(Automatically) verifying Morse reductions in Cubical Agda

Proglog meeting
Chalmers University, 13 March 2024

Maximilian Doré
maximilian.dore@cs.ox.ac.uk

Background

Project: Formalisation in applied topology, *using* and *automating* Cubical Agda's logic for homotopy types.

This talk:

- Overview of results.
- Convey "style" of proofs carried out.
- Outlook on improvements that'd be nice for CTT tools.

Topological data analysis

Study the *shape of data* using tools from algebraic topology:

Topological data analysis

Study the *shape of data* using tools from algebraic topology:

Discrete Morse theory (DMT):

Reduce size of complex while retaining its topology.

$$\rightarrow$$
 establishes that $\bigcirc \simeq \bigcirc$

- APM: pairs of vertices and edges such that every gradient path $u \leadsto c$ ends at some $c \in M_0$
- $M_0 \triangleq \Sigma u \notin \mu$, $M_1(c,d) \triangleq \Sigma (uv \notin \mu).(u \leadsto c) \times (v \leadsto d)$

- APM: pairs of vertices and edges such that every gradient path $u \leadsto c$ ends at some $c \in M_0$
- $M_0 \triangleq \Sigma u \notin \mu$, $M_1(c,d) \triangleq \Sigma (uv \notin \mu).(u \leadsto c) \times (v \leadsto d)$

- APM: pairs of vertices and edges such that every gradient path $u \leadsto c$ ends at some $c \in M_0$
- $M_0 \triangleq \Sigma u \notin \mu$, $M_1(c,d) \triangleq \Sigma (uv \notin \mu).(u \leadsto c) \times (v \leadsto d)$

$$\mu \triangleq (v, vu), (w, wu), (x, xw)$$

- APM: pairs of vertices and edges such that every gradient path $u \leadsto c$ ends at some $c \in M_0$
- $M_0 \triangleq \Sigma u \notin \mu$, $M_1(c,d) \triangleq \Sigma (uv \notin \mu).(u \leadsto c) \times (v \leadsto d)$

$$\mu \triangleq (v,vu),(w,wu),(x,xw)$$

$$M_0 \triangleq u$$

 $M_1(u, u) \triangleq (xu, [(x, xw), (w, wu)], [])$

- APM: pairs of vertices and edges such that every gradient path $u \leadsto c$ ends at some $c \in M_0$
- $M_0 \triangleq \Sigma u \notin \mu$, $M_1(c,d) \triangleq \Sigma (uv \notin \mu).(u \leadsto c) \times (v \leadsto d)$

$$\mu \triangleq (v, vu), (w, wu), (x, xw)$$

$$M_0 \triangleq u$$

$$M_1(u, u) \triangleq (xu, [(x, xw), (w, wu)], [])$$

The Morse theorem in Cubical Agda

Use HIT to introduce homotopy type of a relation:

```
data |\_| \{c_0: \mathsf{Type}\} (c_1: c_0 \to c_0 \to \mathsf{Type}): \mathsf{Type} where |\_|_0: c_0 \to |c_1| |\_\Rightarrow\_\ni\_|_1: (x\ y: c_0) \to c_1\ x\ y \to |x|_0 \equiv |y|_0
```

The Morse theorem in Cubical Agda

Use HIT to introduce homotopy type of a relation:

```
data |_| \{c_0: \mathsf{Type}\}\ (c_1: c_0 \to c_0 \to \mathsf{Type}): \mathsf{Type} where |_|0: c_0 \to |c_1| |_\(\Rightarrow \begin{aligned} \rightarrow |c_0| & c_1 \\ \rightarrow \Boxed{\rightarrow} |c_0| & c_1 \\ \rightarrow \Boxed{\rightarrow} |c_0| & c_1 \\ \rightarrow |c_0| & c_2 \\ \rightarrow |c_0| & c_1 \\ \rightarrow |c_0| & c_2 \\ \rightarrow |c_0| & c_2 \\ \rightarrow |c_0| & c_3 \\ \rightarrow |c_0| & c_3 \\ \rightarrow |c_0| & c_4 \\ \rightarrow |c_0| & c_4 \\ \rightarrow |c_0| & c_5 \\ \rightarrow |c_0| & c
```

Example: for $M_0 \triangleq u$, $M_1(u, u) \triangleq (xu, [(x, xw), (w, wu)], [])$, it follows with simple pattern matching that $|M| \equiv S^1$.

The Morse theorem in Cubical Agda

Use HIT to introduce homotopy type of a relation:

data |_|
$$\{c_0: \mathsf{Type}\}\ (c_1: c_0 \to c_0 \to \mathsf{Type}): \mathsf{Type}$$
 where |_|0: $c_0 \to |c_1|$ |_\(\Rightarrow \begin{aligned} \rightarrow |c_1| \rightarrow \rightarrow -|c_1| \rightarrow |c_0| \rightarrow |c_1| \rightarrow |c_2| \rightarrow |c_1| \rightarrow |c_2| \ri

Example: for $M_0 \triangleq u$, $M_1(u, u) \triangleq (xu, [(x, xw), (w, wu)], [])$, it follows with simple pattern matching that $|M| \equiv S^1$.

Central result: $|G| \equiv |M|$

- establish maps back and forth, e.g., define $|M_1| \rightarrow |E|$: $|c \Rightarrow d \ni (uv, \gamma, \delta)|_1 \mapsto |\gamma|^{-1} \bullet |u \Rightarrow v \ni uv|_1 \bullet |\delta|$
- show that these maps are mutually inverse.

https://cs.ox.ac.uk/people/maximilian.dore/thesis/html/Morse.Morse.html

Search problem: Given cell context Γ and boundary $\Gamma \vdash \phi$, give a cell $\Gamma \vdash t : \phi$ constructed from

- Contortions: interval substitutions with \wedge , \vee , \sim .
- **Kan compositions**: gives completion of open cube with ϕ on missing side.

 $^{^1\}mathrm{jww}$ with Evan Cavallo & Anders Mörtberg, arXiv:2402.12169

Search problem: Given cell context Γ and boundary $\Gamma \vdash \phi$, give a cell $\Gamma \vdash t : \phi$ constructed from

- Contortions: interval substitutions with \wedge , \vee , \sim .
- Kan compositions: gives completion of open cube with ϕ on missing side.

Example: $q: x \equiv y, r: y \equiv z \vdash ?: x \equiv z$

 $x \longrightarrow ?$

 $^{^1\}mathrm{jww}$ with Evan Cavallo & Anders Mörtberg, arXiv:2402.12169

Search problem: Given cell context Γ and boundary $\Gamma \vdash \phi$, give a cell $\Gamma \vdash t : \phi$ constructed from

- Contortions: interval substitutions with \wedge , \vee , \sim .
- Kan compositions: gives completion of open cube with ϕ on missing side.

Example: $q: x \equiv y, \ r: y \equiv z \ \vdash \ ?: x \equiv z$

¹jww with Evan Cavallo & Anders Mörtberg, arXiv:2402.12169

Search problem: Given cell context Γ and boundary $\Gamma \vdash \phi$, give a cell $\Gamma \vdash t : \phi$ constructed from

- Contortions: interval substitutions with \land , \lor , \sim .
- Kan compositions: gives completion of open cube with ϕ on missing side.

Example: $q: x \equiv y, r: y \equiv z \vdash ?: x \equiv z$

¹jww with Evan Cavallo & Anders Mörtberg, arXiv:2402.12169

Search problem: Given cell context Γ and boundary $\Gamma \vdash \phi$, give a cell $\Gamma \vdash t : \phi$ constructed from

- Contortions: interval substitutions with \land , \lor , \sim .
- Kan compositions: gives completion of open cube with ϕ on missing side.

Example:
$$q: x \equiv y, r: y \equiv z \vdash ?: x \equiv z$$

Find Kan compositions using finite domain constraint solving.

¹jww with Evan Cavallo & Anders Mörtberg, arXiv:2402.12169

Higher-dimensional Kan composition

Higher-dimensional Kan composition

Two issues:

- With growing dimension, there are a lot of contortions.
- Sides of the cube can also be the result of Kan composition.

Dedekind contortions

Contortions built only with \land,\lor can also be seen as poset maps:

Dedekind contortions built from Ψ

~~~

poset maps $\mathbf{I}^{|\Psi|} \to \mathbf{I}$ for $\mathbf{I} := \{0 < 1\}$.

Dedekind contortions

Contortions built only with \land,\lor can also be seen as poset maps:

Dedekind contortions built from Ψ

poset maps
$$\mathbf{I}^{|\Psi|} \to \mathbf{I}$$
 for $\mathbf{I} := \{0 < 1\}$.

Dedekind contortions

Contortions built only with \land,\lor can also be seen as poset maps:

Dedekind contortions built from Ψ

poset maps
$$\mathbf{I}^{|\Psi|} \to \mathbf{I}$$
 for $\mathbf{I} := \{0 < 1\}$.

Construct contortions gradually by restricting poset map.

$$p:w\equiv x,\ q:x\equiv y,\ r:y\equiv z\ dash ?:w\equiv z$$

$$w---- z$$

$$p:w\equiv x,\ q:x\equiv y,\ r:y\equiv z\ \vdash ?:w\equiv z$$

$$j \underset{i}{\longleftarrow}$$

$$p:w\equiv x,\ q:x\equiv y,\ r:y\equiv z\ dash ?:w\equiv z$$

$$p: w \equiv x, \ q: x \equiv y, \ r: y \equiv z \ \vdash ?: w \equiv z$$


```
\begin{array}{l} (p \mathrel{\bullet\hspace{-.05cm}\bullet} q \mathrel{\bullet\hspace{-.05cm}\bullet} r) \; i = \mathsf{hcomp} \; (\lambda \; j \to \lambda \; \{\\ \quad (i = \mathsf{i0}) \to w \\ \quad ; \; (i = \mathsf{i1}) \to r \; j \\ \quad \}) \; (\mathsf{hcomp} \; (\lambda \; j \to \lambda \; \{\\ \quad (i = \mathsf{i0}) \to w \\ \quad ; \; (i = \mathsf{i1}) \to q \; j \\ \quad \}) \; (p \; i)) \end{array}
```

$$p: w \equiv x, \ q: x \equiv y, \ r: y \equiv z \ \vdash ?: w \equiv z$$

Use as many contortions as possible, fill the remaining sides with Kan compositions afterwards.

Demo

https://github.com/maxdore/dedekind

Summary

- Applied topology is a natural application for Cubical Agda.
- Being able to directly reason about homotopy types is neat, difficult combinatorial steps can be carried out by solver.

Outlook

Developing a tool for TDA fully in Cubical Agda:

- Formalise DMT for 2-dimensional complexes

 → compute topology of grayscale images²
- Implement full pipeline: turn grayscale image into complex; compute APM; compute cohomology of reduced complex.

 $^{^2\,}Theory$ and Algorithms for Constructing Discrete Morse Complexes from Grayscale Digital Images, Robins, Wood & Sheppard, 2010

Outlook

Developing a tool for TDA fully in Cubical Agda:

- Formalise DMT for 2-dimensional complexes

 → compute topology of grayscale images²
- Implement full pipeline: turn grayscale image into complex; compute APM; compute cohomology of reduced complex.

Improve tools along the way:

- Cubical compiler necessary to get executable.
- Incorporate solver into Cubical Agda; refine heuristics; incorporate heterogeneous equality, transp, etc.
- Combine with synthesis of dependent type theory.

² Theory and Algorithms for Constructing Discrete Morse Complexes from Grayscale Digital Images, Robins, Wood & Sheppard, 2010

Outlook

Developing a tool for TDA fully in Cubical Agda:

- Formalise DMT for 2-dimensional complexes

 → compute topology of grayscale images²
- Implement full pipeline: turn grayscale image into complex; compute APM; compute cohomology of reduced complex.

Improve tools along the way:

- Cubical compiler necessary to get executable.
- Incorporate solver into Cubical Agda; refine heuristics; incorporate heterogeneous equality, transp, etc.
- Combine with synthesis of dependent type theory.

Thank you for your attention!

 $^{^2\,}Theory$ and Algorithms for Constructing Discrete Morse Complexes from Grayscale Digital Images, Robins, Wood & Sheppard, 2010