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Homotopy type theory in practice
Cubical type theory implements homotopy type theory, which views equalities in a
type as paths/homotopies in a topological space.

Cubical type theory is a ...
• logic for homotopy types: types have higher structure, and properties of

cubical sets turn into reasoning principles, e.g., Kan filling.
• programming language: higher inductive types (e.g., quotients) and

univalence are computationally well-behaved.

In this talk:
• how to automate Kan filling.
• how to formalise discrete Morse theory, method from computational topology.

Make cubical type theory more usable, and make use of it.
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Automatically deriving Kan fillings
jww Evan Cavallo & Anders Mörtberg



Cubes and Kan fillings
In cubical type theory, equalities between elements of a type are paths, i.e., maps
from In into that type. Consider cell contexts capturing a single type.

x y
q(i)

i

Γ ≜ x : [], y : [], q(i) : [i = 0 7→ x | i = 1 7→ y]

x x
x

i

Γ | i ` x : [i = 0 7→ x | i = 1 7→ x]

“x solves boundary problem Γ | i ` ? : [i = 0 7→ x | i = 1 7→ x]”

y x
?

x

q(j) x

i

j

Γ | i ` ? : [i = 0 7→ y | i = 1 7→ x]

? ≜ fill(
x

q(j) x )
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Constructing open cubes with constraint solving
Γ ≜ x : [], y : [], z : [], q(i) : [i = 0 7→ x | i = 1 7→ y], r(i) : [i = 0 7→ y | i = 1 7→ z]
Boundary problem: Γ | i ` ? : [i = 0 7→ x | i = 1 7→ z]

x z
?

Vj0

Vi0 Vi1

q(i)

x r(j)

i

j

Variables have domains:
• Di0 = {x}
• Di1 = {z, r(j)}
• Dj0 = {x, y, z, q(i), r(i)}

Subject to constraints:
• Vi0[j = 0] = Vj0[i = 0]
• Vi1[j = 0] = Vj0[i = 1]

? ≜ fill(
q(i)

x r(j)
)

Find Kan fillings with finite domain constraint satisfaction programming.
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Constructing nested Kan fillings
Γ ≜ p(i) : [i = 0 7→ w | i = 1 7→ x], q(i) : [i = 0 7→ x | i = 1 7→ y], r(i) : [i = 0 7→ y | i = 1 7→ z]

Γ | i ` ? : [i = 0 7→ w | i = 1 7→ z]

w z
?

?2

w r(j)

p(i)

w q(j)

i

j

?2 ≜ fill(
p(i)

w q(j)
)

Leave sides open if necessary, solve these as separate boundary problems.
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Associativity of path composition

w z
(p q) r

w r(j)

p(i)

w q(j)

w
p (q r)

p(i)

w

x

q(j)

r(i) (p q) r

p (q r)

w z?

→ construct an open 3-dimensional cube with ? on missing side.
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Solving boundary problems automatically

Implementation: https://github.com/maxdore/dedekind
(WIP: proper integration in Cubical Agda)

• Solver also takes into account certain admissible rules called contortions.
• Associativity of path composition solved in a few ms.
• Eckmann-Hilton solved in less than a second.

7 / 17

https://github.com/maxdore/dedekind


Kan filling summed up

• Solver which constructs Kan fillings based on constraint satisfaction
programming and “breadth-first” search.

• Works for any cubical type theory currently being considered.
• Boundary problem in general undecidable and very difficult in higher

dimensions, but in lower dimensions solver quickly carries out fiddly
constructions.

8 / 17



Discrete Morse theory in Cubical Agda



Topological data analysis
Study the shape of data using algebraic topology. Typical pipeline:

1 associate Vietoris-Rips complex with dataset
2 reduce size of complex using discrete Morse theory
3 compute (persistent) homology

Long-term goal: implement and verify this pipeline in Cubical Agda.

Today: 2 for simple spaces, namely graphs
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Showing Morse reductions correct
Discrete Morse theory removes cells irrelevant for the topology of a complex K,
using an acyclic partial matching µ that says how to collapse cells.

Morse complex M contains only cells not part of µ.

Morse theorem: K and M are equivalent as spaces.

E.g., given and apt matching, Morse theorem says and are equivalent.

Original work1 up to homology, modern approach2 up to homotopy equivalence.

Formalise in Cubical Agda for arbitrary graph G:
• Characterise acyclic partial matchings µ and Morse complex M .
• Take geometric realisation | G |, | M | : Type using higher inductive type.
• Prove that | M | ≡ | G |.

1 Forman 1998, Morse Theory for Cell Complexes
2 Nanda 2019, Discrete Morse Theory and Localization
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Discrete Morse theory for graphs

A partial matching µ matches edges to an incident vertex.
µ is acyclic if all sequences of matched pairs end at an unmatched vertex.

M0 ≜ Σu /∈ µ, M1(c, d) ≜ Σ(uv /∈ µ).(u⇝ c) × (v ⇝ d)

Example:

uv

w

x u

µ ≜ (v, vu), (w, wu), (x, xw) M0 ≜ u
M1(u, u) ≜ (xu, [(x, xw), (w, wu)], [])
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The Morse theorem in Cubical Agda
Use HIT to introduce homotopy type of a relation:

data |_| {c0 : Type} (c1 : c0 → c0 → Type) : Type where
|_|0 : c0 → | c1 |
|_⇒_3_|1 : (x y : c0) → c1 x y → | x |0 ≡ | y |0

Example: for M0 ≜ u, M1(u, u) ≜ (xu, [(x, xw), (w, wu)], []), it follows with simple
pattern matching that | M | ≡ S1 where base : S1 , loop : base ≡ base.

Morse theorem for graphs: | G | ≡ | M |
• establish maps back and forth, e.g., define | M1 | → | E |:

| c ⇒ d 3 (uv, γ, δ) |1 7→ | γ |−1 | u ⇒ v 3 uv |1 | δ |
• show that these maps are mutually inverse.
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Proving the Morse Theorem

E.g., for any critical edge | u ⇒ v 3 uv |1 show that mapping via
| E | → | M1 | → | E | gives an edge homotopic to the original edge:

| γ |−1 | u ⇒ v 3 uv |1 | δ |

| u ⇒ v 3 uv |1

| γ |−1 | δ |−1?

p q r−1

q

p r?
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Establishing properties of graphs

Just have to define matching on a graph, then Morse theorem and univalence
allows us to establish properties of graphs:

• ≡ , so H1 of this graph is Z.

• . . . ≡ , so this infinite graph is contractible.
• ...

14 / 17



Next steps

• Formalise DMT for 2-dim complexes to compute topology of grayscale images1

H1( ) ∼= Z

• Implement full pipeline in Cubical Agda: turn grayscale image into complex;
compute APM; compute cohomology of reduced complex.
▶ Linear algebra approach to computing invariants partially formalised2,

see how this connects with HoTT invariants3.
• Refine pipeline: filtered complexes for persistent homology, cellular sheaves, ...

1Robins, Wood, Sheppard 2010, Theory and Algorithms for Constructing Discrete Morse
Complexes from Grayscale Digital Images,

2Heras, Coquand, Mörtberg 2013, Computing Persistent Homology Within Coq/SSReflect
3work by Brunerie, Cavallo, Lamiaux, Ljungström, Mörtberg on “synthetic” cohomology (rings)
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Conclusions



Summary

• Cubical Agda is a powerful tool—with a steep learning curve.
• Allows to directly reason about homotopy types.
• And at the same time it’s a programming language!

Proofs can be erased to obtain performant Haskell programs.

16 / 17



Outlook

• Verified tool for topological data analysis on the horizon.
• Project can help bridge the gap between abstract and applied topology.
• Cubical Agda likely not the end of the story for higher-dimensional type

theory, but gives insight into what reasoning in such a theory amounts to.

Thank you for your attention!
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Reasoning in Cubical Agda
In cubical type theory, equalities between elements of a type are paths, i.e., maps
from In into that type. We consider cell contexts capturing a single type.

Example: Γ ≜ x : [], y : [], q(i) : [i = 0 7→ x | i = 1 7→ y] x y
q(i)

i

Reasoning with Kan filling:

y x
t1

x

q(j) x

i

j

Γ | i ` t1 : [i = 0 7→ y | i = 1 7→ x] where

t1 ≜ fill0→1 (j.[i = 0 7→ q(j) | i = 1 7→ x]) x

Reasoning with contortions:

y

q(i)

q(j) yt2

i

j

Γ | i, j ` t2 :
[

i = 0 7→ q(j) | i = 1 7→ y
j = 0 7→ q(i) | j = 1 7→ y

]
where t2 ≜ q(i ∨ j)
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Dedekind contortions
Cubical type theories differ in which contortions they support:
• Cartesian (redtt): degeneracies, symmetries (i, j ` s(j, i)) and diagonals (i ` s(i, i)).
• Dedekind: also connectives ∧ and ∨.
• De Morgan (Cubical Agda): also reversal ∼.

Trade-off: more powerful contortion theory makes many Kan fillings superfluous,
but number of contortions grows super-exponentially.

Dedekind contortions from m- to n-cubes correspond to poset maps Im → In.

y

q(i)

q(j) yq(i ∨ j)

i

j

00

10 01

11

0

1

q(i) q(j)

y y

q
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Capturing the contortion search space
Keep track of possible targets for any element:

q(
00 7→ {0}
01 7→ {0, 1}
10 7→ {0, 1}
11 7→ {1}

)

00

10 01

11

0

1

q

Captures four different contortions:

q(i)

q(i)

x yq(
00 7→ 0
01 7→ 0
10 7→ 1
11 7→ 1

)

x

y

q(j) q(j)q(
00 7→ 0
01 7→ 1
10 7→ 0
11 7→ 1

)

q(i)

y

q(j) yq(
00 7→ 0
01 7→ 1
10 7→ 1
11 7→ 1

)

x

q(i)

x q(j)q(
00 7→ 0
01 7→ 0
10 7→ 0
11 7→ 1

)

i

j

Represent collection of contortions with potential poset map.
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Contortion summary

• Different contortion theories currently being considered, for proof search it’s
helpful to have available “truth-table” characterisation.

• Dedekind cubical type theory is such a theory; moreover, monotonicity allows
more efficient proof search.

• Contorting into dimension 1 shown NP-complete with reduction from SAT.

21 / 17



Case study: Eckmann-Hilton in a cubical setting

Classical result: concatenation of 2-loops is commutative.

Γ ≜ x : [], p(i, j), q(i, j) : [i = 0 7→ x | i = 1 7→ x | j = 0 7→ x | j = 1 7→ x]

Γ | i, j, k ` ? : [ i = 0 7→ p(j, k) | j = 0 7→ q(i, k) | k = 0 7→ x
i = 1 7→ p(j, k) | j = 1 7→ q(i, k) | k = 1 7→ x

]

x

x

x xp

x

x

x xq i

j
k

Construct as Kan filling of open 4-cube...
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Proving Eckmann-Hilton automatically
> dedekind -f "examples/eckmannhilton.cube" -v
Cell context:
[("x",(Bdy 0 [])) , ("p",(Bdy 2 [ (1,I0) +> App "x" (1,[]) ... ])) , ...]
SOLVING problem 1...
(Bdy 3 [ (1,I0) +> App "p" (2,[[[1]],[[2]]]) , ... ])
SOLVE IN (4,I1) FOR (Bdy 3 [ ... ]) WITH OPEN SIDES []
INITIAL DOMAINS
((1,I0),[PApp "p" [([I0,I0,I0],[[I0,I0]]), ... ]]) ([I0,I0,I1],[[I0,I0]]),([I0,I1,I0],[[I0,I0],[I0,I1]]),([I0,I1,I1],[[I0,I1]]),([I1,I0,I0],[[I0,I0],[I1,I0]]),([I1,I0,I1],[[I1,I0]]),([I1,I1,I0],[[I0,I0],[I0,I1],[I1,I0],[I1,I1]]),([I1,I1,I1],[[I1,I1]])]])
((4,I0),[PApp "p" [([I0,I0,I0],[[I0,I0],[I0,I1],[I1,I0],[I1,I1]]), ...]]) ([I0,I0,I1],[[I0,I0],[I0,I1],[I1,I0],[I1,I1]]),([I0,I1,I0],[[I0,I0],[I0,I1],[I1,I0],[I1,I1]]),([I0,I1,I1],[[I0,I0],[I0,I1],[I1,I0],[I1,I1]]),([I1,I0,I0],[[I0,I0],[I0,I1],[I1,I0],[I1,I1]]),([I1,I0,I1],[[I0,I0],[I0,I1],[I1,I0],[I1,I1]]),([I1,I1,I0],[[I0,I0],[I0,I1],[I1,I0],[I1,I1]]),([I1,I1,I1],[[I0,I0],[I0,I1],[I1,I0],[I1,I1]])],PApp "q" (fromList [([I0,I0,I0],[[I0,I0],[I0,I1],[I1,I0],[I1,I1]]),([I0,I0,I1],[[I0,I0],[I0,I1],[I1,I0],[I1,I1]]),([I0,I1,I0],[[I0,I0],[I0,I1],[I1,I0],[I1,I1]]),([I0,I1,I1],[[I0,I0],[I0,I1],[I1,I0],[I1,I1]]),([I1,I0,I0],[[I0,I0],[I0,I1],[I1,I0],[I1,I1]]),([I1,I0,I1],[[I0,I0],[I0,I1],[I1,I0],[I1,I1]]),([I1,I1,I0],[[I0,I0],[I0,I1],[I1,I0],[I1,I1]]),([I1,I1,I1],[[I0,I0],[I0,I1],[I1,I0],[I1,I1]])])])
...
SOLVED IN 158ms
λ i j k → hcomp (λ l → λ {

(i = i0) → p j (k ∧ l) ; (j = i0) → q i k ; (k = i0) → x
; (i = i1) → p j (k ∧ l) ; (j = i1) → q i k ; (k = i1) → p j l

}) (q i k)
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Making sense of the cubical Eckmann-Hilton argument

Γ | i, j, k ` fill0→1 (l.[ i = 0 7→ p(j, k ∨ l) | j = 0 7→ q(i, k) | k = 0 7→ x
i = 1 7→ p(j, k ∨ l) | j = 1 7→ q(i, k) | k = 1 7→ p(j, l) ]) q(i, k)

i

j
k

Proof can be turned into witness of p q ≡ q p using lower-dimensional Kan
filling, which can also be derived automatically.
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Contributions

• Self-contained language to talk about paths in a type in a cubical fashion.
• Studied Kan filling as a logical principle: shown undecidable; devised

algorithm based on CSP that solves many common boundary problems.
• Studied contortions of Dedekind cubical type theory: subproblem shown to

be NP-complete; devised algorithm to construct cubes with dim > 5.
• Experimental implementation: https://github.com/maxdore/dedekind

25 / 17
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Future work

• Incorporate solver into Cubical Agda.
• Refine and explore new heuristics for constructing Kan fillings.
• Understand complexity of contortions better.
• Extend with other cubical features (heterogeneous equality and transports).
• Combine with automated reasoning for dependent type theory.

Thank you for your attention!
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