Formalising Topological Data Analysis in Cubical Agda

DANGER 4
London Institute for Mathematical Sciences, 8 August 2024

Maximilian Doré
maximilian.dore@cs.ox.ac.uk

Formalising data science

DANGER: data science \rightarrow pure maths

Formalising data science

DANGER: data science \rightarrow pure maths

This talk: pure maths/CS \rightarrow data science

Formalising data science

DANGER: data science \rightarrow pure maths

This talk: pure maths/CS \rightarrow data science

Goal: implement a fully verified tool for topological data analysis

Study the *shape of data* using algebraic topology. Typical pipeline:

Study the $shape\ of\ data$ using algebraic topology. Typical pipeline:

(1) associate Vietoris-Rips complex with dataset

Study the shape of data using algebraic topology. Typical pipeline:

- (1) associate Vietoris-Rips complex with dataset
- 2 reduce size of complex using discrete Morse theory

Study the $shape\ of\ data$ using algebraic topology. Typical pipeline:

- (1) associate Vietoris-Rips complex with dataset
- 2 reduce size of complex using discrete Morse theory
- (3) compute (persistent) homology

Study the shape of data using algebraic topology. Typical pipeline:

- (1) associate Vietoris-Rips complex with dataset
- (2) reduce size of complex using discrete Morse theory
- (3) compute (persistent) homology
- \rightarrow implement this pipeline in a way that is provably correct

Why is $A \to (B \to A)$ a tautology?

Why is $A \to (B \to A)$ a tautology?

Because $\lambda x.\lambda y.x$: $A \to (B \to A)$

Why is $A \to (B \to A)$ a tautology?

Because
$$\underbrace{\lambda x. \lambda y. x}_{\text{proof } aka \text{ program}} : \underbrace{A \to (B \to A)}_{\text{proposition } aka \text{ type}}$$

Why is $A \to (B \to A)$ a tautology?

Because
$$\underbrace{\lambda x.\lambda y.x}_{\text{proof } aka \text{ program}} : \underbrace{A \to (B \to A)}_{\text{proposition } aka \text{ type}}$$

Dependent type theory (Martin-Löf 1984) extends this to predicates and induction. Types can depend on variables, Π and Σ are dependent functions and products.

Why is $A \to (B \to A)$ a tautology?

Because
$$\underbrace{\lambda x.\lambda y.x}_{\text{proof }aka \text{ program}}: \underbrace{A \to (B \to A)}_{\text{proposition }aka \text{ type}}$$

Dependent type theory (Martin-Löf 1984) extends this to predicates and induction. Types can depend on variables, Π and Σ are dependent functions and products.

Correct-by-construction programming

Give specification as type T, then program p:T provably meets the specification.

Why is $A \to (B \to A)$ a tautology?

Because
$$\underbrace{\lambda x.\lambda y.x}_{\text{proof }aka \text{ program}}: \underbrace{A \to (B \to A)}_{\text{proposition }aka \text{ type}}$$

Dependent type theory (Martin-Löf 1984) extends this to predicates and induction. Types can depend on variables, Π and Σ are dependent functions and products.

Correct-by-construction programming

Give specification as type T, then program p:T provably meets the specification.

1 associate Vietoris-Rips complex with dataset

Write a program of this type:

 $\Pi(D: \text{Dataset}).\Sigma(K: \text{Complex}).\Pi(x \ y: \text{points}(D)).d(x,y) < \epsilon \rightarrow \text{line}(K,x,y)$

2 reduce size of complex using discrete Morse theory

Discrete Morse theory removes cells irrelevant for the topology of a complex K, using an acyclic partial matching μ that says how to collapse cells.

Morse complex M contains only cells not part of μ . Morse theorem: $|K| \simeq |M|$

2 reduce size of complex using discrete Morse theory

Discrete Morse theory removes cells irrelevant for the topology of a complex K, using an acyclic partial matching μ that says how to collapse cells.

Morse complex M contains only cells not part of μ . Morse theorem: $|K| \simeq |M|$

Example: given \bigcirc and apt matching, Morse theorem gives \bigcirc \simeq \bigcirc

2 reduce size of complex using discrete Morse theory

Discrete Morse theory removes cells irrelevant for the topology of a complex K, using an acyclic partial matching μ that says how to collapse cells.

Morse complex M contains only cells not part of μ . Morse theorem: $|K| \simeq |M|$

Example: given \bigcirc and apt matching, Morse theorem gives \bigcirc \simeq \bigcirc

Specification for step 2:

 $\Pi(K : \text{Complex}).\Pi(\mu : \text{Matching}(K)).\Sigma(M : \text{Complex}'). \mid K \mid \simeq \mid M \mid$

2 reduce size of complex using discrete Morse theory

Discrete Morse theory removes cells irrelevant for the topology of a complex K, using an acyclic partial matching μ that says how to collapse cells.

Morse complex M contains only cells not part of μ . Morse theorem: $|K| \simeq |M|$

Example: given \bigcirc and apt matching, Morse theorem gives $\bigcirc \simeq \bigcirc$

Specification for step 2:

 $\Pi(K: \operatorname{Complex}).\Pi(\mu: \operatorname{Matching}(K)).\Sigma(M: \operatorname{Complex}'). \mid K \mid \; \simeq \; \mid M \mid$

Original work¹ up to homology, modern approach² up to homotopy equivalence. Intricate to formalise head-on...

¹ Forman 1998, Morse Theory for Cell Complexes

 $^{^{2}}$ Nanda 2019, $\it Discrete \ Morse \ Theory \ and \ Localization$

Homotopy Type Theory and Cubical Agda

Idea for dealing with equality in type theory: there can be different proofs of an equality, and it's meaningful to study equalities between equalities.

Example: For a, b: A have $p, q: a \equiv b$ and $\alpha, \beta: p \equiv q$ and $\phi: \alpha \equiv \beta$ etc...

Homotopy Type Theory and Cubical Agda

Idea for dealing with equality in type theory: there can be different proofs of an equality, and it's meaningful to study equalities between equalities.

Example: For a, b: A have $p, q: a \equiv b$ and $\alpha, \beta: p \equiv q$ and $\phi: \alpha \equiv \beta$ etc...

Homotopy type theory by Awodey, Voevodsky, ..., 2013

 \equiv in type theory $aka \simeq$ in topology $aka \cong$ in higher category theory

Homotopy Type Theory and Cubical Agda

Idea for dealing with equality in type theory: there can be different proofs of an equality, and it's meaningful to study equalities between equalities.

```
Example: For a, b: A have p, q: a \equiv b and \alpha, \beta: p \equiv q and \phi: \alpha \equiv \beta etc...
```

Homotopy type theory by Awodey, Voevodsky, ..., 2013

```
\equiv in type theory aka \simeq in topology aka \cong in higher category theory
```

Cubical Agda 2019¹ implements these ideas:

- types are really homotopy types, and \equiv behaves like \simeq
- higher inductive types allow for introducing higher equalities
- properties of cubical sets become principles of logic

¹ based on ideas of Abel, Bezem, Coquand, Cohen, Huber, Mörtberg, Vezzosi, ...

Given a (directed) graph G and an acyclic matching μ , we want to construct its Morse reduct M and show that $\mid G\mid \ \equiv \ \mid M\mid$.

Given a (directed) graph G and an acyclic matching μ , we want to construct its Morse reduct M and show that $\mid G \mid \ \equiv \ \mid M \mid$.

A gradient path $\gamma: u \leadsto v$ is a sequence of matched pairs between u and v.

$$M_0 \triangleq \Sigma u \notin \mu, \ M_1(c,d) \triangleq \Sigma (uv \notin \mu).(u \leadsto c) \times (v \leadsto d)$$

Given a (directed) graph G and an acyclic matching μ , we want to construct its Morse reduct M and show that $\mid G\mid \; \equiv \; \mid M\mid$.

A gradient path $\gamma: u \leadsto v$ is a sequence of matched pairs between u and v.

$$M_0 \triangleq \Sigma u \notin \mu, \ M_1(c,d) \triangleq \Sigma (uv \notin \mu).(u \leadsto c) \times (v \leadsto d)$$

Example:

Given a (directed) graph G and an acyclic matching μ , we want to construct its Morse reduct M and show that $\mid G\mid \; \equiv \; \mid M\mid$.

A gradient path $\gamma: u \leadsto v$ is a sequence of matched pairs between u and v.

$$M_0 \triangleq \Sigma u \notin \mu, \ M_1(c,d) \triangleq \Sigma (uv \notin \mu).(u \leadsto c) \times (v \leadsto d)$$

Example:

$$\mu \triangleq (v, vu), (w, wu), (x, xw)$$

Given a (directed) graph G and an acyclic matching μ , we want to construct its Morse reduct M and show that $\mid G \mid \equiv \mid M \mid$.

A gradient path $\gamma: u \leadsto v$ is a sequence of matched pairs between u and v.

$$M_0 \triangleq \Sigma u \notin \mu, \ M_1(c,d) \triangleq \Sigma (uv \notin \mu).(u \leadsto c) \times (v \leadsto d)$$

Example:

$$\mu \triangleq (v, vu), (w, wu), (x, xw)$$

$$M_0 \triangleq u$$

$$M_1(u, u) \triangleq (xu, [(x, xw), (w, wu)], [])$$

Higher inductive type allows us to take the *geometric realisation* of a relation:

```
data |_| \{c_0 : \mathsf{Type}\}\ (c_1 : c_0 \to c_0 \to \mathsf{Type}) : \mathsf{Type} where |_|0 : c_0 \to |c_1| |_\(\Rightarrow \int \]_1 : (x \ y : c_0) \to c_1 \ x \ y \to |x|_0 \equiv |y|_0
```

Higher inductive type allows us to take the *geometric realisation* of a relation:

```
data |_| \{c_0: \mathsf{Type}\}\ (c_1: c_0 \to c_0 \to \mathsf{Type}): \mathsf{Type} where |_|0: c_0 \to |c_1| |_\(\preceq \int_1 : (x y: c_0) \to c_1 x y \to |x|_0 \equiv |y|_0
```

 $\textit{Ex. cont'd:} \mid M \mid \text{has point} \mid u \mid_0 \text{ with circle} \mid u \Rightarrow u \ni (xu, [(x, xw), (w, wu)], []) \mid_1$

Higher inductive type allows us to take the *geometric realisation* of a relation:

data |_|
$$\{c_0: \mathsf{Type}\}\ (c_1: c_0 \to c_0 \to \mathsf{Type}): \mathsf{Type}$$
 where |_|0: $c_0 \to |c_1|$ |_\(\preceq \int_1|: (x y: c_0) \to c_1 x y \to |x|_0 \equiv |y|_0

Ex. cont'd:
$$\mid M \mid$$
 has point $\mid u \mid_0$ with circle $\mid u \Rightarrow u \ni (xu, [(x, xw), (w, wu)], []) \mid_1$

Morse theorem for graphs: $|G| \equiv |M|$ formalised in Cubical Agda:

https://cs.ox.ac.uk/people/maximilian.dore/thesis/html/Morse.Morse.html

Computing invariants of the space

3 compute (persistent) homology

Computing invariants involves loads of linear algebra. Already partially formalised.¹

WIP: how to integrate this with my approach.

Algebraic invariants can be captured differently inside Cubical Agda², need to see how this can be used for computation.

¹Heras, Coquand, Mörtberg 2013, Computing Persistent Homology Within Coq/SSReflect

²work by Brunerie, Cavallo, Lamiaux, Ljungström, Mörtberg on "synthetic" cohomology (rings)

Next steps

• Formalise DMT for 2-dim complexes to compute topology of grayscale images³

$$H_1(\mathbb{M}) \cong \mathbb{Z}$$

- Implement full pipeline in Cubical Agda: turn grayscale image into complex; compute APM; compute cohomology of reduced complex
- Refine pipeline: filtered complexes for persistent homology, cellular sheaves, ...

³Robins, Wood, Sheppard 2010, Theory and Algorithms for Constructing Discrete Morse Complexes from Grayscale Digital Images,

Conclusions

- Type theory is a natural language for verification of mathematical software: we can write down programs and mathematics in the same language
- Cubical Agda is a powerful (but intricate) logic for homotopy types

Conclusions

- Type theory is a natural language for verification of mathematical software: we can write down programs and mathematics in the same language
- Cubical Agda is a powerful (but intricate) logic for homotopy types

Thank you for your attention!

Morse theorem: $|G| \equiv |M|$

- establish maps back and forth, for example define $|M_1| \rightarrow |E|$: $|c \Rightarrow d \ni (uv, \gamma, \delta)|_1 \mapsto |\gamma|^{-1} \bullet |u \Rightarrow v \ni uv|_1 \bullet |\delta|$
- show that these maps are mutually inverse.

https://cs.ox.ac.uk/people/maximilian.dore/thesis/html/Morse.Morse.html

Kan compositions in Cubical Agda


```
\begin{array}{l} \mathsf{lemma}: \ (p: w \equiv x) \ (q: x \equiv z) \ (r: y \equiv z) \\ \rightarrow \mathsf{PathP} \ (\lambda \ i \rightarrow (p \bullet q \bullet \mathsf{sym} \ r) \ i \equiv q \ i) \ p \ r \\ \mathsf{lemma} \ p \ q \ r \ i \ j = \mathsf{hcomp} \ (\lambda \ k \rightarrow \lambda \ \{ \\ (i = \mathsf{i0}) \rightarrow p \ (j \lor \sim k) \\ \vdots \ (i = \mathsf{i1}) \rightarrow r \ (j \lor \sim k) \\ \vdots \ (j = \mathsf{i1}) \rightarrow q \ i \\ \}) \ (q \ i) \end{array}
```