
Quasi-Weak Cost Automata: A New Variant of
Weakness ∗

Denis Kuperberg1 and Michael Vanden Boom2

1 LIAFA/CNRS/Université Paris 7, Denis Diderot, France
denis.kuperberg@liafa.jussieu.fr

2 Department of Computer Science, University of Oxford
Wolfson Building, Parks Road, Oxford OX1 3QD, England
michael.vandenboom@cs.ox.ac.uk

Abstract
Cost automata have a finite set of counters which can be manipulated on each transition but
do not affect control flow. Based on the evolution of the counter values, these automata define
functions from a domain like words or trees to N ∪ {∞}, modulo an equivalence relation which
ignores exact values but preserves boundedness properties. These automata have been studied
by Colcombet et al. as part of a “theory of regular cost functions”, an extension of the theory of
regular languages which retains robust equivalences, closure properties, and decidability like the
classical theory.

We extend this theory by introducing quasi-weak cost automata. Unlike traditional weak
automata which have a hard-coded bound on the number of alternations between accepting and
rejecting states, quasi-weak automata bound the alternations using the counter values (which
can vary across runs). We show that these automata are strictly more expressive than weak
cost automata over infinite trees. The main result is a Rabin-style characterization theorem:
a function is quasi-weak definable if and only if it is definable using two dual forms of non-
deterministic Büchi cost automata. This yields a new decidability result for cost functions over
infinite trees.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Automata, infinite trees, cost functions, weak

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Cost automata are finite-state machines enriched with counters which can be manipulated
on each transition but cannot be used to affect control flow. Based on the evolution of
the counter values, these automata define functions from some domain (like words or trees
over a finite alphabet) to N ∪ {∞}, modulo an equivalence relation ≈ which ignores exact
values but preserves boundedness properties. By only considering the functions up to ≈,
the resulting “theory of regular cost functions” retains many of the equivalences, closure
properties, and decidability results of the theory of regular languages [3]. It extends the
classical theory since we can identify each language with its characteristic function mapping
structures in the language to 0 and everything else to ∞; it is a strict extension since cost
automata can count some behaviour within the input structure.

∗ The research leading to these results has received funding from ANR 2010 BLAN 0202 02 FREC and the
European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement 259454.

© Denis Kuperberg and Michael Vanden Boom;
licensed under Creative Commons License NC-ND

Conference title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2 Quasi-Weak Cost Automata: A New Variant of Weakness

The development of this theory was motivated by problems which can be reduced to
questions of boundedness. For instance, Hashiguchi [7] and later Kirsten [8] used distance
and nested-distance desert automata (special forms of cost automata) to prove the decid-
ability of the “star-height problem”: given a regular language L of finite words and a natural
number n, is there some regular expression (using concatenation, union, and Kleene star) for
L which uses at most n nestings of Kleene-star operations? Colcombet and Löding [4] have
used a similar approach over finite trees. The theory of regular cost functions over finite
words [3] and finite trees [6] can be viewed as a unifying framework for these problems.

It is desirable to extend the theory to infinite trees. For instance, the “parity-index
problem” asks: given a regular language L of infinite trees and i < j, is there a parity
automaton using only priorities {i, i+1, . . . , j}? This is known to be decidable in some special
cases (e.g. for deterministic languages [11]), but a general decision procedure is not known.
However, Colcombet and Löding [5] have reduced the parity-index problem to another open
problem, namely the decidability of ≈ for regular cost functions over infinite trees.

Weak cost automata (recently studied in [13]) are a natural starting point in this line of
research on regular cost functions over infinite trees. In the classical setting, weak automata
are a restricted form of alternating Büchi automata which have a fixed bound on the number
of alternations between accepting and rejecting states across all runs. They were introduced
in [10] to characterize the languages definable in weak monadic second-order logic (WMSO),
a variant of MSO in which second-order quantifiers are interpreted over finite sets. Prior
to this work, Rabin [12] had given an interesting characterization using non-deterministic
automata, showing that a language is weakly definable if and only if the language and its
complement are non-deterministic Büchi recognizable.

These notions of weakness have received considerable attention because the weakly de-
finable languages are expressive (e.g. they capture CTL), but still admit efficient model-
checking [9]. Indeed, in order to improve the efficiency in some model-checking scenarios,
Kupferman and Vardi [9] adapted Rabin’s work and provided a quadratic translation be-
tween non-deterministic Büchi automata and the corresponding weak automaton.

In [13], weak cost automata were shown equivalent to “cost WMSO”, in analogy to the
classical theory. However, the question of a Rabin-style characterization based on non-
deterministic automata remained open and prompted this work.

1.1 Contributions
We continue the study of regular cost functions over infinite trees by introducing a variant
of weakness which we call “quasi-weakness”. Unlike traditional weak automata which have
a hard-coded bound on the number of alternations between accepting and rejecting states,
quasi-weak automata bound the alternations using counter values (which can vary across
runs). We show that quasi-weak cost automata are strictly more expressive than weak cost
automata over infinite trees.

Although there is no notion of complement for a function, there are two dual semantics
(B and S) used to define cost functions. We show that quasi-weak B-automata can be
simulated by non-deterministic B-Büchi and S-Büchi automata. Combined with results
from [13], this implies the decidability of f ≈ g when f, g are cost functions defined by
quasi-weak B-automata. Consequently, this work extends the class of cost functions over
infinite trees for which ≈ is known to be decidable. We also provide a non-trivial extension
of Kupferman and Vardi’s construction [9] to translate equivalent non-deterministic B-Büchi
and S-Büchi automata to an equivalent quasi-weak B-automaton (where the equivalence in
each case is up to ≈). This provides a Rabin-style characterization of the functions definable



Denis Kuperberg and Michael Vanden Boom 3

using quasi-weak B-automata and marks an interesting departure from the classical theory.
The construction relies on analyzing a composed run of a B-Büchi automaton and S-

Büchi automaton. To aid in this analysis, we use BS-automata and introduce a correspond-
ing BS-equivalence relation u which can be used to compare cost automata which define not
one but two functions (one based on the B-counters and one on the S-counters). Although
the B- and S-counter actions in such a composed run can be independent, we show that
it is possible to effectively construct an equivalent (up to u) BS-automaton in which the
actions are more structured (namely, the counters are “hierarchical” so they can be totally
ordered and manipulating a higher counter resets all lower counters). We believe this may
be a useful technique in other situations which require both counter types.

1.2 Organization

We define cost automata on infinite trees in Sect. 2, with semantics based on two-player
infinite games. We also introduce the new quasi-weak cost automata and compare to the
more traditional weak cost automata. In Sect. 3, we consider automata with both counter
types and show how they can be made hierarchical. Finally, in Sect. 4, we describe the other
components of the main result, a Rabin-style characterization for quasi-weak cost automata.
We conclude with some open questions in Sect. 5.

1.3 Notations

We write N for the set of non-negative integers and N∞ for the set N ∪ {∞}, ordered by
0 < 1 < · · · <∞. If i ≤ j are integers, [i, j] denotes the set {i, i+ 1, . . . , j}. We fix a finite
alphabet A. The set of finite (respectively, infinite) words over A is A∗ (respectively, Aω)
and the empty word is ε. For notational simplicity we work only with infinite binary trees.
Let T = {0, 1}∗ be the unlabelled infinite binary tree. A branch in T is a word π ∈ {0, 1}ω.
The set TA of complete A-labelled binary trees is composed of mappings t : T → A.

Non-decreasing functions N→ N will be denoted by letters α, β, . . . , and will be extended
to N∞ by α(∞) =∞. We call these correction functions.

2 Cost Automata

2.1 Cost Functions

Let E be any set, and FE be the set of functions : E → N∞. For f, g ∈ FE and α a correction
function, we write f 4α g if f ≤ α◦g (or if we are comparing single values n,m ∈ N, n 4α m

if n ≤ α(m)). We write f ≈α g if f 4α g and g 4α f . Finally, f ≈ g (respectively, f 4 g)
if f ≈α g (respectively, f 4α g) for some α. The idea is that the boundedness relation ≈
does not pay attention to exact values, but does preserve the existence of bounds. Remark
that f 64 g if and only if there exists a set D ⊆ E such that g is bounded on D but f is
unbounded on D.

A cost function over E is an equivalence class of FE/≈. In practice, a cost function
(denoted f, g, . . .) will be represented by one of its elements in FE . In this paper, E will
usually be TA. The functions defined by automata will always be considered as cost functions,
i.e. only considered up to ≈.



4 Quasi-Weak Cost Automata: A New Variant of Weakness

2.2 B- and S-Valuations
Cost automata define functions from TA to N∞. The valuation is based on both classical
acceptance conditions (in this paper, Büchi acceptance) and a finite set of counters Γ.

A counter γ is initially assigned value 0 and can be incremented i, reset r to 0, checked
c, or left unchanged ε. Given an infinite word uγ over the alphabet {ε, i, r, c}, we define a
set C(uγ) ⊆ N which collects the checked values of γ. In the case of a finite set of counters
Γ and a word u over {ε, i, r, c}Γ, C(u) :=

⋃
γ∈Γ C(prγ(u)) (prγ(u) is the γ-projection of u).

We will separate counters into two types: B-counters, which accept as atomic actions the
set B = {ε, ic, r}, and S-counters, with atomic actions S = {ε, i, r, cr}. Given B-counters
ΓB and u ∈ (BΓB )ω, the B-valuation is valB(u) := supC(u); likewise, given S-counters ΓS
and u ∈ (SΓS )ω, the S-valuation is valS(u) := inf C(u). By convention, inf ∅ = ∞ and
sup ∅ = 0. For instance valB((ic)ω) = ∞, valB((icr)ω) = 1, valS(i100criεicr(r)ω) = 2,
and valS(iω) =∞ because the counter is never checked.

In all cases, if the set of counters Γ is [1, k], an action ν is called hierarchical if there
is some i ∈ [1, k] such the action ν performs ε on all counters j > i, and r on all counters
j < i. It means that performing an increment or a reset on counter i resets all counters j
below it.

Cost automata are named B-, S-, or BS-automata depending on the type(s) of counters
used. They are hierarchical (written, e.g. hB-automata) if only hierarchical actions are used.

2.3 B- and S-Automata on Infinite Trees
An alternating B-Büchi automaton A = 〈Q,A, q0, F,ΓB , δ〉 on infinite trees has a finite set
of states Q, alphabet A, initial state q0 ∈ Q, accepting states F , finite set ΓB of B-counters,
and transition function δ : Q×A→ B+({0, 1}×BΓB×Q), where B+({0, 1}×BΓB×Q) is the
set of positive boolean combinations, written as a disjunction of conjunctions of elements
(d, ν, q) ∈ {0, 1} × BΓB × Q. Alternating S-Büchi automata are defined in the same way,
replacing B-counters by S-counters and B with S.

We view running a B-automaton (resp. S-automaton) A on an input tree t as a game
(A, t) between two players : Eve is in charge of the disjunctive choices and tries to minimize
(resp. maximize) counter values while satisfying the Büchi condition, and Adam is in charge
of the conjunctive choices and tries to maximize (resp. minimize) counter values or show the
Büchi condition is not satisfied. Because the transition function is given as a disjunction of
conjunctions, we can consider that at each position, Eve first chooses a disjunct, and then
Adam chooses a single tuple (d, ν, q) in this disjunct.

A play of A on input t is a sequence q0, (d1, ν1, q1), (d2, ν2, q2), . . . compatible with t and
δ, i.e. q0 is initial, and for all i ∈ N, (di+1, νi+1, qi+1) appears in δ(qi, t(d1 . . . di)).

A strategy for Eve (resp. Adam) in the game (A, t) is a function that fixes the next choice
of Eve (resp. Adam), based on the history of the play (resp. the history of the play and Eve’s
choice of disjunct). A strategy is finite-memory if the number of memory states needed for
the player to choose the next move is finite. A strategy is positional if no memory at all is
needed: the player only needs to know the current position. Notice that choosing a strategy
for Eve and a strategy for Adam fixes a play in (A, t). We say a play π is compatible with a
strategy σ for Eve if there is some strategy σ′ for Adam such that σ and σ′ yield the play π.

A play π is accepting if there is q ∈ F appearing infinitely often in π (i.e. π satisfies
the Büchi acceptance condition). Given a play π from a B-automaton A, the value of
π is val(π) := valB(hB(π)) if π is accepting, and val(π) = ∞ otherwise (where hB is
the projection of π to the B-actions). This yields the maximum checked counter value if



Denis Kuperberg and Michael Vanden Boom 5

the play is accepting, and ∞ otherwise. We assign a value to a strategy σ for Eve by
val(σ) := sup {val(π) : π is compatible with σ}. The value of A over a tree t is [[A]]B(t) :=
inf {val(σ) : σ is a strategy for Eve in the game (A, t)}.

Likewise, in an S-automaton A′, we define val(π) := valS(hS(π)) if π is accepting, and
0 otherwise (where hS is the projection to the S-actions). Once again, counter actions are
only considered if the play is accepting (this time the minimum checked value is used), and
0 is assigned to rejecting plays. Then val(σ) := inf {val(π) : π is compatible with σ}, and
[[A′]]S(t) := sup {val(σ) : σ is a strategy for Eve in the game (A′, t)}.

We consider [[A]]B and [[A′]]S as cost functions, so we always work modulo the cost
function equivalence ≈. If it is clear what semantic the automaton uses we will omit the
subscript and write just [[A]] or [[A′]]. If f ≈ [[A]] then we say A recognizes the cost function f .

If for all (q, a) ∈ Q × A, δ(q, a) is of the form
∨
i(0, νi, qi) ∧ (1, ν′i, q′i) , then we say the

automaton is non-deterministic. We define a run to be the set of possible plays compatible
with some fixed strategy of Eve. Since the only choices of Adam are in the branching, a run
labels the entire binary tree with states, and choosing a branch yields a unique play of the
automaton. A run is accepting if all of its plays are accepting (that is, if it is accepting on
all branches). A value is assigned to a run of a B-automaton (resp. S-automaton) by taking
the supremum (resp. infimum) of the values across all branches.

Finally, a cost automaton A = 〈Q,A, q0, F,Γ, δ〉 is weak if the state-set Q can be parti-
tioned into Q1, . . . , Qk satisfying:

for all i and for all q, q′ ∈ Qi, q ∈ F if and only if q′ ∈ F ;
if some (d, ν, q) appears in some δ(p, a) with p ∈ Qi and q ∈ Qj , then j ≤ i.

This means there is a fixed bound k on the number of alternations between accepting and
rejecting states, so any accepting play must stabilize in an accepting partition.

2.3.1 Examples
Let A = {a, b, c} and let f be the cost function over A-labelled trees where f(t) =∞ if there
is a branch with only finitely many b’s, and f(t) = sup {|π|a : π is a branch of t} otherwise,
where |π|a denotes the number of a’s in π.

We define a non-deterministic B-Büchi automaton U and a non-deterministic S-Büchi
automaton U ′, together with a weak automaton B, such that f ≈ [[U ]] ≈ [[U ′]] ≈ [[B]].

The principle of U is to simultaneously count a’s and check for infinitely many b’s by
running the following deterministic B-automaton on every branch. We write a : ν to denote
that on input a, the counter action is ν; accepting states are denoted by double circles.

a : ic
c : ε

b : ε

b : εa : ic
c : ε

On the other hand, U ′ = 〈{pa, pb, qb,>} ,A, {pa, pb} , {qb,>} , {γ} , δ〉 tries to find a
branch π with either a lot of a’s (state pa), or only finitely many b’s (state pb), in or-
der to witness a high value for f (∞ in the second case). For simplicity, we allow here two
initial states, but this does not add expressive power to the model. The state qb is used
when Eve has guessed the position of the last b, and still needs to prove that there are no
more b on π, and > is used when the remainder of the branch does not matter.



6 Quasi-Weak Cost Automata: A New Variant of Weakness

The transition table δ for U ′ follows. Remark that U ′ is in fact a non-deterministic weak
S-automaton.

δ pa pb qb >
a ((0, i, pa) ∧ (1, ε,>)) ((0, pb) ∧ (1, ε,>)) ((0, ε, qb) ∧ (1, ε,>)) (0, ε,>) ∧ (1, ε,>)
∨((0, ε,>) ∧ (1, i, pa)) ∨((0, ε,>) ∧ (1, ε, pb)) ∨((0, ε,>) ∧ (1, ε, qb))
∨((0, cr,>) ∧ (1, ε,>)) ∨((0, ε, qb) ∧ (1, ε,>))
∨((0, ε,>) ∧ (1, cr,>)) ∨((0, ε,>) ∧ (1, ε, qb))

b ((0, ε, pa) ∧ (1, ε,>)) = δ(pb, a) false (0, ε,>) ∧ (1, ε,>)
∨((0, ε,>) ∧ (1, ε, pa)) (empty disjunction)
∨((0, cr,>) ∧ (1, ε,>))
∨((0, ε,>) ∧ (1, cr,>))

c = δ(pa, b) = δ(pb, a) = δ(qb, a) (0, ε,>) ∧ (1, ε,>)

Finally, B is designed such that Adam controls all of the choices: Adam selects a single
branch, and runs the following automaton on this branch (he controls the non-determinism):

q3 q2 q1

a : ic
b, c : ε

A : ε

a : ic
c : ε

b : ε

a : ic
b, c : ε

If there is a branch π with finitely many b’s, Adam can select π and stabilize in rejecting
state q2 by moving from q1 to q2 after the last b. This witnesses value ∞ for f . Otherwise,
Adam tries to select a branch which maximizes the number of a’s. The state-set can be
partitioned such that Qi = {qi} for i ∈ [1, 3].

2.4 Quasi-Weak B-Automata
We want to define an extension of weak B-automata, which preserves the property that
accepting plays must stabilize in accepting states. The idea of weak automata is to bound
the number of alternations between accepting and rejecting states by a hard bound.

Here we have another available tool to bound the number of such alternations: the
counters. We know that in a B-automaton, an accepting play of finite value n does at most
n increments between resets, but this number is not known a priori by the automaton. Thus,
if we guarantee there is correction function α such that in any play π of value n, α(n) is
greater than the number of alternations between accepting and rejecting states in π, then
we know that any play of finite value must stabilize in accepting states. Otherwise, infinitely
many alternations would give value ∞ to the cost function computed by the automaton.

Thus we define quasi-weak automata in the following way:

I Definition 1. An alternating B-Buchi automaton is quasi-weak if there is a correction
function α such that in any play of A of value n <∞, the number of alternations between
accepting and rejecting states is smaller than α(n).

In particular, any weak automaton A is quasi-weak since we can take α(n) = k for all n,
where k is the number of partitions of A. We can also give a structural characterization.

I Proposition 2. An alternating B-Büchi automaton is quasi-weak if and only if in any
reachable cycle containing both accepting and rejecting states, some counter is incremented
but not reset.



Denis Kuperberg and Michael Vanden Boom 7

We say a cost function is quasi-weak if it is recognized by some quasi-weak B-automaton.

I Proposition 3. There exists a cost function over infinite trees which is recognized by a non-
deterministic quasi-weak B-automaton, but not by any weak B-automaton. Consequently,
quasi-weak B-automata are strictly more expressive than weak B-automata.

Proof. (Sketch) The idea is to build an explicit cost function f , and for each n ∈ N an infinite
tree tn which includes labels that dictate which player controls each position in the game
(this is inspired by [1]). These trees are designed such that any alternating B-automaton
recognizing f is forced to do Θ(n) alternations between accepting and rejecting states on
tn. This shows f cannot be computed by a weak B-automaton. On the other hand, we give
an explicit non-deterministic quasi-weak B-automaton for f . J

3 BS-Automata

We usually work with cost automata with only one type of counter, B or S. In the next
section, however, we compose runs from B-Büchi and S-Büchi automata and consequently
must work with both counter types simultaneously. We capture this in a non-deterministic
BS-Büchi automaton A = 〈Q,A, q0, FB , FS ,ΓB ,ΓS ,∆〉. Such an automaton defines func-
tions [[A]]B and [[A]]S as expected (by restricting to one of the counter types).

Let A and A′ be the following non-deterministic BS-automata on infinite words over
A := {a, b, c}, each with one B- and one S-counter. We write a : (d, d′) if on input a, the
output is action d (resp. d′) for the B (resp. S) counter. We omit self-loops c : (ε, ε).

a : (ε, cr)

a : (ε, i)

b : (ic, ε)

a : (ε, r)

b : (ic, r)

a : (ε, cr)

a : (ε, i)

b : (ic, r)

a : (ε, r)

b : (ic, r)

These automata are very similar. For instance, [[A]]B = [[A′]]B = | · |b. The key difference
is A′ is hierarchical, with the B-counter above the S-counter. Formally, the counters ΓB]ΓS
are globally numbered [1, k] (for k = |ΓB |+ |ΓS |) and for any action on BΓB × SΓS there is
some i ∈ [1, k] such that ε is performed on all counters j > i and r on all counters j < i.

Notice that we have [[A]]S ≈ | · |a (if there are a finite number of a’s, then the best run
of A moves to the accepting state when reading the final a; otherwise, for every n, there is
an accepting run of A such that the S-counter has value n). In A′, however, the B-counter
is higher than the S-counter so A′ forces a reset of the S-counter when a b is read in the
initial state. Since there is no a priori bound on the number of b’s in the input, this means
[[A′]]S 6≈ [[A]]S . However, for any fixed m and any u such that [[A]]B(u) ≤ m, the S-value of
A on u is ≈βm-equivalent to A′ on u with βm(n) = n(m+ 1).

This motivates a new equivalence relation u which we call BS-equivalence. We define
A u A′ to hold if there is a correction function α such that (i) [[A]]B ≈α [[A′]]B and (ii)
for any m, there is a correction function βm such that the S-values of A and A′ are ≈βm-
equivalent when restricted to inputs with B-values at most α(m). Although it is technical,
this definition captures the notion that two BS-Büchi automata behave in a similar fashion
(as in the example above).

It turns out that given any BS-automaton like A, there is an hBS-automaton A′ sat-
isfying A u A′. Moreover, this translation can be done effectively by transducers which



8 Quasi-Weak Cost Automata: A New Variant of Weakness

read an infinite word of non-hierarchical counter actions and output hierarchical counter
actions. This is in analogy to the deterministic transducer which can be used to translate a
Muller condition to a parity condition in the classical setting, or the transducer defined in
[6] which translates B-actions to hierarchical B-actions. A similar idea is also used in [2] for
automata with both B- and S-counters but in a setting where only boolean properties about
boundedness and unboundedness are considered (unlike the quantitative setting here).

I Theorem 4. For all sets ΓB ,ΓS of counters, there exists effectively a history-deterministic
hBS-automaton H(ΓB ,ΓS) on infinite words over B|ΓB |×S|ΓS | with H(ΓB ,ΓS) u G(ΓB ,ΓS)
where G(ΓB ,ΓS) is the BS-automaton which copies the counter actions from the input.

The transducer H(ΓB ,ΓS) has the same set of B counters, but extra copies of the S-
counters. The principle of the automaton is to split the input word into sequences of S-
actions from {i, ε}∗ which are between resets of the B-counters. It uses one copy of the
S-counter to count the number of S-increments within each sequence, and another copy to
count the sequences with at least one S-increment. If the S-value is high compared to the
B-value, then the transducer will also have a high S-value, obtained from one of the copies.

These transducers are history-deterministic, a weakening of traditional determinism [3].
The entire history of the input and the current state are required to determine the next
transition (rather than just the current state and input letter). Because the choice of the
transition depends only on the past, for any two input words the automaton can find good
moves which do not conflict on any common prefix. This means these automata (like de-
terministic automata) compose well with alternating automata and games: they can be
simulated on each play in a game while preserving the value up to ≈ or u (see [3] for more
information).

This means that we can use the transducers to transform arbitrary BS-automata over
words or trees into hierarchical BS-automata which are easier to work with.

4 Characterization of Quasi-Weak Cost Automata

In this section we prove a Rabin-style characterization for quasi-weak B-automata:

I Theorem 5. A cost function f over infinite trees is recognizable by some quasi-weak
B-automaton B if and only if there is a non-deterministic B-Büchi automaton U and non-
deterministic S-Büchi automaton U ′ such that f ≈ [[U ]]B ≈ [[U ′]]S.

The first direction is described in Lemmas 6 and 7 in Section 4.1. The other direction is
described in Sections 4.2–4.4, culminating in Theorem 10.

4.1 Simulation
We start by showing that a quasi-weak B-automaton (in fact, any alternating B-Büchi
automaton) A can be simulated by a non-deterministic B-Büchi version.

I Lemma 6. Given an alternating B-automaton B, a non-deterministic B-Büchi automaton
U can be effectively constructed such that [[B]]B ≈ [[U ]]B.

Proof. (Sketch) In a B-Büchi game, the value of a strategy is the max over all plays com-
patible with it. Hence, we first show there is a history-deterministic B-Büchi automaton
Dmax recognizing max-play(wτσ) = sup{val(π) : π is compatible with σ and stays on τ} on
words wτσ which describe the set of plays from a strategy σ which stay on a branch τ .



Denis Kuperberg and Michael Vanden Boom 9

On input t, the non-deterministic B-Büchi U guesses a tree tσ (an annotated version of
t over an extended alphabet), checks that the annotations describe a valid finite-memory
strategy σ in (B, t), and simulates Dmax on each branch in tσ in order to calculate the value
of the strategy (possible since Dmax is history-deterministic). Because non-determinism
resolves into taking an infimum, U calculates the infimum over the values of all finite-memory
strategies in (B, t). Although finite-memory strategies might not achieve the optimal value,
they do achieve an ≈-equivalent value in B-Büchi games by [13]. Hence, [[B]] ≈ [[U ]]. J

Proving that B can be simulated by a non-deterministic S-Büchi automaton U ′ is more
technical and uses the fact that B is quasi-weak.

I Lemma 7. Given a quasi-weak B-automaton B, a non-deterministic S-Büchi automaton
U ′ can be effectively constructed such that [[B]]B ≈ [[U ′]]S.

Proof. (Sketch) The automaton U ′ can no longer guess a strategy in (B, t), since the value of
(B, t) is the infimum over all strategies and non-determinism in an S-automaton resolves into
taking a supremum. Instead, we consider a dual game (B, t) where the roles of the players
are reversed so Eve tries to maximize the B-value across all strategies. We show there is
a history-deterministic S-Büchi automaton Dmin which computes the minimum value of a
set of plays from such a game, and show these games admit finite-memory strategies. The
S-Büchi automaton U ′ guesses a finite-memory strategy in such a game and then simulates
Dmin on each branch of the tree annotated with this strategy in order to compute its value.

J

These simulation lemmas and [13, Lemma 1] imply a new decidability result (extending
the class of cost functions over infinite trees for which decidability of ≈ is known).

I Corollary 8. If f, g are cost functions over infinite trees which are given by quasi-weak
B-automata then it is decidable whether or not f 4 g.

4.2 Construction from Kupferman and Vardi
We now turn to the other direction of Theorem 5. The corresponding classical result states
that given non-deterministic Büchi automata U and U ′ such that L(U) is the complement
of L(U ′), there is a weak automaton A such that L(A) = L(U) [9].

The proofs in [12, 9] begin with an analysis of composed runs of U and U ′. Let m :=
|Q| · |Q′|. A frontier E is a set of nodes of t such that for any branch π of t, E ∩ π is a
singleton. Kupferman and Vardi [9] define a trap for U and U ′ to be a strictly increasing
sequence of frontiers E0 = {ε} , E1 . . . , Em such that there exists a tree t, a run R of U
on t, and a run R′ of U ′ on t satisfying the following properties: for all 0 ≤ i < m and
for all branches π in t, there exists x, x′ ∈ [eπi , eπi+1) such that R(x) ∈ F and R′(x′) ∈ F ′
where eπ0 < · · · < eπm is the set of nodes from E0, . . . , Em induced by π. The set of positions
[eπi , eπi+1) can be viewed as a block, and each block in a trap witnesses an accepting state
from U and U ′.

This is called a trap because L(U ′) is the complement of L(U), but a trap implies
L(U) ∩ L(U ′) 6= ∅ (using a pumping argument on blocks). The weak automaton A has Eve
(resp. Adam) select a run of U (resp. U ′). The acceptance condition requires that any time
an accepting state from U ′ is seen, an accepting state from U is eventually seen. Because of
the trap condition, these accepting blocks only need to be counted up to m times (so A is
weak).



10 Quasi-Weak Cost Automata: A New Variant of Weakness

4.3 Cost Traps
Now let U = 〈QU ,A, qU0 , FUB ,ΓUB ,∆U 〉 (respectively, U ′ = 〈QU ′ ,A, qU

′

0 , FU
′

S ,ΓU ′S ,∆U ′〉) be a
non-deterministic B-Büchi (respectively, S-Büchi) automaton such that [[U ]]B ≈ [[U ′]]S . Our
goal is to construct a quasi-weak B-automaton B which is equivalent to U .

We want to extend the classical case to cost functions, so we seek a notion of “cost
trap”, which will imply a contradiction with [[U ]]B ≈ [[U ′]]S . More specifically, we want
a notion of blocks and traps which will witness a bounded B-value from U on some set
of trees but an unbounded S-value for U ′ on the same set (showing [[U ′]]S 64 [[U ]]B). The
definition of a block when using arbitrary B- and S-counter actions coming from U and
U ′ would be very intricate because it would have to deal with the interaction of the B-
and S-actions. In order to avoid this, we switch to working with a non-deterministic hBS-
Büchi automaton A = 〈QA,A, qA0 , FB , FS ,ΓB ,ΓS , δA〉 which is BS-equivalent to U × U ′ =
〈QU ×QU ′ ,A, (qU0 , qU

′

0 ), FUB , FU
′

S ,ΓUB ,ΓU
′

S ,∆U×U ′〉 but uses hierarchical counters.
A block based on hierarchical BS-actions from A has accepting states from both FB and

FS (corresponding to accepting states for U and U ′), but it also has a reset for B-counter γ
if γ is incremented in that block (in order to ensure pumping does not inflate the B-value).
The number of blocks required is also increased to m := (|QA| + 2)|ΓS |+1 for technical
reasons.

A cost trap for A is a frontier Em and for every branch π up to Em a strictly increasing
set of nodes eπ0 < · · · < eπm ∈ Em such that there exists a tree t and a run R of A on t with
valS(R) > |QA| satisfying the following properties: for all 0 ≤ i < m and for all branches π,
[eπi , eπi+1) is a block; if branches π1 and π2 share some prefix up to position y and x < y is
the first position with eπ1

i = x and eπ2
i 6= x then eπ2

i > y (i.e. pumping blocks from π2 does
not damage blocks from π1).

A pumping argument shows a cost trap implies U and U ′ are not equivalent.

I Proposition 9. Let U (respectively, U ′) be non-deterministic B-Büchi (respectively, S-
Büchi). Let A u U × U ′ be a non-deterministic hBS-automaton. If there exists a cost trap
for A, then [[U ′]] 64 [[U ]].

4.4 Construction of Quasi-Weak B-Automaton B
Given U and U ′ with [[U ]]B ≈ [[U ′]]S , we can effectively build a quasi-weak B-automaton B
which on an input tree t,

simulates in parallel U (driven by Eve) and U ′ (driven by Adam) over t;
runs the hBS-transducer H(ΓUB ,ΓU

′

S ) over the composed actions from U and U ′;
analyzes the output of this transducer together with the accepting states of U and U ′,
keeping track of blocks (see below);
outputs the B-actions of U .

The key difference from the classical case is in the block counting. In [9], the block number
only increases and it suffices to count up to a fixed bound. Since each block contains at most
2 alternations between accepting and rejecting states, this results in a weak automaton.

Here, we also have to forbid in any block the presence of an increment for some counter
γ without a reset for γ. However, it may be the case that on a branch of a run of U some
counter is incremented but is never reset. So the automaton B may start counting blocks
only to have to restart the counting if an increment is seen which does not have a later reset.
But this means that any decrease in the block number corresponds to an increase in the



Denis Kuperberg and Michael Vanden Boom 11

cost of the play. Hence, the bound on the number of alternations depends on the value of
the automaton, which is exactly the property of a quasi-weak automaton.

The idea for the proof that [[B]]B ≈ [[U ]]B ≈ [[U ′]]S is that if U accepts some t with low
value, then it gives Eve a strategy of the same value in (B, t). On the other hand, assuming
(for the sake of contradiction) that Eve has a low-value strategy in (B, t) but U actually
assigns t a high value results in a cost trap, which is absurd. Hence, we get the main result:

I Theorem 10. If there is a non-deterministic B-Büchi automaton U and non-deterministic
S-Büchi automaton U ′ such that [[U ]]B ≈ [[U ′]]S, then we can effectively construct a quasi-
weak alternating B-automaton B such that [[B]]B ≈ [[U ]]B ≈ [[U ′]]S.

We remark that when restricted to languages, this corresponds to the result from [9] since
(i) if there are non-deterministic Büchi automata U and U ′ (without counters) recognizing
a language and its complement, respectively, then [[U ]]B = [[U ′]]S and (ii) quasi-weak and
weak automata coincide when the automata have no counters.

5 Conclusion

We have introduced quasi-weak cost automata as a variant of weak automata which uses
the counters to bound the number of alternations between accepting and rejecting states.
We have shown quasi-weak cost automata are strictly more expressive than weak cost au-
tomata over infinite trees. Moreover, it is the quasi-weak class of automata, rather than
the more traditional weak cost automata, which admits a Rabin-style characterization with
non-deterministic B-Büchi and S-Büchi automata. The question of a characterization for
weak cost automata over infinite trees remains open (it would likely involve some further
restrictions on the actions of the counters in the non-deterministic B-Büchi and S-Büchi
automata).

Combined with results from [13], our Rabin-style characterization of quasi-weak au-
tomata implies the decidability of f 4 g and f ≈ g when f, g are defined by quasi-weak
B-automata. Consequently, this work extends the class of cost functions over infinite trees
for which ≈ is known to be decidable. Deciding 4 and ≈ for all regular cost functions over
infinite trees remains a challenging open problem which would imply (by [5]) the decidability
of the parity-index problem.

Finally, it was known from [13] that weak cost automata and cost WMSO are equivalent.
The logic side of quasi-weak cost automata remains to be explored in future work.

Acknowledgements We are grateful to Thomas Colcombet for having made this joint work
possible, and for many helpful discussions.

References
1 André Arnold and Damian Niwinski. Continuous separation of game languages. Fundam.

Inform., 81(1-3):19–28, 2007.
2 Mikolaj Bojanczyk and Thomas Colcombet. Bounds in ω-regularity. In LICS, pages 285–

296. IEEE Computer Society, 2006.
3 Thomas Colcombet. The Theory of Stabilisation Monoids and Regular Cost Functions. In

ICALP (2), volume 5556 of LNCS, pages 139–150. Springer, 2009.
4 Thomas Colcombet and Christof Löding. The nesting-depth of disjunctive mu-calculus. In

Michael Kaminski and Simone Martini, editors, CSL, volume 5213 of LNCS, pages 416–430.
Springer, 2008.



12 Quasi-Weak Cost Automata: A New Variant of Weakness

5 Thomas Colcombet and Christof Löding. The non-deterministic Mostowski hierarchy and
distance-parity automata. In Luca Aceto, Ivan Damgard, Leslie Ann Goldberg, Magnús M.
Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP (2), volume 5126
of LNCS, pages 398–409. Springer, 2008.

6 Thomas Colcombet and Christof Löding. Regular cost functions over finite trees. In LICS,
pages 70–79. IEEE Computer Society, 2010.

7 Kosaburo Hashiguchi. Limitedness theorem on finite automata with distance functions. J.
Comput. Syst. Sci., 24(2):233–244, 1982.

8 Daniel Kirsten. Distance desert automata and the star height problem. RAIRO - Theoretical
Informatics and Applications, 39(3):455–509, 2005.

9 Orna Kupferman and Moshe Y. Vardi. The weakness of self-complementation. In Christoph
Meinel and Sophie Tison, editors, STACS, volume 1563 of LNCS, pages 455–466. Springer,
1999.

10 David E. Muller, Ahmed Saoudi, and Paul E. Schupp. Alternating automata. The weak
monadic theory of the tree, and its complexity. In Laurent Kott, editor, ICALP, volume
226 of LNCS, pages 275–283. Springer, 1986.

11 Damian Niwinski and Igor Walukiewicz. Deciding nondeterministic hierarchy of determin-
istic tree automata. Electr. Notes Theor. Comput. Sci., 123:195–208, 2005.

12 Michael O. Rabin. Weakly definable relations and special automata. In Mathematical
Logic and Foundations of Set Theory (Proc. Internat. Colloq., Jerusalem, 1968), pages
1–23. North-Holland, Amsterdam, 1970.

13 Michael Vanden Boom. Weak cost monadic logic over infinite trees. In Filip Murlak and
Piotr Sankowski, editors, MFCS, volume 6907 of Lecture Notes in Computer Science, pages
580–591. Springer, 2011.


	Introduction
	Contributions
	Organization
	Notations

	Cost Automata
	Cost Functions
	B- and S-Valuations
	B- and S-Automata on Infinite Trees
	Examples

	Quasi-Weak B-Automata

	BS-Automata
	Characterization of Quasi-Weak Cost Automata
	Simulation
	Construction from Kupferman and Vardi
	Cost Traps
	Construction of Quasi-Weak B-Automaton B

	Conclusion

