Using Generative Al in Theoretical CS

Al Transforms Maths Research, University of Augsburg
28 August 2025

Maximilian Doreé, University of Oxford
maximilian.dore@cs.ox.ac.uk

mailto:maximilian.dore@cs.ox.ac.uk

What even is Computer Science?

Subject matter Methodology

the mechanisation of th/nklng close to that of mathematics: set-up and
| bt use formal language, axiomatise
~ planning the steps for cooxing a Bolognese =~ gt ctures that we’re interested in, prove

- recognising that a bear is staring into your eyes

- devising a mathematical proof... properties about these structures, ...

— CS shares methodology with mathematics (ie, stole it from maths);
and affects maths by virtue of being about thinking.

The mechanisation of thinking

* Turing: devised mathematical model of what computers do

Turing (,computing®) machine: some memory which is manipulated according
to a set of rules, called a program.

A problem is computable if it can be solved with a program which stops.

 Emergence of CS: what’s a good language to program in; what problems are
computable; which problems can be solved efficiently; ...

 Machine learning: a program which comes up with other programs.

Intelligence is unhelpful notion since it’s supposed to be some innate property.
Thinking is activity—you or a machine can engage in it or not. More workable!

Perhaps helpful analogy: the mechanisation of physical labour

Plan for this talk

* Since research involves some thinking, progress in the mechanisation of
thinking affects research.

* Already happened in maths: calculators, Birch&Swinnerton-Dyer, CAS, ...
* Currently: LLMs and generative Al.

* Explore what this could look like with two case studies of my research:
§1 Automating higher equalities: Automated reasoning for a new domain

§2 Devising a logic for resources: More fine-grained programming languages

§1 Automating higher equalities

Equality Iin type theory

Many current ITP (Agda, Lean, Rocq) are based on dependent type theory.

« Every value has a type: 2 o N

» Proofs are also just values: Am,n — induct (...) (...)n:1l, (m+n=n+m)

. We also want to stipulate equalities: Z, has values k : Z such that eq . k = n + k |higher inductive types

» This gives riseto eqs : 3 = n + 3 and trans(eq,,eq . ,) : 3 =2n + 3, etc.

» If we know that 2 is the multiplicative inverse of 3 in Zs, then it’s also for 8, 13, etc. |coercion

» Note Z, = Fin n. What if have some proofs about one structure and want to use the other? [univaience

Homotopy and Cubical Type Theory

 HoIT: treat equalities in type theory akin to paths in homotopy theory.

* Cubical Type Theory implements HoTT, taking inspiration from Kan’s cubical
sets. Working theorem prover with Cubical Agda.

Equalities are paths are squares/cubes/tesseracts/...

Suppose x : A.
Reflexivity x = x corresponds to the constant path Ai — x o2z
?
Yg------- » L
Suppose g : x = y. For symmetry we have to use Kan filling: |
,any open cube can be filled* q(7) T
T,

Coming up with equality proofs

Let’s show transitivity, iegiven g : x =yandr:.:y =7
we want to construct path from x to z.

We can represent a group as a cubical set as follows:
e Base point %
e« Aloop a : * = % for each generatora € X

e Al > k : % = % captures the identity element
* A square for each relation

Automating Boundary Filling in Cubical Type Theories

MGChaniSing Kan fi"ings jww Evan Cavallo & Anders Moértberg

arXiv:2402.12169

 Coming up with Kan fillings is quite tedious, should be automated.
 Have implemented a solver based on constraint satisfaction programming.
* Finding cubes which fit together isn’t much different from sudoku solving.

* Can find quickly many Kan fillings, also those establishing interesting results
like the Eckmann-Hilton argument.

— old-school mechanisation. Can we use LLMs?

Asking ChatGPT...

Findings from §1

 We have automated some class of proofs. Very mechanical.
» Still had to manually invent and implement an algorithm.
* (Generative Al quite bad at generating such proofs.

* Note: research done before (| engaged with) LLMs. Probably would have been
useful for implementing the solver.

11

§2 Devising a logic for resources

Restricting classical logic

* |t’s often useful to restrict classical logic for some application
(eg, in constructive logic any proof is a program)

* Linear logic treats variables as resources. ARB¥%A A%ARA

Useful iIn quantum computing, concurrency, memory management, ...

Problem with linear logic when programming: resource usage often not static.
Consider ifthenelse : Bool - (x : A) — (y : A) — A. How to treat this linearly?

We sometimes use x and sometimes y, depending on the given Bool.

13

Hacking logics in Agda

 ~Dependent~ type theory allows types to depend on values!

* |nitial idea: embed linear logic in type theory (taking inspiration from Godel’s
Dialectica construction)

 Works to some extent, but function types missing. Need to stipulate another rule.

... loads of trial and error...

* Crucial axiom necessary to make logic work discovered by playing around.

* Refactoring, rephrasing and simplifying easy in a proof assistant.

14

Dependent Multiplicities in

Dependent resources Dependent Linear Type Theory

arXiv:2507.08759

* We obtain a practical programming language with dynamic resource
annotations:
ifthenelse: (b:Bool) (A)" |b| o (A) |2b| oA
» Useful for functional programming:
map: (xs:List A) o (f:(x:A) —o B)" length xs — List B

* Agda was crucial to ,,guide” thought process.

e Where do LLMs come in?

15

Asking ChatGPT...

Findings from §2

* Proof assistants like Agda can act as a logical framework in which we can
play around with axioms and logics. Strong type discipline weeds out non-
sensical things, thereby providing helpful guardrails.

* | LMs helpful when inquiring about well-understood and well-documented
research areas

 But also helpful for conceptual work! We can ask about motivation
o (Still: bad at doing things correctly...)

 But can be source of inspiration!

17

Conclusions

* Instead of artificial intelligence | find it helpful to understand CS and ML as
being about the mechanisation of thinking.

 Many methods, languages and tools are useful for mechanising research.
 §1 Generating proofs with hand-written algorithms.
 §2 Guidance by type-checker when defining something new.
o §2 LLMs useful when trying to frame and motivate research.

o Surprisingly (to me), LLMs were most helpful for conceptual work and

understanding, and not for helping with technical stuff that at first glance
seems mechanical and apt for computers.

18

