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Background

Project: Formalisation in applied topology, using and
automating Cubical Agda’s logic for homotopy types.

This talk:
® Overview of results.

e Convey “style” of proofs carried out.

® Qutlook on improvements that’d be nice for CTT tools.
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Topological data analysis

Study the shape of data using tools from algebraic topology:
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Topological data analysis

Study the shape of data using tools from algebraic topology:

Discrete Morse theory (DMT):
Reduce size of complex while retaining its topology.

— establishes that "\”‘) ~0)
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Discrete Morse theory for graphs

Input: Graph G and acyclic partial matching (APM) p
Output: Equivalent Morse complex M of critical cells of G

4/13



Discrete Morse theory for graphs

Input: Graph G and acyclic partial matching (APM) p
Output: Equivalent Morse complex M of critical cells of G

o APM: pairs of vertices and edges such that every
gradient path u ~» ¢ ends at some ¢ € M

® Mo 2 Xud¢p, M(c,d) = S(uv ¢ p).(u~ c)x (v~ d)

4/13



Discrete Morse theory for graphs

Input: Graph G and acyclic partial matching (APM) p
Output: Equivalent Morse complex M of critical cells of G

o APM: pairs of vertices and edges such that every
gradient path u ~» ¢ ends at some ¢ € M

® Mo 2 Xud¢p, M(c,d) = S(uv ¢ p).(u~ c)x (v~ d)

4/13



Discrete Morse theory for graphs

Input: Graph G and acyclic partial matching (APM) p
Output: Equivalent Morse complex M of critical cells of G

o APM: pairs of vertices and edges such that every
gradient path u ~» ¢ ends at some ¢ € M

® Mo 2 Xud¢p, M(c,d) = S(uv ¢ p).(u~ c)x (v~ d)

w2 (v,0u), (w, wu), (z, zw)

4/13



Discrete Morse theory for graphs

Input: Graph G and acyclic partial matching (APM) p
Output: Equivalent Morse complex M of critical cells of G

o APM: pairs of vertices and edges such that every
gradient path u ~» ¢ ends at some ¢ € M

® Mo 2 Xud¢p, M(c,d) = S(uv ¢ p).(u~ c)x (v~ d)

0
- Aw
-7 |
O------ e’ :
v U\
T u
A
M():u

o (o u), (w0, we), (@20) Yy 8 (g (2, 2w), (0, wa)l, )

4/13



Discrete Morse theory for graphs

Input: Graph G and acyclic partial matching (APM) p
Output: Equivalent Morse complex M of critical cells of G

o APM: pairs of vertices and edges such that every
gradient path u ~» ¢ ends at some ¢ € M

® Mo 2 Xud¢p, M(c,d) = S(uv ¢ p).(u~ c)x (v~ d)

My2u

o (o u), (w0, we), (@20) Yy 8 (g (2, 2w), (0, wa)l, )

4/13



The Morse theorem in Cubical Agda

Use HIT to introduce homotopy type of a relation:
data |_| {co : Type} (11 co — co — Type) : Type where

|_lo:co—|al
= 5 (zy:c)—azy—=|zlo=|ylo
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The Morse theorem in Cubical Agda
Use HIT to introduce homotopy type of a relation:

data |_| {co : Type} (11 co — co — Type) : Type where
’_’0: 00%‘01|
=2 ey ) azy—=lzlo=]lyl

Ezample: for Mo = u, My(u,v) = (zu, [(z,2w), (w,wu)],[]), it
follows with simple pattern matching that | M | = S*.
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The Morse theorem in Cubical Agda

Use HIT to introduce homotopy type of a relation:

data |_| {co : Type} (e1: co — co — Type) : Type where
’_JO L Ccy — ‘ C1
= 35 h:i(zy:c)—cazy—|zlo=|ylo

Ezample: for Mo = u, My(u,v) = (zu, [(z,2w), (w,wu)],[]), it
follows with simple pattern matching that | M | = S*.

Central result: |G | = | M |

® establish maps back and forth, e.g., define | My | — | E |:
le=d> (uv,v,8) 1|7 te|lu=v2uv|iel|d|

® show that these maps are mutually inverse.

https://cs.ox.ac.uk/people/maximilian.dore/thesis/html/Morse.Morse.html
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Proving the Morse Theorem

E.g., for any critical edge | u = v 2 uv |; show that going along
| E|— | My |— | E| is coherent:

lu=v>u |

|'y|_1..]u:v9uv\1..|5]
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Proving the Morse Theorem

E.g., for any critical edge | u = v 2 uv |; show that going along
| E|— | My |— | E| is coherent:

lu=v2>u |y q

|y 7 ? o7 P ! "

|7 | e|u=v2uv|iel|d] Deo oot
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Automating Boundary Filling in Cubical Agda!
Search problem: Given cell context I' and boundary I' - ¢,
give a cell ' - ¢ : ¢ constructed from

® Contortions: interval substitutions with A, V, ~.

e Kan compositions: gives completion of open cube with ¢
on missing side.

Yiww with Evan Cavallo & Anders Moértberg, arXiv:2402.12169
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Automating Boundary Filling in Cubical Agda!
Search problem: Given cell context I' and boundary I' - ¢,
give a cell ' - ¢ : ¢ constructed from

® Contortions: interval substitutions with A, V, ~.

e Kan compositions: gives completion of open cube with ¢
on missing side.

Ezample: q:x=y, r:y=2z F 7:2 =2

(qer) i=hcomp (A j— A {
i=1i0) - z

(i=11) = 7]

) (¢1)
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Automating Boundary Filling in Cubical Agda!
Search problem: Given cell context I' and boundary I' - ¢,
give a cell ' - ¢ : ¢ constructed from

® Contortions: interval substitutions with A, V, ~.

e Kan compositions: gives completion of open cube with ¢
on missing side.

Ezample: q:x=y, r:y=2z F 7:2 =2

(qer) i=hcomp (A j— A {
i=1i0) - z
c(i=1i1) = 1y
it 1) (g9

Find Kan compositions using finite domain constraint solving.

Yiww with Evan Cavallo & Anders Moértberg, arXiv:2402.12169
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Higher-dimensional Kan composition

pJ
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Higher-dimensional Kan composition

P JlpGvk)| qi |rGiv-k)|T j

wocfil
(Pooger™)i g4

1

Two issues:

e With growing dimension, there are a lot of contortions.

e Sides of the cube can also be the result of Kan composition.
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Dedekind contortions

Contortions built only with A,V can also be seen as poset maps:

Dedekind contortions built from ¥

Aaaad

poset maps Il — T for T := {0 < 1}.
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Dedekind contortions built from ¥

Aaaad

poset maps Il — T for T := {0 < 1}.
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Dedekind contortions

Contortions built only with A,V can also be seen as poset maps:

Dedekind contortions built from ¥

Aaaad

poset maps Il — T for T := {0 < 1}.

00 F--____
Y / \” >0
q
/\
¢j|q(iVj) |y T bN / S
. N
: It
qi i

Construct contortions gradually by restricting poset map.
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Searching for nested Kan compositions
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Searching for nested Kan compositions

?
. i (p oo Goo 1) i=hcomp (Aj— A{
w T‘j (i:iO)—>w
s (i=1il) —»rj
N » 1) (hcomp (A 7 — A {
(i=1i0) - w
w q7J (i=1i1) = qj
. 1) (p 1)
: I
bt 1
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Searching for nested Kan compositions

?
. i (p oo Goo 1) i=hcomp (Aj— A{
w rj (i=1i0) - w
s (i=1il) —»rj
N » 1) (hcomp (A 7 — A {
(i=1i0) - w
w q7J (i=1i1) = qj
. 1) (p 1)
: I
bt 1

Use as many contortions as possible, fill the remaining sides
with Kan compositions afterwards.
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Demo

https://github.com/maxdore/dedekind
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Summary

® Applied topology is a natural application for Cubical Agda.

® Being able to directly reason about homotopy types is neat,
difficult combinatorial steps can be carried out by solver.
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Outlook

Developing a tool for TDA fully in Cubical Agda:
® Formalise DMT for 2-dimensional complexes
— compute topology of grayscale images?

® Implement full pipeline: turn grayscale image into complex;
compute APM; compute cohomology of reduced complex.

2 Theory and Algorithms for Constructing Discrete Morse Complezes

from Grayscale Digital Images, Robins, Wood & Sheppard, 2010
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Developing a tool for TDA fully in Cubical Agda:

® Formalise DMT for 2-dimensional complexes
— compute topology of grayscale images?

® Implement full pipeline: turn grayscale image into complex;
compute APM; compute cohomology of reduced complex.

Improve tools along the way:
® (Cubical compiler necessary to get executable.

® Incorporate solver into Cubical Agda; refine heuristics;
incorporate heterogeneous equality, transp, etc.

® Combine with synthesis of dependent type theory.

Thank you for your attention!

2 Theory and Algorithms for Constructing Discrete Morse Complezes
from Grayscale Digital Images, Robins, Wood & Sheppard, 2010
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