Linear Types with Dynamic Multiplicities
In Dependent Type Theory

(Functional Pearl)

ICFP 2025, National University of Singapore
15 October 2025

Maximilian Doreé, University of Oxford
maximilian.dore@cs.ox.ac.uk

mailto:maximilian.dore@cs.ox.ac.uk

Type systems with multiplicities

Linear logic: Don’t drop or duplicate variables. AQB#%A A%»ARQA

Useful for programming: all programs of type List A — List A are permutations.

Natural extension: quantitative types. _ |)}
(Quantitative TT, Granule, Linear Haskell, ...) copy = (x i A) A X A

called multiplicity of x

What'’s the type of safeHead : (xs : List A) -* (y : A) = A x List A

safeHead [] y = (y , [])
safeHead (X .. XS) _ (X ; XS) multiplicity of y depends on whether Xs is empty

Add dynamic multiplicities to a dependent type theory, inspired by Dialectica
(carried out in Cubical Agda, but works for any DTT)

-
O
e
O
-
-
e
)
-
O
O
O
e
T

The Supply as a bag of values

Cubical Agda supports Bags, ie :

_ X®Y=Y®X
lists quotiented by reordering: To -

0 > 0
o | Q
> 0 >

ag A - ag A
a - Bag A - Bag A
Let’s capture collections of resources: Supply = Bag (X[A € Type | A)

1 : 1A : Typet - A - Supply

We can put any value into a supply: L4AY a = (A . a) : o

Eg, given x : Aand xs : List A: L X ® 1 xs 1 Supply

Intuition: supplies are linear ,,contexts” which say which resources we can use

Rearranging supplies with productions —

We canshowthat 1t x ® 1 xs =1 xs ® 1 x. But what about 1 (x :: xs)?

Productions _—~_ : Supply - Supply - Type capture when supplies are the ,,same”

Most of the productions _~_ are straightforward (it’'s a hom-set for supplies);

we introduce additional productions to freely add and remove constructor symbols:

—~ 1 Supply - Supply - Type

opl[] : 1 [] ~ ¢ : lax[]
opl:: @ 1 (x ::xs) — (1 x ® 1 xs) : lax: for x + A, xs : List A

(1 I1s strong monoidal)

The type of linear judgments

Let’s introduce a dependent type to capture when something of type A can
be constructed using the resources represented by some supply A.

F_ : Supply - Type - Type

A-A=3X[a€eA] (A - 1 a)

This is all we need to obtain a linear typing discipline in Agda!

safeHead : (xs : List A) - (y : A) - (if null xs then 1 y else ¢) ® 1 xs I A x List A

safeHead [] y = (y , [I) , &g
safeHead (x :: xs) y = (x , xs) , dagle opl:

= 1+ Supply - Supply - Type

gpl, 1 (x,y) = (vxe1y) : lax,
opll[]: v [] = ¢ : lax[]
6 opli: ¢ v (x ::xs) = (v x® 1 xs) @ lax:

Programming

with Dialectica &

Created with ChatGPT

Deriving linear elimination principles

: . . ‘1 _ _—~_ 1 Type - Type - Type
We’ll write ,,function spaces” like so: A-B=(x:A) - 1Xx I B

We can pretend that these are functions: _@_: (A-B) - (A A) - (A + B)

foldr» : (AxB —-B) - (A + B) - (xs ¢ List A) - A ® 1 xs I+ B
foldr:1 f z [] = 7z by ..
foldr. f z (x it xs) =f @ (. x ,o foldr. f z xs) by .. }

we have to construct
some productions...

1sort : List A — List A

| | o '
isort = foldr: insert []. ... but this is verbose from the artefact!

Linear elimination principles are special cases of dependent elimination!|

8

Dynamic multiplicities

We can use the natural numbers N of Agdato _~ : Supply - N - Supply
represent multiplicities (in place of semiring A~ zero o ()
A® (A7 n

built into QTT, Granule or Linear Haskell) A~ (suc n)

foldr2 : ((x : A) - (b :B) -1 be® 1 x® A1 + B) - Ae + B
- (xs : List A) -» Ae ® A1 ~ (length xs) ® 1 xs |- B
foldrz2 f z [] Z: oyl ..

foldr2 f z (X :: xs) = f x @ foldr2 f z xs by ..

| I |

intersperse : (x : A) (ys : List A) - 1 x ©~ (length ys) ® 1 ys I List A
intersperse x = foldrz (A y Xxys - . X o . VY o . Xxys by ..) [l

The o« multiplicity

We can also draw multiplicities from the . oo
conatural numbers Neo which have oo : Noo — — * 2YPPYY pp Ly

Let’s have ,linear functions” taking in _—{(_)—=_ & Type -» No - Type - Type
a conatural multiplicity: A-(m)~-B=(x:A)-1x""mIr B

Thereby we can type functions

. . P iterate : (A - A) > A —(o)— List A
which use a variable infinitely often: ()

10

Created with ChatGPT

Summary

We’ve seen a simple recipe to add a linear typing discipline to an existing
dependently typed language, inspired by the Dialectica construction.

* Linear elimination principles can be derived using dependent elimination.

* No function types, but it’s still practical for writing many functional programs.

* Ability to compute multiplicities gives very powerful typing discipline,
allowing us to capture resource usage which has to be approximated in

systems with static multiplicities (such as QTT, Granule and Linear Haskell).

Based on ideas from Pédrot (Dialectica the Ultimate, TLLA 2024), similar idea to
+ used by Atkey (Polynomial Time and Dependent Types, POPL 2024)

12

What’s next

Dependent Multiplicities in

* Dependent linear function types require more structure } arXiv:-2507.08759
Dependent Linear Type Theory

* Productions should be constructed automatically

* Adding the construction to other theories: straightforward for Rocq, Lean, ...
(use of bags not crucial, we can instead add symmetry to productions)

o Utilise dynamic multiplicities for more efficient compilation.

Thanks to Pierre-Marie Pedrot, Valeria de Paiva and many others,
in particular the ICFP reviewers!

