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Formalising data science

DANGER: data science → pure maths

This talk: pure maths/CS → data science

Goal: implement a fully verified tool for topological data analysis
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Topological data analysis

Study the shape of data using algebraic topology. Typical pipeline:

1 associate Vietoris-Rips complex with dataset
2 reduce size of complex using discrete Morse theory
3 compute (persistent) homology

→ implement this pipeline in a way that is provably correct
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Writing provably correct programs
Why is A → (B → A) a tautology?

Because λx.λy.x : A → (B → A)

Dependent type theory (Martin-Löf 1984) extends this to predicates and induction.
Types can depend on variables, Π and Σ are dependent functions and products.

Correct-by-construction programming
Give specification as type T , then program p : T provably meets the specification.

1 associate Vietoris-Rips complex with dataset

Write a program of this type:
Π(D : Dataset).Σ(K : Complex).Π(x y : points(D)).d(x, y) < ϵ → line(K, x, y)
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Showing Morse reductions correct
2 reduce size of complex using discrete Morse theory

Discrete Morse theory removes cells irrelevant for the topology of a complex K,
using an acyclic partial matching µ that says how to collapse cells.

Morse complex M contains only cells not part of µ. Morse theorem: | K | ' | M |

Example: given and apt matching, Morse theorem gives '

Specification for step 2 :
Π(K : Complex).Π(µ : Matching(K)).Σ(M : Complex′).| K | ' | M |

Original work1 up to homology, modern approach2 up to homotopy equivalence.
Intricate to formalise head-on...
1 Forman 1998, Morse Theory for Cell Complexes
2 Nanda 2019, Discrete Morse Theory and Localization
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Homotopy Type Theory and Cubical Agda
Idea for dealing with equality in type theory: there can be different proofs of an
equality, and it’s meaningful to study equalities between equalities.

Example: For a, b : A have p, q : a ≡ b and α, β : p ≡ q and ϕ : α ≡ β etc...

Homotopy type theory by Awodey, Voevodsky, ..., 2013
≡ in type theory aka ' in topology aka ∼= in higher category theory

Cubical Agda 20191 implements these ideas:
• types are really homotopy types, and ≡ behaves like '
• higher inductive types allow for introducing higher equalities
• properties of cubical sets become principles of logic

1 based on ideas of Abel, Bezem, Coquand, Cohen, Huber, Mörtberg, Vezzosi, ...
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Discrete Morse theory for graphs

Given a (directed) graph G and an acyclic matching µ, we want to construct its
Morse reduct M and show that | G | ≡ | M |.

A gradient path γ : u⇝ v is a sequence of matched pairs between u and v.

M0 ≜ Σu /∈ µ, M1(c, d) ≜ Σ(uv /∈ µ).(u⇝ c) × (v ⇝ d)

Example:

uv

w

x u

µ ≜ (v, vu), (w, wu), (x, xw) M0 ≜ u
M1(u, u) ≜ (xu, [(x, xw), (w, wu)], [])
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The Morse theorem in Cubical Agda

Higher inductive type allows us to take the geometric realisation of a relation:

data |_| {c0 : Type} (c1 : c0 → c0 → Type) : Type where
|_|0 : c0 → | c1 |
|_⇒_3_|1 : (x y : c0) → c1 x y → | x |0 ≡ | y |0

Ex. cont’d: | M | has point | u |0 with circle | u ⇒ u 3 (xu, [(x, xw), (w, wu)], []) |1

Morse theorem for graphs: | G | ≡ | M | formalised in Cubical Agda:

https://cs.ox.ac.uk/people/maximilian.dore/thesis/html/Morse.Morse.html
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Computing invariants of the space

3 compute (persistent) homology

Computing invariants involves loads of linear algebra. Already partially formalised.1

WIP: how to integrate this with my approach.

Algebraic invariants can be captured differently inside Cubical Agda2, need to see
how this can be used for computation.

1Heras, Coquand, Mörtberg 2013, Computing Persistent Homology Within Coq/SSReflect
2work by Brunerie, Cavallo, Lamiaux, Ljungström, Mörtberg on “synthetic” cohomology (rings)
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Next steps

• Formalise DMT for 2-dim complexes to compute topology of grayscale images3

H1( ) ∼= Z

• Implement full pipeline in Cubical Agda: turn grayscale image into complex;
compute APM; compute cohomology of reduced complex

• Refine pipeline: filtered complexes for persistent homology, cellular sheaves, ...

3Robins, Wood, Sheppard 2010, Theory and Algorithms for Constructing Discrete Morse
Complexes from Grayscale Digital Images,
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Conclusions

• Type theory is a natural language for verification of mathematical software:
we can write down programs and mathematics in the same language

• Cubical Agda is a powerful (but intricate) logic for homotopy types

Thank you for your attention!
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The Morse theorem in Cubical Agda

Morse theorem: | G | ≡ | M |
• establish maps back and forth, for example define | M1 | → | E |:

| c ⇒ d 3 (uv, γ, δ) |1 7→ | γ |−1 | u ⇒ v 3 uv |1 | δ |
• show that these maps are mutually inverse.

https://cs.ox.ac.uk/people/maximilian.dore/thesis/html/Morse.Morse.html
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Proving the Morse Theorem

E.g., for any critical edge | u ⇒ v 3 uv |1 show that going along
| E | → | M1 | → | E | is coherent:

| γ |−1 | u ⇒ v 3 uv |1 | δ |

| u ⇒ v 3 uv |1

| γ |−1 | δ |−1?

p q r−1

q

p r?
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Kan compositions in Cubical Agda

(p q r−1) i

q i

p j r j

-fill

q i

p(j∨~k) r(j∨~k)q i

j

i
k

lemma : (p : w ≡ x) (q : x ≡ z) (r : y ≡ z)
→ PathP (λ i → (p q sym r) i ≡ q i) p r

lemma p q r i j = hcomp (λ k → λ {
(i = i0) → p (j ∨ ~ k)
; (i = i1) → r (j ∨ ~ k)
; (j = i1) → q i
}) (q i)
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