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Background

Project: Formalisation in applied topology, using and
automating Cubical Agda’s logic for homotopy types.

This talk:
• Overview of results.
• Convey “style” of proofs carried out.
• Outlook on improvements that’d be nice for CTT tools.
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Topological data analysis

Study the shape of data using tools from algebraic topology:

V R−−→ DMT−−−→ → H1( ) ∼= Z

Discrete Morse theory (DMT):
Reduce size of complex while retaining its topology.

→ establishes that '
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Discrete Morse theory for graphs

Input: Graph G and acyclic partial matching (APM) µ
Output: Equivalent Morse complex M of critical cells of G

• APM: pairs of vertices and edges such that every
gradient path u⇝ c ends at some c ∈ M0

• M0 ≜ Σu /∈ µ, M1(c, d) ≜ Σ(uv /∈ µ).(u⇝ c) × (v ⇝ d)

uv

w

x

'
u

µ ≜ (v, vu), (w, wu), (x, xw) M0 ≜ u
M1(u, u) ≜ (xu, [(x, xw), (w, wu)], [])
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The Morse theorem in Cubical Agda
Use HIT to introduce homotopy type of a relation:

data |_| {c0 : Type} (c1 : c0 → c0 → Type) : Type where
|_|0 : c0 → | c1 |
|_⇒_3_|1 : (x y : c0) → c1 x y → | x |0 ≡ | y |0

Example: for M0 ≜ u, M1(u, u) ≜ (xu, [(x, xw), (w, wu)], []), it
follows with simple pattern matching that | M | ≡ S1.

Central result: | G | ≡ | M |
• establish maps back and forth, e.g., define | M1 | → | E |:

| c ⇒ d 3 (uv, γ, δ) |1 7→ | γ |−1 | u ⇒ v 3 uv |1 | δ |
• show that these maps are mutually inverse.

https://cs.ox.ac.uk/people/maximilian.dore/thesis/html/Morse.Morse.html
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Proving the Morse Theorem

E.g., for any critical edge | u ⇒ v 3 uv |1 show that going along
| E | → | M1 | → | E | is coherent:

| γ |−1 | u ⇒ v 3 uv |1 | δ |

| u ⇒ v 3 uv |1

| γ |−1 | δ |−1?

p q r−1

q

p r?
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Automating Boundary Filling in Cubical Agda1

Search problem: Given cell context Γ and boundary Γ ` ϕ,
give a cell Γ ` t : ϕ constructed from

• Contortions: interval substitutions with ∧, ∨, ~.
• Kan compositions: gives completion of open cube with ϕ

on missing side.

Example: q : x ≡ y, r : y ≡ z ` ? : x ≡ z

x z
?

q i

x r j

i

j

(q r) i = hcomp (λ j → λ {
(i = i0) → x

; (i = i1) → r j
}) (q i)

Find Kan compositions using finite domain constraint solving.

1jww with Evan Cavallo & Anders Mörtberg, arXiv:2402.12169
7 / 13
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Higher-dimensional Kan composition

(p q r−1) i

q i

p j r j

-fill

q i

p(j∨~k) r(j∨~k)q i

j

i
k

Two issues:
• With growing dimension, there are a lot of contortions.
• Sides of the cube can also be the result of Kan composition.
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Dedekind contortions

Contortions built only with ∧,∨ can also be seen as poset maps:

Dedekind contortions built from Ψ
↭

poset maps I|Ψ| → I for I := {0 < 1}.

y

q i

q j yq (i ∨ j)

i

j

00

10 01

11

0

1

q i q j

y y

q

Construct contortions gradually by restricting poset map.
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Searching for nested Kan compositions

p : w ≡ x, q : x ≡ y, r : y ≡ z ` ? : w ≡ z

w z
?

w r j

p i

w q j

i

j

(p q r) i = hcomp (λ j → λ {
(i = i0) → w

; (i = i1) → r j
}) (hcomp (λ j → λ {

(i = i0) → w
; (i = i1) → q j
}) (p i))

Use as many contortions as possible, fill the remaining sides
with Kan compositions afterwards.
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Demo

https://github.com/maxdore/dedekind
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Summary

• Applied topology is a natural application for Cubical Agda.
• Being able to directly reason about homotopy types is neat,

difficult combinatorial steps can be carried out by solver.
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Outlook

Developing a tool for TDA fully in Cubical Agda:
• Formalise DMT for 2-dimensional complexes

→ compute topology of grayscale images2

• Implement full pipeline: turn grayscale image into complex;
compute APM; compute cohomology of reduced complex.

Improve tools along the way:
• Cubical compiler necessary to get executable.
• Incorporate solver into Cubical Agda; refine heuristics;

incorporate heterogeneous equality, transp, etc.
• Combine with synthesis of dependent type theory.

Thank you for your attention!

2Theory and Algorithms for Constructing Discrete Morse Complexes
from Grayscale Digital Images, Robins, Wood & Sheppard, 2010
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