
Maximilian Doré, University of Oxford
maximilian.dore@cs.ox.ac.uk

Using Generative AI in Theoretical CS
AI Transforms Maths Research, University of Augsburg
28 August 2025

mailto:maximilian.dore@cs.ox.ac.uk

What even is Computer Science?

2

close to that of mathematics: set-up and
use formal language, axiomatise
structures that we’re interested in, prove
properties about these structures, …

the mechanisation of thinking
- planning the steps for cooking a Bolognese 
- recognising that a bear is staring into your eyes  
- devising a mathematical proof…

MethodologySubject matter

→ CS shares methodology with mathematics (ie, stole it from maths);  
and affects maths by virtue of being about thinking.

The mechanisation of thinking
• Turing: devised mathematical model of what computers do 
 
Turing („computing“) machine: some memory which is manipulated according
to a set of rules, called a program.  
A problem is computable if it can be solved with a program which stops.

• Emergence of CS: what’s a good language to program in; what problems are
computable; which problems can be solved efficiently; …

• Machine learning: a program which comes up with other programs.

3

Intelligence is unhelpful notion since it’s supposed to be some innate property.
Thinking is activity—you or a machine can engage in it or not. More workable! 
 
Perhaps helpful analogy: the mechanisation of physical labour

Plan for this talk
• Since research involves some thinking, progress in the mechanisation of

thinking affects research.

• Already happened in maths: calculators, Birch&Swinnerton-Dyer, CAS, …

• Currently: LLMs and generative AI.

• Explore what this could look like with two case studies of my research: 
 
§1 Automating higher equalities: Automated reasoning for a new domain 
 
§2 Devising a logic for resources: More fine-grained programming languages

4

§1 Automating higher equalities

Equality in type theory
Many current ITP (Agda, Lean, Rocq) are based on dependent type theory.

• Every value has a type:

• Proofs are also just values:

• We also want to stipulate equalities: has values such that

• This gives rise to and , etc.

• If we know that 2 is the multiplicative inverse of 3 in , then it’s also for 8, 13, etc.

• Note . What if have some proofs about one structure and want to use the other?

2 : ℕ

λm, n → 𝗂𝗇𝖽𝗎𝖼𝗍 (. . .) (. . .) n : Πm,n:ℕ(m + n = n + m)

ℤn k : ℤ 𝖾𝗊k : k = n + k

𝖾𝗊𝟥 : 3 = n + 3 𝗍𝗋𝖺𝗇𝗌(𝖾𝗊3, 𝖾𝗊n+3) : 3 = 2n + 3

ℤ5

ℤn ≅ 𝖥𝗂𝗇 n

6

How can we devise a logic which supports all if this? 💡 Take proof-relevance seriously! 
If , it’s meaningful to study , , etc.p1, p2 : x = y α, β : p1 = p2 α = β

higher inductive types

coercion

univalence

Homotopy and Cubical Type Theory
• HoTT: treat equalities in type theory akin to paths in homotopy theory.

• Cubical Type Theory implements HoTT, taking inspiration from Kan’s cubical

sets. Working theorem prover with Cubical Agda. 
 
 Equalities are paths are squares/cubes/tesseracts/…

7

Suppose . 
 
Reflexivity corresponds to the constant path

x : A

x = x λi → x

Suppose . For symmetry we have to use Kan filling: 
„any open cube can be filled“

q : x = y

Coming up with equality proofs

8

Let’s show transitivity, ie given and
we want to construct path from to .

q : x = y r : y = z
x z

We can represent a group as a cubical set as follows:

• Base point

• A loop for each generator

• captures the identity element

• A square for each relation

⋆
a : ⋆ = ⋆ a ∈ X

λi → ⋆ : ⋆ = ⋆

Mechanising Kan fillings

• Coming up with Kan fillings is quite tedious, should be automated.

• Have implemented a solver based on constraint satisfaction programming.

• Finding cubes which fit together isn’t much different from sudoku solving.

• Can find quickly many Kan fillings, also those establishing interesting results
like the Eckmann-Hilton argument. 
 
→ old-school mechanisation. Can we use LLMs?

9

Automating Boundary Filling in Cubical Type Theories  
jww Evan Cavallo & Anders Mörtberg 
arXiv:2402.12169

Asking ChatGPT…

Findings from §1

• We have automated some class of proofs. Very mechanical.

• Still had to manually invent and implement an algorithm.

• Generative AI quite bad at generating such proofs.

• Note: research done before (I engaged with) LLMs. Probably would have been
useful for implementing the solver.

11

§2 Devising a logic for resources

Restricting classical logic

• It’s often useful to restrict classical logic for some application 
(eg, in constructive logic any proof is a program)

• Linear logic treats variables as resources. 
 
Useful in quantum computing, concurrency, memory management, …

13

A ⊗ B ⊸ A A ⊸ A ⊗ A

Problem with linear logic when programming: resource usage often not static.

Consider . How to treat this linearly?

We sometimes use and sometimes , depending on the given .

𝗂𝖿𝗍𝗁𝖾𝗇𝖾𝗅𝗌𝖾 : 𝖡𝗈𝗈𝗅 → (x : A) → (y : A) → A

x y 𝖡𝗈𝗈𝗅

Hacking logics in Agda

• ~Dependent~ type theory allows types to depend on values!

• Initial idea: embed linear logic in type theory (taking inspiration from Gödel’s
Dialectica construction)

• Works to some extent, but function types missing. Need to stipulate another rule. 
 
… loads of trial and error…

14

• Crucial axiom necessary to make logic work discovered by playing around.

• Refactoring, rephrasing and simplifying easy in a proof assistant.

Dependent resources

• We obtain a practical programming language with dynamic resource
annotations: 

• Useful for functional programming:

• Agda was crucial to „guide“ thought process.

• Where do LLMs come in?

15

Dependent Multiplicities in
Dependent Linear Type Theory 
arXiv:2507.08759

Asking ChatGPT…

Findings from §2

• Proof assistants like Agda can act as a logical framework in which we can
play around with axioms and logics. Strong type discipline weeds out non-
sensical things, thereby providing helpful guardrails.

• LLMs helpful when inquiring about well-understood and well-documented
research areas

• But also helpful for conceptual work! We can ask about motivation

• (Still: bad at doing things correctly…)

• But can be source of inspiration!

17

Conclusions
• Instead of artificial intelligence I find it helpful to understand CS and ML as

being about the mechanisation of thinking.

• Many methods, languages and tools are useful for mechanising research.

• §1 Generating proofs with hand-written algorithms.

• §2 Guidance by type-checker when defining something new.

• §2 LLMs useful when trying to frame and motivate research.

• Surprisingly (to me), LLMs were most helpful for conceptual work and
understanding, and not for helping with technical stuff that at first glance
seems mechanical and apt for computers.

18

