter 5:
In intensional type theory, not every inhabitant of the identity type can be
reduced to a canonical form. For example, if we have p : IdA(a, b) different
from both refla and reflb, then we cannot assign a reference to p by evaluating
it to normal form. However, p might be propositionally equal to refla witnessed
by an inhabitant of IdIdA(a,b)(p, refla). In this case, we might consider p to be
coreferential with refla. This might be unfolded in an adaption of Martin-
Löf’s meaning explanations that does justify the characteristics of identity
in intensional type theory.

Another appeal of extending the canonical form relation to propositional
equality could be the homotopy canonicity theorem, which we have intro-
duced in Section 4.3.2: For simple types such as the natural numbers, we
can prove that terms containing the univalence axiom are propositionally
equal to a canonical numeral. This allows for assigning a reference to a term
that is without reference according to Martin-Löf’s meaning explanations.
Further investigation in the extent and relevance of homotopy canonicity
seems auspicious.

We conclude that a semantic theory for HoTT needs to take into account
propositional equality. An appropriate incorporation might also solve the
issue of non-canonical identity proofs.

Valid inference rules

If we postulate the existence of a term such as lem, we break the criterion
for constructive validity since we introduce a term in the system that cannot
be reduced to a canonical form. We argued informally that it is coherent
to postulate the existence of lem — but are there other axioms that can or
should be postulated? How can we delineate which terms are sensible and
which are not?

Separating mathematics and logic

One latent problem that we had to deal with throughout the thesis is that
logic and mathematics are conflated in the intuitionistic tradition. We have
treated the set of natural numbers in the same way as a logical proposition,
and a single number as a proof. Conversely, we have regarded proofs as
first-class mathematical objects and have interpreted propositions as types
which are richer in structure than truth-apt sentences.

This unification of proofs and objects is what makes HoTT so expressive
and allows for an elegant formalization of homotopy theory, but is also
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philosophically challenging. In our semantic theory, we have distinguished
between logical and mathematical expressions, which seems expedient since
according to the orthodox view, logic is supposed to be without content,
whereas mathematical expressions refer to some abstract mathematical enti-
ties. Identity is commonly regarded to be logical1, but we were not able to
give an account of identity in intensional type theory that makes it apparent
that it is a logical constant. We will only be able to maintain that the logical
part of HoTT does not refer if we can make sense of identity without the
homotopy interpretation. Otherwise, identity is hardly without content since
it is interpreted spatially.

Is it possible to uphold a systematic distinction between logic and mathe-
matics? Is such a distinction even expedient? If the answer to these questions
is no, we might have to revise our understanding of the relation between
mathematics and logic.

6.4 Conclusions

We have seen in Section 6.1 that HoTT gives a neat way to distinguish
between reasoning that yields constructive content and reasoning that only
establishes the truth of a statement. The conviction that constructive reason-
ing is preferable to, but also compatible with classical reasoning is held by
most mathematicians, and we hope to have presented a scaffolding for a
semantic theory that does justice to this approach in Section 6.2. We have
argued that the logical constants should be understood constructively in
HoTT, but propositions can be given truth-conditions with respect to a de-
terminate mathematical universe outside of the formal system. The special
status of canonical forms stemming from Martin-Löf’s meaning explanations
have been incorporated in our semantical theory. There is still more work
do be done in incorporating propositional equality. In particular, the distinc-
tively structuralist aspect of HoTT with univalence has not been appreciated
adequately in the semantic theory.

We hope that this gives a convincing argument that intuitionistic type
theory is not committed to a meaning theory in the spirit of Prawitz and
Dummett, even though more work is necessary to see if the verificationistic
origins of intuitionistic type theory can be combined nonchalantly with a
realist view on mathematics. It has to be investigated if some advantages
of the intuitionistic account to epistemology can be saved and incorporated
into the philosophy of mathematics of liberal constructivism.

In this thesis, we have not appreciated the subtleties of constructive math-
ematics. There are other principles that constructivists consider problematic
apart from LEM, such as the limited principle of omniscience or the axiom
of choice (HoTT Book (2013):Sect. 3.8 gives an overview of the status of
AOC in HoTT, as some version of it does hold in HoTT). Often, multiple

1 Which is, of course, not without controversy, see most prominently Quine (1986).
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constructive accounts of a concept compete. For example, there are several
formulations of continuity that do satisfy the intermediate value theorem.
Investigating the relations of these different conceptions seems vital to give
a unified foundations for mathematics.

If these worries can be solved, we are able to put forward a philosophy of
mathematics in support of liberal constructivism, which respects the special
status of constructive proofs without surrendering the classically valid part
of mathematics. Sundholm portrays the situation of mathematics in the
beginning of last century as follows:

[...] the foundation of mathematics were faced with the two horns
of a dilemma: either we retain classical logic in a mathematical
object-language, but give up hope for meaning explanations,
or we insist on retaining a contentual language with meaning
explanations, but have to jettison classical logic.

— Sundholm (2012):p. xviii–xix

HoTT retains the computational content of constructive proofs while
still allowing for the use of classical logic where necessary. The challenge is
now to incorporate this into a coherent philosophy of mathematics. If this
succeeds, the juxtaposition of constructive and classical reasoning can be
resolved at last.
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