
Maximilian Doré, University of Oxford
maximilian.dore@cs.ox.ac.uk

Linear Types with Dynamic Multiplicities
in Dependent Type Theory  
(Functional Pearl)
ICFP 2025, National University of Singapore
15 October 2025

mailto:maximilian.dore@cs.ox.ac.uk

safeHead : (xs : List A) ⊸¹ (y : A) ⊸ A List A
safeHead [] y = (y , [])
safeHead (x ∷ xs) _ = (x , xs)

×

Add dynamic multiplicities to a dependent type theory, inspired by Dialectica 
(carried out in Cubical Agda, but works for any DTT)

Useful for programming: all programs of type List A ⊸ List A are permutations.

Type systems with multiplicities

2

Linear logic: Don’t drop or duplicate variables. A ⊗ B ⊸ A A ⊸ A ⊗ A

Natural extension: quantitative types. 
(Quantitative TT, Granule, Linear Haskell, …) copy : (x : A) ⊸² A A×

What’s the type of ?

called multiplicity of x

multiplicity of y depends on whether xs is empty

The construction

Created with ChatGPT

The Supply as a bag of values

4

Supply = Bag (Σ[A ∈ Type] A)

◇ : Bag A
; : A → Bag A → Bag A
⊗ : Bag A → Bag A → Bag A

ι : {A : Type} → A → Supply
ι {A} a = (A , a) ; ◇

Cubical Agda supports Bags, ie  
lists quotiented by reordering:

Let’s capture collections of resources:

Eg, given x : A and xs : List A:

Intuition: supplies are linear „contexts“ which say which resources we can use

We can put any value into a supply:

X ⊗ Y ≡ Y ⊗ X

ι x ⊗ ι xs : Supply

Rearranging supplies with productions ⧟

5

We can show that ι x ⊗ ι xs ≡ ι xs ⊗ ι x. But what about ι (x ∷ xs)?

Productions _⧟_ : Supply → Supply → Type capture when supplies are the „same“

Most of the productions _⧟_ are straightforward (it’s a hom-set for supplies);  
we introduce additional productions to freely add and remove constructor symbols:

⧟ : Supply → Supply → Type
 …
 opl[] : ι [] ⧟ ◇ : lax[]
 opl∷ : ι (x ∷ xs) ⧟ (ι x ⊗ ι xs) : lax∷ for x : A , xs : List A

(ι is strong monoidal)

The type of linear judgments

⊩ : Supply → Type → Type
Δ ⊩ A = Σ[a ∈ A] (Δ ⧟ ι a)

safeHead : (xs : List A) → (y : A) → (if null xs then ι y else ◇) ⊗ ι xs ⊩ A × List A
safeHead [] y = (y , []) ,
safeHead (x ∷ xs) y = (x , xs) ,

{Goal: (ι y ⊗ ι []) ⧟ ι (y , []) }
{Goal: (ι (x ∷ xs)) ⧟ ι (x , xs) }
lax,
lax, ∘ opl∷

Let’s introduce a dependent type to capture when something of type A can
be constructed using the resources represented by some supply Δ.

This is all we need to obtain a linear typing discipline in Agda!

⧟ : Supply → Supply → Type
 …
 opl, : ι (x , y) ⧟ (ι x ⊗ ι y) : lax,
 opl[]: ι [] ⧟ ◇ : lax[]
 opl∷ : ι (x ∷ xs) ⧟ (ι x ⊗ ι xs) : lax∷6

Programming
with Dialectica

Created with ChatGPT

Deriving linear elimination principles
We’ll write „function spaces“ like so:

foldr₁ : (A × B ⊸ B) → (Δ ⊩ B) → (xs : List A) → Δ ⊗ ι xs ⊩ B
foldr₁ f z [] = z by …
foldr₁ f z (x ∷ xs) = f ＠ (． x ,○ foldr₁ f z xs) by …

⊸ : Type → Type → Type
A ⊸ B = (x : A) → ι x ⊩ B

We can pretend that these are functions:

Linear elimination principles are special cases of dependent elimination!

＠ : (A ⊸ B) → (Δ ⊩ A) → (Δ ⊩ B)

8

} we have to construct  
some productions…

… but this is verbose from the artefact!
isort : List A ⊸ List A
isort = foldr₁ insert []○

Dynamic multiplicities

foldr₂ : ((x : A) → (b : B) → ι b ⊗ ι x ⊗ Δ₁ ⊩ B) → Δ₀ ⊩ B
 → (xs : List A) → Δ₀ ⊗ Δ₁ ^ (length xs) ⊗ ι xs ⊩ B
foldr₂ f z [] =
foldr₂ f z (x ∷ xs) =

{Goal: Δ₀ ⊗ Δ₁ ^ length [] ⊗ ι [] ⊩ B }z by …
f x ＠ foldr₂ f z xs by …

We can use the natural numbers ℕ of Agda to
represent multiplicities (in place of semiring
built into QTT, Granule or Linear Haskell)

^ : Supply → ℕ → Supply
Δ ^ zero = ◇
Δ ^ (suc n) = Δ ⊗ (Δ ^ n)

9

intersperse : (x : A) (ys : List A) → ι x ^ (length ys) ⊗ ι ys ⊩ List A
intersperse x = foldr₂ (λ y xys → ． x ∷○ ． y ∷○ ． xys by …) []○

The ∞ multiplicity

We can also draw multiplicities from the
conatural numbers ℕ∞ which have ∞ : ℕ∞ _^_ : Supply → ℕ∞ → Supply

10

iterate : (A ⊸ A) → A -⟨ ∞ ⟩⊸ List A

-⟨⟩⊸_ : Type → ℕ∞ → Type → Type
A -⟨ m ⟩⊸ B = (x : A) → ι x ^ m ⊩ B

Let’s have „linear functions“ taking in
a conatural multiplicity:

Thereby we can type functions
which use a variable infinitely often:

Wrapping up

Created with ChatGPT

Summary

We’ve seen a simple recipe to add a linear typing discipline to an existing
dependently typed language, inspired by the Dialectica construction.

• Linear elimination principles can be derived using dependent elimination.

• No function types, but it’s still practical for writing many functional programs.

• Ability to compute multiplicities gives very powerful typing discipline,  
allowing us to capture resource usage which has to be approximated in
systems with static multiplicities (such as QTT, Granule and Linear Haskell).

Based on ideas from Pédrot (Dialectica the Ultimate, TLLA 2024), similar idea to
⊩ used by Atkey (Polynomial Time and Dependent Types, POPL 2024)

12

What’s next

• Dependent linear function types require more structure

• Productions should be constructed automatically

• Adding the construction to other theories: straightforward for Rocq, Lean, … 
(use of bags not crucial, we can instead add symmetry to productions)

• Utilise dynamic multiplicities for more efficient compilation.

} arXiv:2507.08759 
Dependent Multiplicities in  
Dependent Linear Type Theory

Thanks to Pierre-Marie Pédrot, Valeria de Paiva and many others,
in particular the ICFP reviewers!

