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Abstract—Given a formula φ(x, X) positive in X , the bound-
edness problem asks whether the fixpoint induced by φ is
reached within some uniform bound independent of the structure
(i.e. whether the fixpoint is spurious, and can in fact be captured
by a finite unfolding of the formula). In this paper, we study
the boundedness problem when φ is in the guarded fragment or
guarded negation fragment of first-order logic, or the fixpoint
extensions of these logics. It is known that guarded logics have
many desirable computational and model theoretic properties,
including in some cases decidable boundedness. We prove that
boundedness for the guarded negation fragment is decidable
in elementary time, and, making use of an unpublished result
of Colcombet, even 2EXPTIME-complete. Our proof extends
the connection between guarded logics and automata, reducing
boundedness for guarded logics to a question about cost automata
on trees, a type of automaton with counters that assigns a natural
number to each input rather than just a boolean.

I. INTRODUCTION

A standard technique for analyzing the behavior of logics
is to translate from logics to automata. Such translations are
fundamental in deciding the satisfiability and model-checking
problems for modal and temporal logics and for the modal
fixpoint logic, the µ-calculus [1].

In this work, we consider a family of first-order languages
that have been the focus of much research in the past
decades — guarded logics. The guarded fragment of first-order
logic (GF) restricts quantification to occur in the context of a
guard predicate that contains all free variables. In the guarded
negation fragment of first-order logic (GNF), existential quan-
tification is unrestricted, but uses of negation must be under
the scope of a guard. The interest in these logics stems from
their expressiveness — they can express the predicate logic
encodings of many modal logics, as well as integrity constraint
and mapping languages that come from databases — and their
attractive properties for analysis. Satisfiability and validity are
decidable for these logics, and they also have the finite model
property — any implication that is valid over finite models is
valid over all models ([2], [3]). The decidability results extend
to their fixpoint extensions, guarded fixpoint logic (GFP) and
guarded negation fixpoint logic (GNFP) ([4], [3]).

What is more, finer analysis problems are possible for the
fixpoint logic extensions, including an analysis of bounded-
ness. Informally, a fixpoint formula is bounded if the number
of times that the fixpoint operators are unfolded can be
bounded independently of the input. For certain logics bound-
edness is known to be equivalent to first-order definability.

The work of Blumensath et al. [5] studies the complexity
of the boundedness problems of arbitrary monadic second-
order logic (MSO) formulas over tree inputs, showing that
the complexity is below a tower of exponentials that is
polynomial in the formula. Their proof relies on results about
cost automata — a variant of tree automata that produce a
value from N ∪ {∞}, rather than a boolean. They reduce the
boundedness question for an MSO formula to the limitedness
problem for a cost automaton, where the limitedness problem
asks whether the value given by the automaton on an accepted
tree has a bound independent of the input. Using this master
result as well as MSO interpretations and model theoretic
transfer results, they are able to show boundedness is decidable
for a number of other logics. In particular, they show that
boundedness is decidable for GFP, subsuming an earlier result
of Otto [6] that µ-calculus boundedness is decidable.

The boundedness problem was studied originally for vari-
ants of the language Datalog (e.g. [7], [8], [9]), which are
restrictions of fixpoint logic. Bárány et. al. [10] build on
the results of [5] to show that boundedness is decidable for
the language GN-Datalog, which restricts GNFP by allowing
negation to occur only in a “stratified” manner. No complexity
bound is given for the boundedness problem in [10], and the
techniques provided there do not suffice to give an elementary
bound, for two reasons. First, the reduction to problems on
trees in [10] is non-elementary, making use of the machin-
ery of MSO interpretations. Secondly, our understanding of
quantitative problems for cost automata on trees is incomplete.
Hence, a finer analysis is needed to show an elementary bound
for guarded logics over arbitrary structures.

In this work we return to the issue of boundedness of
guarded logics. We first revisit the logic-to-automata connec-
tion with boundedness in mind. We define a cost analog of
GNFP, called cGNFP, which defines functions from structures
to N ∪ {∞}. The boundedness problem for the quantitative
logic cGNFP is to decide whether the value given by a cGNFP
formula is bounded independently of the input: it is easily
seen to subsume the natural boundedness questions concerning
unfolding of fixpoints in GNFP. We give a reduction from a
cGNFP formula φ to a 2-way alternating cost automaton Aφ
over unranked trees such that φ is bounded iff the value of Aφ
is bounded over all inputs. We isolate a subclass of cGNFP
formulas that suffices to capture the counting of the unfoldings
of a single fixpoint, and show that the corresponding automata
are of a much simpler form.



We then provide a finer complexity analysis of the bounded-
ness problem for cost automata on trees, focusing on the class
of automata that arise from the subclass of cGNFP mentioned
above. We provide more details on the cost automata results
that are being used implicitly in [5] and [10], and develop
some new cost automata results tailored to this problem.

Combining these two components, we derive improved
results about the complexity of boundedness for guarded
logics. In particular, boundedness for GNF and GN-Datalog is
decidable in elementary time, and even 2EXPTIME-complete
using an unpublished result due to Colcombet [11]. As a by-
product of our analysis, we get a self-contained proof of the
2EXPTIME bound on the satisfiability problem for GNFP via
automata-theoretic methods.

Organization. In Sections II and III, we provide background
information on guarded logics and cost automata. The main
technical contributions follow: we translate from cGNFP to
2-way cost automata in Section IV, and then in Section V
describe new technical results for efficiently deciding bound-
edness for a subclass of these cost automata. Finally, in
Section VI we use this logic-automata connection to derive
results on the complexity of boundedness for guarded logics.

Due to space limitations, most proofs are deferred to the
full version of this paper.

II. PRELIMINARIES

Notation and conventions. We write N∞ for N ∪ {∞}, the
set of natural numbers extended with a special ∞ symbol.

We use x,y, . . . (respectively, X,Y , . . . ) to denote vec-
tors of first-order (respectively, second-order) variables. For a
formula φ, we write φ(x) to indicate that the free first-order
variables in φ are among x. If we want to emphasize that there
are also free second-order variables X , we write φ(x,X). We
often use α to denote atomic formulas, and for such formulas,
if we write α(x) then we assume that the free variables in
α are precisely x. The width of φ, denoted width(φ), is the
maximum number of free variables of any subformula of φ.

A formula φ is assumed to be given in the standard tree
representation of a formula, and the size of φ, denoted |φ|, is
the number of symbols in φ. We will sometimes represent φ
using a node-labelled DAG (directed acyclic graph). The nodes
represent formulas, and the edge relation connects a formula
to its subformulas. The size of a DAG representation is the
number of nodes and edges in the DAG.

Basics of guarded logics. The Guarded Negation Fragment
of FO (denoted GNF) is built up according to the grammar:

φ ::= R t | ∃x.φ | φ ∨ φ | φ ∧ φ | α(x) ∧ ¬φ(x)

where R is either a relation symbol or the equality relation, α
is an atomic relation (including equality), and t is a tuple over
variables and constants. Notice that any use of negation must
occur conjoined with an atomic relation that contains all the
free variables of the negated formula. Such an atomic relation
is a guard of the formula. We write GNF[σ] to denote GNF
formulas over some particular signature σ.

The purpose of allowing equalities as guards is to ensure
that every formula with at most one free variable can always
be guarded. Thus GNF includes the Unary Negation Fragment
(UNF) [12], which is built up as above, but allowing negation
only on formulas with at most one free variable.

GNF should be compared to the Guarded Fragment (GF):

φ ::= R t | ∃x.(α(xy) ∧ φ(xy)) | φ ∨ φ | φ ∧ φ | ¬φ(x)

where R is either a relation symbol or the equality relation,
α is an atomic relation (including equality), and t is a tuple
over variables and constants. Here it is the quantification that
is guarded, rather than negation. As in GNF, we allow equality
guards by default.

We write gdd(x) for the guardedness predicate asserting
that x is guarded by some atom. This can be understood as
an abbreviation for the disjunction of existentially quantified
relational atoms involving all of the variables in x. We say that
a formula φ(x) is answer-guarded if it is logically equivalent
to gdd(x) ∧ φ(x).

It is easy to see that every union of conjunctive queries
(UCQ) is expressible in GNF. It is only slightly more difficult
to verify that every answer-guarded GF formula can be ex-
pressed in GNF [3]. Not only is GNF an expressive fragment
of FO, but it was shown to be decidable and to have the finite
model and tree-like model properties (see Theorem 2).

Like modal logic, the fixpoint extensions of these guarded
logics are decidable and have nice model theoretic properties
too. Guarded Negation Fixpoint Logic (denoted GNFP) and
Guarded Fixpoint Logic (denoted GFP) can be defined as the
extensions of GNF and GF, respectively, with formulas

[µX,x. gdd(x) ∧ φ(x, X,Y )](t)

where (i) X only appears positively in φ, (ii) second-order
variables like X cannot be used as guards and (iii) gdd(x)
is the guardedness predicate expressing that x is guarded by
an atom from the original signature.1 We briefly review the
semantics of this fixpoint operator now, and introduce some
notation that we will use to talk about boundedness later. Since
φ(x, X,Y ) is monotone in X , it induces an operator U 7→
OA,V
φ (U) := {a : A, U,V |= gdd(a) ∧ φ(a, X,Y )} on every

structure A with valuation V for Y , and this operator has a
least fixpoint. Given some ordinal β, the fixpoint approximant
φβ(A,V ) of φ on A,V is defined such that

φ0(A,V ) := ∅
φβ+1(A,V ) := OA,V

φ (φβ(A,V ))

φβ(A,V ) :=
⋃
β′<β

φβ
′
(A,V ) where β is a limit ordinal.

We let φ∞(A,V ) :=
⋃
β φ

β(A,V ) denote the least fix-
point based on this operation, and the least ordinal β such
that φβ(A,V ) = φβ+1(A,V ) = φ∞(A,V ) is called the
closure ordinal. Thus, [µX,x. gdd(x) ∧ φ(x, X,Y )] defines

1In GFP, omitting gdd(x) does not change the expressivity of the logic;
however, in GNFP this guardedness condition must be explicitly enforced.



a new predicate named X of arity |x|, and A,V ,a |=
[µX,x. gdd(x) ∧ φ(x, X,Y )](x) iff a ∈ φ∞(A,V ). If V
is empty or understood in context, we just write φ∞(A).

We also write φβ for the fixpoint approximations ob-
tained by unfolding the fixpoint β times. That is, φ0 :=
⊥, φβ+1(x) := gdd(x) ∧ φ[φβ(y)/X(y)], and if β is
a limit ordinal, φβ :=

∨
β′<β φ

β′ . This formula de-
fines the β-approximation of the fixpoint process based on
[µX,x. gdd(x) ∧ φ(x, X,Y )]. In general these formulas are
not in GNFP, but instead live in an infinitary version of GNFP
that allows conjunctions and disjunctions over arbitrary sets of
formulas. However, for finite β, it is straightforward to check
that φβ is in GNFP and is the same width as φ.

Consider the following example, due to the authors of [3].

Example 1. Let ϕ be the GNF formula

∃y1y2.(R1x1y1 ∧R2x2y2 ∧Xy1y2) ∨ (R1x1x1 ∧R2x2x2)

where R1 and R2 are two binary relations, and X is a fixpoint
variable. Then [µX, x1x2. gdd(x1x2) ∧ ϕ](y1y2) is in GNFP
and expresses the existence of a “ladder” consisting of R1 and
R2 paths of the same length starting from y1 and y2, ending
in self-loops, and such that the pair of elements on each rung
are guarded.

We will actually allow simultaneous fixpoints, or vectorial
fixpoints, of the form [µXi,xi.S](t) where

S =


X1,x1 := gdd(x1) ∧ φ1(x1, X1, . . . , Xj ,Y )

...
Xj ,xj := gdd(xj) ∧ φj(xj , X1, . . . , Xj ,Y )

is a system of formulas φi where X1, . . . , Xj occur positively,
and satisfy the same requirements for the body of the fixpoint
formulas as before. Such a system defines a monotone opera-
tion on vectors of relations, and [µXi,xi.S](t) expresses that
t is a tuple in the i-th component of the least fixpoint defined
by this operation. Allowing simultaneous fixpoints does not
change the expressivity of GFP or GNFP, since they can be
eliminated in favor of traditional fixpoints [13], with a possible
exponential blow-up in the size of the formula, but only a
polynomial blow-up if a DAG-representation is used.

The following theorem summarizes the decidability and
model theoretic results about these guarded logics that we
will make use of. The tree-like model property is particularly
important in this work, since it opens up the use of tree
automata techniques to reason about these logics.

Theorem 2 ([3]). Satisfiability (and even finite satisfiability)
is 2EXPTIME-complete for GNF and GNFP.

GNF has the finite-model property: if φ is satisfiable, then φ
is satisfiable in a finite structure. This does not hold for GNFP.

GNF and GNFP have the tree-like model property: if φ is
satisfiable, then φ is satisfiable over structures of tree-width
(width(φ)− 1).

Datalog programs. The guarded logics considered in this
paper are related to several variants of the query language

Datalog. Boundedness of Datalog is an important optimization
problem that has been heavily studied within the database
community (e.g. [7], [8], [9]), and it is closely related to
static analysis problems concerning querying with respect to
constraints [14]. We briefly recall the definition of Datalog,
and then define the types of Datalog programs that interest us.

A Datalog program is specified by Π =
〈EDBΠ, IDBΠ,RulesΠ〉 where the extensional predicates
EDBΠ and intensional predicates IDBΠ are disjoint
sets, and RulesΠ consists of formulas of the form
R(x1 . . . xn) ← ψ(xy) where R is an IDB predicate
and ψ is a conjunction of atoms.

A program defines a transformation taking a structure A
interpreting each relation R ∈ EDBΠ ∪ IDBΠ by a set of
tuples A(R), and outputting a structure A′ interpreting relation
R by A(R) ∪

⋃
{t1 . . . tn | A, t |= ∃y.ψ(xy)} where the

union is over all rules with R the relation on the left. If Π
is a program and A is a structure over the signature EDBΠ,
then we write Πk(A) for the structure obtained by iterating
this transformation k times starting from the EDBΠ ∪ IDBΠ

structure extending A by letting all intensional predicates be
empty. We let Π∞(A) denote the structure obtained by running
the transformation on the structure above until a fixpoint is
reached; that is

⋃
j Πj(A).

A Datalog program with stratified negation
is a tuple 〈Π1, . . . ,Πj〉 of Datalog programs
Πi := 〈EDBΠi , IDBΠi ,Rulesi〉 such that for all 1 < i ≤ j,
EDBΠi := EDBΠi−1 ∪ IDBΠi−1 , and rules in Rulesi may
include conjuncts that are negated atomic formulas as long
as the predicates in these negated atoms are from EDBΠi

and the variables appear positively somewhere in the rule.
The semantics of Datalog extends by defining Π(A) as
Π∞j (Π∞j−1(. . . (Π∞1 (A)) . . . )).

We are interested in a subclass of Datalog programs
with stratified negation where negation is guarded. A GN-
Datalog program is a Datalog program with stratified negation
〈Π1, . . . ,Πj〉 where each rule R(x1 . . . xn) ← ψ(xy) in Πi

is negation guarded: there is a positive EDBΠi atom in ψ
that guards x1 . . . xn, and for every atomic formula α(z) that
appears negated in ψ, there is a positive EDBΠi atom in ψ that
guards z. This ensures each rule can be expressed in GNF.

Note that Datalog programs can easily be expressed using
simultaneous fixpoints, and GN-Datalog programs can be
expressed using GNFP. We remark also that Monadic Datalog
(Datalog where all IDB predicates are unary) is contained in
GN-Datalog, since Monadic Datalog does not allow any use of
negation in the body of the rule, and the unary IDB predicates
are trivially guarded.

Finally, a GNF-program Π = 〈EDBΠ, IDBΠ,RulesΠ〉 is
a program where EDBΠ and IDBΠ are disjoint sets of re-
lation names, and Rules consists of formulas of the form
R(x1 . . . xn) ← ψ(xy) where ψ is an answer-guarded GNF
formula that uses IDB predicates only positively.
Boundedness. Given a formula φ(x, X) that is positive in X ,
we say that φ is bounded over a class C of structures if there
exists some ordinal β < ω such that φβ(A) = φβ+1(A) =



φ∞(A) for all A ∈ C. In other words, across all structures in C,
the fixpoint for φ is reached after at most β unfoldings. For
instance, ϕ in Example 1 is unbounded: consider the family of
structures corresponding to “ladders” of unbounded size. The
boundedness problem for a logic L over a class C, asks: given
some φ ∈ L, is φ bounded over C?

Similarly, we say that a Datalog program Π = 〈Π1, . . . ,Πj〉
is bounded over a class C of structures if there is some n ∈ N,
such that Πn(A) = Πn+1(A) for all A ∈ C. A Datalog pro-
gram with stratified negation Π is fully bounded over C if each
stratum is bounded over C by evaluating all IDB predicates
from lower strata according to the program. Equivalently, Π
is fully bounded over C if there are n1, . . . , nj ∈ N such that
Π∞(A) = Π

nj

j (Π
nj−1

j−1 (. . . (Πn1
1 (A)) . . . )) for all A ∈ C.

In general, boundedness for Datalog programs is undecid-
able [7]. A significant exception is boundedness for monadic
Datalog programs, which was shown to be decidable by
Cosmadakis, Gaifman, Kanellakis, and Vardi in [8] We refer
the interested reader to Blumensath et al. [5], which includes
a survey of other positive results. In particular, [5] proved
that boundedness is decidable for GF and GFP. These re-
sults follow from a master theorem about the decidability of
boundedness for guarded second-order logic over structures
of bounded tree-width, which in turn relies on results about
cost automata over infinite trees by Colcombet and Löding.

Using the master result in [5], Bárány et al. [10]
prove that boundedness is decidable for GNF-programs and
answer-guarded GNF, and full boundedness is decidable for
GN-Datalog. Moreover, for both of these cases, boundedness
over all structures coincides with (i) boundedness over finite
structures, (ii) boundedness over structures of bounded tree-
width, (iii) rewriteability in GNF, and (iv) rewriteability in FO.

Unfortunately, going through the master theorem in [5]
yields only non-elementary complexity bounds. Our contribu-
tion in this paper is to provide direct automata constructions
that yield elementary bounds for the cases above and other re-
lated boundedness problems. In some cases, this even enables
us to provide tight bounds on the complexity of boundedness.

III. COST AUTOMATA

Overview. This section provides background information on
the types of automata used in this paper. These automata
are extensions of traditional tree automata with some exotic
features including counters, 2-way movement, and the ability
to work on trees with arbitrary branching.

Definition. A cost automaton is a traditional finite state
automaton (on words, trees, etc.) that has been enriched with
a finite set of counters that can be manipulated on each
transition, and that are used to assign a value from N∞ to each
input structure. We will view the operation of an automaton
on an input as a game between players Eve and Adam.

In place of a traditional acceptance or winning condition, we
use an objective Obj = 〈Act, f, goal〉. The objective describes
the possible actions Act on each transition, the function f that
reads a sequence of these actions and assigns a value from N∞,

and a goal ∈ {min,max} that says whether Eve is trying to
minimize or maximize this value from f . We write Obj for
the dual objective that results from exchanging min for max
in Obj; this describes the goal for Adam.

For instance, the well-known parity acceptance condition
using some finite set of priorities Pri could be captured in
a parity objective of the form 〈Pri, costparity, goal〉 where
goal = min (respectively, goal = max) and costparity maps
a sequence of priorities from Pri to 0 (respectively, ∞) if the
maximum priority that occurs infinitely often is even, and to
∞ (respectively, 0) otherwise.

In this work, we need to make use of a number of different
objectives based on counters and the parity condition, so we
define a generic cost automaton model. For now, just think of
the objective as a way to evaluate a run of the automaton, in
the same way an acceptance condition is usually used.

An (alternating) cost automaton A on Σ-labelled trees is a
tuple 〈Σ, Q, q0,Dir,Obj, δ〉 where Q is a finite set of states
partitioned into states owned by Eve and states owned by
Adam, Σ is a finite alphabet of node labels, q0 ∈ Q is the ini-
tial state, Dir describes the possible directions for a move, and
Obj = 〈Act, f, goal〉 describes the objective. The transition
function has the form δ : Q×Σ→ P+(Dir×Act×Q) where
P+(S) denotes the non-empty subsets of S. The notation
δ(p, a) =

∨
i∈I(di, ci, qi) (resp.

∧
i∈I(di, ci, qi)) is a concise

notation for the fact that the state p is owned by Eve (resp.
Adam), and δ(p, a) = {(di, ci, qi) : i ∈ I}. We sometimes
use more complex positive Boolean combinations as shorthand
for describing several transitions and states in one step.

Notice that we make explicit the set Dir of directions that
the automaton uses as it traverses an input tree. A direction
d ∈ Dir is a function that maps a position in the tree to the
set of positions that are accessible in that direction. We will
represent these directions in the usual way. For instance, a
traditional top-down tree automaton working on m-ary trees
with ordered children uses directions {1, . . . ,m}. Sometimes
we will be working with 2-way automata on m-ary trees that
can move up or remain in the same position in the tree,
similar to the automata in [15]; for these automata, we use
directions {−1, 0, 1, . . . ,m}, where 0 denotes staying in the
same position, and −1 denotes moving up to the parent of
the current node. In the next section, we will actually be
working with automata on infinite, unranked, unordered trees
of arbitrary—possibly infinite—degree that are similar to the
automata in [4]; for these trees, we will use only directions
0 (stay in the same position) and l (move to some neighbor,
in any direction). Note that in such a case, there are several
possible successor nodes in the tree, and the owner of the
origin state decides which one to choose.

In general, with this sort of transition function A is an
alternating automaton. We view A running on a tree t starting
at node v0 ∈ dom(t) as a game G(A, t, v0). The arena is
Q×dom(t), with initial position (q0, v0). From position (q, v),
• the player that owns state q selects χ ∈ δ(q, t(v)),
• the other player selects some (d, c, r) in χ,



• the player that owns state q selects a neighbor w of v in
direction d.

The output from this move is c, and the game con-
tinues from position (r, w). The corresponding move is
written (c, (r, w)). A play in G(A, t, v0) is a sequence
(q0, v0), (c1, (q1, v1)), (c2, (q2, v2)), . . . of moves in the game.

A strategy for one of the players is a function that returns
the next choice for that player given the history of the play. If
the function depends only on the current position (rather than
the full history), then it is positional. Choosing a strategy for
both players fixes a play in G(A, t, v0). A play π is compatible
with a strategy ζ if there is a strategy ζ ′ for the other player
such that ζ and ζ ′ yield π.

If the objective Obj = 〈Act, f, goal〉 uses goal = min
(respectively, goal = max), then an n-winning strategy for
Eve is a strategy such that the value from f on the output of
any play consistent with the strategy is at most n (respectively,
at least n). We define [[A]]v0(t) to be

op {n : Eve has an n-winning strategy in G(A, t, v0)} .

where op = inf (respectively, sup) if goal = min (respec-
tively, goal = max). If the starting node is the root ε, we often
write G(A, t) and [[A]](t) instead of G(A, t, ε) and [[A]]ε(t). We
say that [[A]] is the function defined by A.

We will mainly be interested in automata with objectives
related to counters. The elementary actions on counters that
we will use are increment i, reset r, check c, and no
change ε. Consider a single counter γ. It initially has value 0,
and then takes values from N based on some sequence u
of actions from {i,r,c, ε}. The meaning of i, r, and ε
is as expected. The check operation c does not change
the counter value, but instead indicates when we are in-
terested in the value of γ. We let Cγ(u) denote the set
of values at the moment(s) in the sequence u when the
counter γ is checked. For instance, Cγ(iiiriεic) = {2}
and Cγ(icri2cri3cr . . . ) = {1, 2, 3, . . .}. Likewise, for a
sequence u of actions from {i,r,c, ε}Γ describing actions on
a set Γ of counters we write CΓ(u) for

⋃
γ∈Γ Cγ(u).

The B-objective over some set Γ of counters is
〈{ic,r, ε}Γ , costB,min〉 where costB maps a sequence u of
actions to supCΓ(u). Notice that ic is an atomic action (so
the counter is checked every time it is incremented). With
the B-objective, Eve is trying to minimize the counter values.
In the special case when there is only a single counter with
actions ic and ε (no r), we call this the distance objective,
and denote it simply as ‘dist’.

The S-objective over some set Γ of counters is
〈{i,r,cr}Γ , costS,max〉 where costS maps a sequence u of
actions to inf CΓ(u). In this case, Eve is trying to maximize
the checked counter values.

We will primarily be interested in objectives that combine
these counter conditions with a parity condition. Given objec-
tives O1 = 〈Act1, f1, goal〉 and O2 = 〈Act2, f2, goal〉, we de-
fine O1∧O2 as the objective 〈Act1×Act2,max(f1, f2),min〉
if goal = min, and 〈Act1 × Act2,min(f1, f2),max〉 if
goal = max. For example, with the B ∧ parity objective, the

goal of Eve is both to satisfy the parity condition and to ensure
the counter values remain as low as possible. Likewise, with
the S∧parity objective, the goal of Eve is to satisfy the parity
condition and to maximize the checked counter values. We
say that the automaton is, e.g., a B∧ parity automaton if it is
a cost automaton with a B ∧ parity objective.

There are a few special types of automata that are worth
highlighting now. A cost automaton on m-ary trees is non-
deterministic if it is a 1-way automaton using directions
Dir = {1, . . . ,m} and for all q ∈ Q and a ∈ Σ, δ(q, a) is
of the form

∨
i∈I(1, c

i
1, q

i
1) ∧ · · · ∧ (m, cim, q

i
m) (with a slight

abuse of notations). A B ∧ parity automaton is weak if there
is no cycle that visits both an even and an odd priority (this is
equivalent to the classical notion of weakness [16]). It is called
counter-weak or quasi-weak if for any cycle in the automaton
that visits both an even and an odd priority, there is a counter
that is incremented but not reset. These weak variants of the
automata have the nice property that they are equivalent to
automata using only two priorities, and it is equivalent for the
priorities to be taken from either {1, 2} or {0, 1}.

Cost functions. We have seen that cost automata define
functions with range N∞. The main question we will ask about
the function [[B]] defined by a cost automaton B is whether
or not it is bounded: we say that a function f is bounded
over some domain D (usually trees over some finite alphabet)
if there is n ∈ N such that f(t) ≤ n for all t ∈ D. The
boundedness question asks whether the function [[B]] defined
by some cost automaton is bounded over all structures in its
domain. This is related to the limitedness question which asks
whether the function defined by some cost automaton B is
bounded over the domain of accepted structures. We choose
to present our results in terms of the boundedness question
rather than limitedness, but this is a presentation decision.

One important idea in the work on cost automata is that
we do not care about exact values of the functions. Indeed,
we are interested only in boundedness questions, so when we
convert between different types of automata and logic, we are
not interested in preserving the value exactly; instead, we are
interested in preserving the boundedness properties.

For this purpose, we write [[B]] 4 [[B′]] if for all sets U (over
some domain D that will usually be implicit in the context),
if [[B′]] is bounded on U , then [[B]] is bounded on U . We write
[[B]] ≈ [[B′]] iff [[B]] 4 [[B′]] and [[B′]] 4 [[B]].

A regular cost function is the equivalence class for ≈ of
a function computed by the above automata. Regular cost
functions yield a theory that parallels and subsumes the one
of regular languages ([17], [18]). In particular, regular cost
functions, like regular languages, have many nice closure
properties and computational properties.

For cost automata over finite words and finite trees, it was
shown [[A]] 4 [[B]] is decidable when A and B are defined
by B-automata or S-automata ([17], [19]). This implies de-
cidability of boundedness and limitedness, since boundedness
is equivalent to [[A]] 4 0, and limitedness is equivalent to
[[A]] 4 [[A′]], where A′ is A stripped of counter actions.



For cost automata over infinite trees much less is known.
One positive decidability result follows.

Theorem 3 ([20], [21]). Let Snd and Bnd be nondetermin-
istic S ∧ parity and B ∧ parity automata, respectively. Then
[[Snd]] 4 [[Bnd]] is decidable in elementary time. In the special
case when testing boundedness for [[Snd]] (i.e. testing Snd 4 0),
the complexity is polynomial in the number of states and
exponential in the number of priorities and counters of Snd.

The complexity is not stated in [21, Theorem 4.32], but the
proof yields the elementary time bound. In this work, we only
need the special case when testing boundedness for Snd. We
provide some more details for this case in the full version.

We remark that most of the work on cost functions so far has
focused only on decidability issues. This is one reason why the
complexity has not been examined closely yet. In this paper
we utilize and extend some of the recent advancements in the
theory of regular cost functions over trees in order to answer
boundedness questions about guarded logics. Indeed, this work
provides additional motivation to analyze more closely the
complexity of various constructions for cost automata.
Building-block results about cost automata on words. We
conclude this section by summarizing some additional results
about cost automata on words. As usual, we can view these as
a special case of automata on trees where the branching degree
is at most one. Automata on words play an important role in
simulation and complementation constructions for automata
on trees. This is true in the cost setting as well, so we
describe some results for cost automata on words that we
use as building blocks later. Some of these results are also
implicitly used in [5] and [10].

One important difference between cost automata and tra-
ditional automata is that cost automata on words cannot
in general be made deterministic. However, they can be
made history-deterministic, a weakening of normal determin-
ism [17]. We do not focus on the exact definition here, but
the crucial property of history-deterministic automata is that
they can be used safely in constructions on trees that require
running an automaton on words over every branch (see [19]).

The following theorems are the crucial “black-box” results
that we are using from the theory of regular cost functions
that has been developed over words. These theorems can be
viewed as non-trivial generalizations of the determinization
and complementation results for traditional automata. We refer
to these as dualization results since they convert between the
dual B- and S-forms of cost automata.

Theorem 4 (Dual-Finite, [17]). Let B be a B-automaton on
finite words. Then there is a history-deterministic S-automaton
S on finite words such that [[B]] ≈ [[S]], and S can be
constructed from B in elementary time.

This elementary complexity bound is given in the published
paper [17, Theorem 1]. This involved proof relies on an
algebraic characterization of these regular cost functions over
words in terms of stabilization monoids (see [17] and [18]).
Converting from B to S relies on converting to a stabiliza-

tion monoid as an intermediate step. An improved single
exponential bound is shown in the unpublished paper [11,
Theorem 1], where a construction is given that mimics Safra’s
determinization construction ([22], [23]) and that outputs a
history-deterministic S-automaton of exponential size.

Theorem 5 (EXP-Dual-Finite, [11]). Let B be a B-automaton
on finite words. Then there is a history-deterministic S-
automaton S on finite words such that [[B]] ≈ [[S]], and S
can be constructed from B in EXPTIME such that it has
m!(k(m + 1))m+1 states and km counters, where m is the
number of states and k is the number of counters in B.2

In order to make clear where we use this result, we mark
uses of the previous theorem with (EXP-Dual-Finite).

Finally, it is mentioned at the end of [17] that the results
about cost automata over finite words can also be generalized
to the infinite word case, using suitable algebraic notions.

Theorem 6 (Dual-Infinite, [17]). Let B be a B ∧ parity
automaton on words. Then there is a history-deterministic
S ∧ parity automaton S such that [[B]] ≈ [[S]], and S can
be constructed from B in elementary time.

Again, because the details for this infinite case have not
been published, we mark applications of this theorem with
(Dual-Infinite). We remark that the results from [5] and [10]
stated earlier rely on (Dual-Infinite). In [10], this assumption
(in fact, a more general assumption) was marked (ILT).

IV. REDUCTION TO COST AUTOMATA BOUNDEDNESS

Our approach differs from previous work in that rather
than reducing problems to boundedness questions for cost
automata, we bring the cost capabilities to guarded logics.

cGNFP. We are now ready to define a variant of GNFP called
cost GNFP (written cGNFP). Sentences in this logic define
functions from structures to N∞, and the value assigned to
a structure captures quantitative information about some least
fixpoint subformulas. The idea is that cGNFP is a language for
expressing boundedness problems for guarded logics. Indeed,
we will see in Section VI that we can reduce a variety of
boundedness problems for guarded logics to testing whether
the function defined by a cGNFP formula is bounded.

Formally, cGNFP is an extension of GNFP with a bounded
expansion operator µN that allows the formation of predicates
[µNX,x. gdd(x) ∧ ψ(x, X,Y )](x) in addition to the µ-
fixpoint predicates from standard GNFP. We also allow si-
multaneous µN fixpoints. We require that all µN -subformulas
appear positively in the formula. The idea is that µN -operators
mark the least fixpoint subformulas where we want to count
(and ultimately bound) the number of unfoldings required to
witness membership in the fixpoint.

Given ψ in cGNFP and n ∈ N, we write A, n |= ψ if
A |= ψ′ where ψ′ is the GNFP formula obtained from ψ

2Technically, these counters in B must be hierarchical, obeying certain
stack-like properties. The cost automata used in this paper have this property.



by replacing each µN subformula by its n-unfolding. The
function [[ψ]] defined by ψ is

[[ψ]](A) := inf {n : A, n |= ψ} .

For example, in the special case when ψ does not use any
µN operators, [[ψ]](A) = 0 if A |= ψ and [[ψ]](A) = ∞
if A 6|= ψ. Thus the boundedness problem for cGNFP
— namely, whether or not the function computed by the
formula has a uniform bound — generalizes the validity
problem for GNFP formulas. As another example, take ϕ
to be the GNFP formula defined in Example 1, and take
ψ := [µNX,x. gdd(x)∧ϕ](y1y2). If An denotes the structure
consisting of a “ladder” starting from some distinguished
elements a1 and a2 and having n-rungs before reaching self-
loops, then [[ψ]](An, a1a2) = n+ 1. For a structure A and ele-
ments a1, a2 such that A, a1a2 6|= [µX,x. gdd(x)∧ϕ](y1y2),
we have [[ψ]](A) =∞.

We can add these µN -operators to GFP formulas in a similar
fashion. We write cGFP for the cost variant of GFP.

We introduce some additional conventions and terminology
related to the fixpoint variables in order to describe the nesting
of fixpoint operators, and a special subclass of cGNFP. We
assume no fixpoint variable is bound by more than one fixpoint
operator, so each X identifies a unique subformula Dφ(X) of
φ in which X only appears positively. If Dφ(X) corresponds
to a µN -predicate, then X is called a µN -variable. Otherwise,
if X occurs positively (respectively, negatively) in φ then it is
a µ-variable (respectively, ν-variable). We say that X depends
on Y if Y occurs free in Dφ(X). The dependency order @φ
is the transitive closure of this relation. The alternation level
alφ(X) of X is the maximum number of alternations between
µ and ν variables on the @φ-paths descending from X , ignor-
ing µN -variables. The counting alternation level alNφ (X) of X
is the maximum number of alternations between µN -variables
and other variables on the @φ-paths descending from X . The
alternation depth ad(φ) (respectively, counting alternation
depth adN (φ)) is the maximum alternation level (respectively,
counting alternation level) of any of its fixpoint variables. We
say that a formula φ is alternation-free if ad(φ) = 0.

We will be interested in a fragment of cGNFP with re-
stricted use of µN -variables. Distance cGNFP is defined as
the fragment of cGNFP consisting of the formulas φ such that
adN (φ) ≤ 1 and every non-µN fixpoint variable X in φ sat-
isfies alNφ (X) = 0. Roughly speaking, this corresponds to the
fragment of cGNFP where we only need to count one fixpoint
at a time, and these µN -variables do not depend on other µ-
and ν-variables. For example, if ψ is in GNF and positive in
X then [µNX,x. gdd(x) ∧ ψ](x) is in distance cGNFP.

Normal form. For the automata constructions in this section,
it is easier to work with cGNFP formulas ϕ in a normal
form. We call this weak GN-normal form, because it is a
slight weakening of the GN-normal form introduced in [3].
We assume that the formulas do not use equality or constants,
but our approach can be adapted to handle these additional
features, as explained in the full version of this paper.

Formulas ϕ in cGNFP in weak GN-normal form can be
generated using the following grammar:

ϕ ::=
∨
i ∃x.

∧
j ψij | [λY,y. gdd(y) ∧ ϕ(y,X, Y )](x)

where λ ∈ {µ, µN}
ψ ::=α(x) | Y (x) | α(x) ∧ ϕ(x,X) | α(x) ∧ ¬ϕ(x,X)

where α(x) is an atomic formula or a guardedness predicate
gdd(x), Y only appears positively in the fixpoint predicate
[λY,y. gdd(y)∧ϕ(y,X, Y )](x), and µN -predicates only ap-
pear positively in ϕ. As before, the fixpoint predicate variables
cannot be used as guards. The idea is that the grammar gener-
ates UCQ-shaped formulas where each conjunct is an answer-
guarded subquery. Note that we do not allow simultaneous
fixpoints in this normal form. We can convert arbitrary cGNFP
formulas to this normal form (see Proposition 7).
Closure set. Given some ϕ in weak GN-normal form, we
want to define the relevant formulas that need to be con-
sidered by the automaton in order to determine whether ϕ
holds in some structure. It turns out that we need more
information than just the usual subformula closure, namely
(i) additional guardedness predicates, and (ii) “specializations”
of CQ-shaped subformulas. Consider a CQ-shaped φ(y) of
the form ∃x.

∧
i ψi(xy). A specialization of φ is a formula

φ′ obtained from φ by the following operations:
• select a subset z of x (call variables from yz the inside

variables and variables from x\z the outside variables);
• select a partition x1, . . . ,xk of the outside variables with

the property that for every ψj , all free variables of ψj are
contained in some xi;

• let χ0 be the conjunction of the ψi using only inside
variables, and let χj be the conjunction of the ψi using
outside variables and satisfying free(ψi) ⊆ xjyz;

• set φ′(yz) to be χ0(yz) ∧
∧
j∈{1,...,k} ∃xj .χj(xjyz).

A specialization describes a way in which the original CQ-
shaped subformula could be satisfied in a tree-like model.

Now let cl+(ϕ) be the smallest set C of formulas contain-
ing ϕ and satisfying the following closure conditions:
• if α ∧ ψ ∈ C or α ∧ ¬ψ ∈ C, then α,ψ ∈ C;
• if

∨
i ψi ∈ C or

∧
i ψi ∈ C, then ψi ∈ C for all i;

• if ∃x.ψ(xy) ∈ C, then for every specialization
χ0(xy) ∧

∧
j ∃zj .χj(xyzj) of ∃x.ψ(xy), χ0 ∈ C and

∃zj .χj ∈ C;
• if [λY,y. gdd(y) ∧ ψ](x) ∈ C, then gdd(y), ψ ∈ C;
• if ψ(x) ∈ C, then gdd(x) ∈ C.
We are interested in the size of this closure set, since we

will see that this parameter controls the size of the automata.
The following proposition describes the blow-up in the size of
the formula and the size of the closure set when starting from
formulas not necessarily in weak GN-normal form.

Proposition 7. Let ψ be a formula in cGNFP (respectively,
answer-guarded cGFP) with m = |ψ| and k = width(ψ).
We can construct a DAG representation of a sentence ϕ in
weak GN-normal form such that [[ϕ]] ≈ [[ψ]] and
• the size of the DAG representation for ϕ is at most 2f(m)

(respectively, f(m)),



• width(ϕ) ≤ m (respectively, width(ϕ) = k),
• |cl+(ϕ)| ≤ 2f(m) (respectively, |cl+(ϕ)| ≤ f(m) · 2f(k)),

where f is a polynomial function independent of ψ. There is no
change in alternation-depth and counting alternation-depth.
These bounds apply even when ψ uses simultaneous fixpoints.

For brevity, in this proposition and throughout the remainder
of the paper, we usually give only bounds on the output size,
not the running time of the algorithms. However the proofs
will show that the worst-case running time is bounded by a
polynomial in the output size.

Note also that the equivalence between the formulas is only
up to ≈. This means the functions defined by the formulas
may not agree on exact values, but do agree on boundedness
properties, which is sufficient for our purposes.
Reduction to tree-like structures. In order to answer bound-
edness questions about cGNFP over all structures, we can
actually restrict attention to structures of bounded tree-width.
This is a straightforward consequence of the tree-like model
property of GNFP. Similar transfer results to tree-like models
were utilized in [5] and [10].

Proposition 8. Let ϕ be a sentence in cGNFP[σ] in
weak GN-normal form such that width(ϕ) = k. Then [[ϕ]]
is bounded by n over all σ-structures iff [[ϕ]] is bounded by n
over all σ-structures of tree-width k − 1.

Encodings of tree-like structures. We can encode σ-
structures with tree decompositions of some fixed width k−1
as trees over a finite alphabet.

Each node in the tree encoding will describe at most
k elements of the structure. The names of these elements
are taken from Uk := {1, . . . , 2k}. Neighboring nodes may
describe overlapping pieces of the structure. This will be
implicitly coded based on repeated use of names: if some name
appears in two neighboring nodes, then the same element is
being described in both nodes. This is why Uk has 2k names,
even though at most k names are used in a single node.

More formally, we view these encodings as structures with
unary predicates Da for all a ∈ Uk (where Da(v) indicates
that a is a name in the node v in the tree decomposition)
and unary predicates Ra for all R ∈ σ of arity j and all
a ∈ U jk (where Ra(v) indicates that R holds for the elements
represented by a at v). We write Kσ,k for the finite alphabet
capturing this information.

A Kσ,k-tree is an infinite, unranked, unordered tree, with
arbitrary (possibly infinite) branching and with labels from the
finite alphabet Kσ,k. In particular, this means that the label at
a node does not dictate the number of children it has, and
each node may have an arbitrary (possibly infinite) number of
unordered children. As a result, in this section, we will use
B∧parity automata with directions {0, l} on these Kσ,k-trees,
since we cannot refer to specific children.

Given a Kσ,k-tree t and some node v ∈ dom(t), we write
names(v) for the set {a ∈ Uk : Da(v)}. We say that t is con-
sistent if every node v ∈ dom(t) satisfies (i) |names(v)| ≤ k,
(ii) if Ra(v) then a ⊆ names(v), and (iii) if Ra(v) then

Ra(w) for all neighbors w of v with a ⊆ names(w). It is
straightforward to construct a weak automaton without coun-
ters that runs on Kσ,k-trees t and checks that t is consistent.

Any σ-structure of tree-width k−1 can be encoded in a con-
sistent Kσ,k-tree, and every consistent Kσ,k-tree corresponds
to an actual σ-structure. Given a consistent tree t, we say that
two nodes u and v are a-connected if a is an element name
in every node on the minimal path between u and v. We write
[v, a] for the equivalence class of a-connected nodes of v. Us-
ing this, we can define the decoding of t to be the σ-structure
D(t) with universe {[v, a] : v ∈ dom(t) and a ∈ names(v)},
and RD(t)([v1, a1], . . . , [vj , aj ]) iff there is some node w ∈
dom(t) such that Ra(w) holds, and [w, ai] = [vi, ai] for all i.

Finally, we write cl+(ϕ,Uk) for the set of formulas obtained
by substituting names from Uk for the free first-order variables
in formulas from cl+(ϕ). This will allow us to talk about
formulas ψ that hold in D(t), when the free variables in ψ
are interpreted by the elements represented at a node in t.
Note that the size bounds given in Proposition 7 for cl+(ϕ)
still hold for cl+(ϕ,Uk).

Reduction from cGNFP boundedness to cost automata
boundedness. We have introduced a logic cGNFP for speci-
fying boundedness problems, and we have seen that we can
reduce to studying these problems on tree-like structures. We
can now construct for each cGNFP sentence ϕ an automaton
that runs on an encoding of a tree-like structure and assigns the
same value as [[ϕ]] on this structure. We state this result and
some of its consequences for boundedness and satisfiability
testing, and then describe the main ideas of the construction.

Theorem 9. Let ϕ be a sentence in cGNFP[σ] in
weak GN-normal form such that width(ϕ) = k. Then there
is a B ∧ parity tree automaton Aϕ using directions {0, l}
such that for all consistent Kσ,k-trees t,

[[ϕ]](D(t)) = n iff [[Aϕ]](t) = n.

The size of Aϕ is exponential in |cl+(ϕ,Uk)|, but the num-
ber of states is polynomial in |cl+(ϕ,Uk)|. Moreover, Aϕ
uses priorities from {0, . . . , 2 · ad(ϕ) + 1}, and counters from{
γX : X is a µN -variable in ϕ

}
.

By combining Aϕ with a parity automaton that checks
whether a given Kσ,k-tree is consistent it is straightforward
to prove the following reduction.

Corollary 10 (Automata for Boundedness). Let ϕ be a
sentence in cGNFP[σ] in weak GN-normal form such that
width(ϕ) = k. Then there exists a B ∧ parity tree automa-
ton Bϕ such that [[ϕ]] is bounded over all σ-structures iff [[Bϕ]]
is bounded over all Kσ,k-trees.

The size of Bϕ is exponential in |cl+(ϕ,Uk)|, but the
number of states is polynomial in |cl+(ϕ,Uk)|. The number
of priorities and counters is linear in |ϕ|.

Moreover, Bϕ is a dist∧parity automaton if ϕ is in distance
cGNFP, and is counter-weak if ϕ is alternation-free.



Application to satisfiability. In the special case when ϕ is
in GNFP or GFP, Theorem 9 provides parity tree automata
(without counters) that can be used to test satisfiability.

Corollary 11 (Automata for Satisfiability). Let ϕ be a
sentence in GNFP in weak GN-normal form such that
width(ϕ) = k. Then there exists a 2-way alternating parity
tree automaton Bϕ such that ϕ is satisfiable iff L(Bϕ) 6= ∅,
where the language L(Bϕ) := {t : [[Bϕ]](t) = 0} is the set of
accepted Kσ,k-trees.

The size of Bϕ is exponential in |cl+(ϕ,Uk)|, but the
number of states is polynomial in |cl+(ϕ,Uk)|. The number
of priorities and counters is linear in |ϕ|.

There is a procedure due to Vardi [15] that tests non-
emptiness for 2-way alternating parity tree automata in time
exponential in the number of states and number of priorities.
Hence, Corollary 11 provides an alternative and direct proof of
the 2EXPTIME bound for satisfiability of GNFP [3]. Moreover,
when applied to fixed-width GFP sentences, the same con-
struction demonstrates the optimal EXPTIME bound from [4].

Thus, even ignoring the additional cost features that will
allow us to decide boundedness problems for these guarded
logics, we believe the constructions in this section are useful
because they provide a uniform approach to answering satis-
fiability questions for these guarded logics.
Construction of cost automaton for Theorem 9. We now
seek to describe some of the ideas behind the construction of
the cost automaton Aϕ in Theorem 9.

Our construction for cGNFP can be seen as a generaliza-
tion of the construction for GFP presented by Grädel and
Walukiewicz [4], so we briefly describe their construction,
and how we extend it. Given some GFP sentence ϕ, [4]
defines an automaton Aϕ that recognizes consistent trees
that encode structures satisfying ϕ, and uses this to show
optimal bounds on the complexity of satisfiability for GFP.
The state set for their constructed automaton is just cl(ϕ,Uk)
(the subformula closure of ϕ, with names from Uk substituted
for free variables), and if the automaton is in state ψ at some
position v in the input tree t, then it represents an assertion
by Eve that ψ holds in D(t).

In their construction, it is very clear when a fixpoint is
being unfolded: it is precisely a transition from some state
X(b) for a fixpoint variable X to a state corresponding to
the body Dϕ(X) of the fixpoint. The automaton uses the
parity acceptance condition to help enforce the correct fixpoint
semantics. If we were only interested in boundedness questions
related to GFP and the cost version of GFP, then we could take
directly the construction from [4] and hook in a counter for
each µN -variable X that is incremented each time that fixpoint
is unfolded and reset when any outer fixpoint is unfolded.

However, we are interested in an automaton Aϕ for
cGNFP ϕ. When run on a consistent Kσ,k-tree t, Aϕ computes
the least n such that D(t) is a model of ϕ when all µN -
subformulas are evaluated using their n-th approximants. We
want to emphasize that we are not using the counters in a
complicated way: the counters are just counting the number

of times a µN -operator is unfolded. Hence, in the special case,
when there are no µN operators in ϕ, Aϕ is a parity automaton
with no counters that accepts a consistent Kσ,k-tree t iff t
encodes a structure satisfying the GNFP sentence ϕ.

We construct the automaton for ϕ by induction on the
the structure of ϕ. The idea is to allow Eve to guess an
annotation of t with information about which answer-guarded
subformulas of ϕ hold, and then run an automaton that checks
ϕ with the help of these annotations. In order to prevent Eve
from cheating with her guesses about the subformulas, Adam
is allowed to launch inductively-defined automata in order to
check Eve’s claims about these subformulas.

Likewise, testing D(t), n |= [λY,y. gdd(y) ∧ ψ(y, Y )](a)
for λ ∈

{
µ, µN

}
can be viewed as a game between Adam

and Eve which starts with y = a and proceeds as follows:
• Eve chooses some valuation for Y such that D(t), n |=
ψ(y, Y ) (she loses if this is not possible), then

• Adam chooses some new guarded y ∈ Y (he loses if this
is not possible), and the game proceeds to the next turn.

If λ = µN (respectively, λ = µ) and the game exceeds n
turns (respectively, never terminates), then Adam is declared
the winner. We can implement this game as an automaton
running on t, where Eve guesses an annotation of t with the
valuation of Y in the current round, and then simulates the
inductively-defined automaton checking ψ(y, Y ). Adam can
challenge any b in the set Y chosen by Eve by launching
another copy of the automaton checking ψ starting from the
node carrying b. Correctness is enforced by using the parity
condition and counters: an odd priority is used if Adam
challenges a µ fixpoint, and a counter is incremented if Adam
challenges a µN fixpoint. The proof uses ideas familiar from
work on the µ-calculus and GFP (see, e.g., [24], [4], [25]).

V. DECIDING BOUNDEDNESS FOR DIST ∧ PARITY
AUTOMATA

Conversions required for deciding boundedness. In the
previous section, we showed how to reduce cGNFP bound-
edness to cost automata boundedness. Unfortunately, it is not
known in general whether boundedness for arbitrary B∧parity
automata on infinite trees is decidable, even when we restrict
to 1-way automata on infinite binary trees.

However, if we can convert a 2-way B ∧ parity automaton
to an equivalent 1-way nondeterministic S∧parity automaton,
then we can apply the decidability result in Theorem 3. Why
a nondeterministic S ∧ parity automaton? In order to show
that [[A]] is unbounded for some cost automaton A, we need
to check that there is a family of trees (tn)n∈N such that
[[A]](tn) > n. We can cast this as a game where Eve is trying
to guess a family of strategies (τn)n∈N on input trees (tn)n∈N
that witness this unboundedness. Hence, we want A to be
a cost automaton where Eve is the maximizing player and
a single strategy can witness that [[A]](tn) > n. Automata
with an S∧ parity objective meet this requirement. Moreover,
the automaton must be nondeterministic to ensure that Eve’s
guessed strategy τn actually induces a corresponding tree tn.



In this section, we show that this conversion to a nonde-
terministic S ∧ parity automata is possible if we start with
dist∧parity automata (which have one counter that can only be
incremented or left unchanged). Given a 2-way dist∧parity tree
automaton A using directions {0, l}, we proceed as follows.

1) Convert A to an equivalent 2-way dist ∧ parity tree
automaton, i.e. a cost automaton using the dual of the
dist∧parity objective (denoted dist ∧ parity, as defined in
Section III) where Eve is the maximizing player. Because
we are working with alternating automata, this is easy:
we exchange the states owned by each player, and min
for max in the objective.

2) Reduce to trees with some finite branching m, where m
is the number of states of A. This is a straightforward
consequence of the positional determinacy of dist ∧ parity
games described in Proposition 13. We can then convert
to a 2-way dist ∧ parity tree automaton with directions
{−1, 0, 1 . . . ,m} rather than directions {0, l}.

3) Convert from a 2-way dist ∧ parity tree automaton with
directions {−1, 0, 1, . . . ,m} to a 1-way nondeterministic
S∧parity tree automaton (Theorem 14). This generalizes
Vardi’s construction in [15], and is the most interesting
part of the conversion process.

4) Test boundedness of the resulting nondeterministic S ∧
parity automaton using Theorem 3.

Using this conversion process yields the following results.

Theorem 12. Let A be a dist ∧ parity tree automaton using
directions {0, l}.
• If A uses priorities {0, 1}, then boundedness for [[A]] is

decidable in elementary time. Using (EXP-Dual-Finite),
this can be improved to time |A|f(m) where m is the
number of states of A, and f is a polynomial independent
of A.

• If A uses arbitrary priorities, then using (Dual-Infinite),
boundedness for [[A]] is decidable in elementary time.

We remark that one reason dist∧ parity automata are easier
to work with — and one explanation for why we are able to
prove boundedness is decidable in this special case — is that
the underlying games have positional strategies.

Proposition 13 (due to Colcombet and Löding). If Eve has
an n-winning strategy in dist ∧ parity or dist ∧ parity game,
then she has an n-winning positional strategy.

The proof is straightforward: the idea is to break the prob-
lem down into solving various parity games (without counters).
These parity games have positional strategies [26], and we use
these positional strategies in subgames to construct a positional
strategy in the original cost game. The corresponding result for
general B ∧ parity and B ∧ parity games is not known.

Conversion to nondeterministic automaton. We now de-
scribe in more detail item (3), the conversion from 2-way
dist ∧ parity automata to 1-way nondeterministic S ∧ parity
automata, operating on trees with finite branching.

Theorem 14. Let A be a 2-way dist ∧ parity tree automaton
using directions {−1, 0, 1, . . . ,m}.
• If A uses only priorities {0, 1}, then there is a 1-

way nondeterministic S ∧ parity tree automaton Snd of
elementary size such that [[Snd]] ≈ [[A]]. Moreover, using
(EXP-Dual-Finite), Snd is of size at most |A|f(m) with
at most |A|f(m) states, f(m) counters, and priorities
{1, 2} where m is the number of states of A and f is
a polynomial function independent of A.

• If A uses arbitrary priorities, then using (Dual-Infinite)
there is a 1-way nondeterministic S∧parity tree automa-
ton Snd of elementary size such that [[Snd]] ≈ [[A]].

The proof proceeds in stages. We sketch some key ideas.
Fix some 2-way dist ∧ parity automaton A using directions
{−1, 0, . . . ,m}. Consider a tree t that has been annotated
with a positional strategy ζ in G(A, t). Formally, a strategy
annotation is a labelling of t such that each node x is annotated
with a function ζx mapping a state q to the set of tuples
(d, (p, c), r) such that it is possible to move from (q, x) to
(r, xd) with output (p, c) when using the strategy ζ in the
game in G(A, t). We write (t, ζ) for this annotated tree. It is
easy to construct a 2-way dist ∧ parity automaton U where all
moves are controlled by Adam such that when run on (t, ζ) it
computes the value of ζ in G(A, t). Note that U is of size at
most |A|f(m′) where m′ is the number of states and priorities
of A, but it uses the same number of state and priorities as A.

This automaton U operates in a 2-way fashion, but we
can convert it into a 1-way automaton. The price we pay to
eliminate the upward movement is (i) we give some control
back to Eve so the automaton is no longer universal, and
(ii) we increase the size by a polynomial factor.

Lemma 15. We can construct a 1-way alternating
dist ∧ parity tree automaton B such that [[U ]] ≈ [[B]]. The size
of B is at most |A|f(m′) where m′ is the number of states and
priorities of A, and f is some polynomial function independent
of A. Moreover, the number of states in B is polynomial in m′,
and the number of priorities and counters is the same as A.

Proof sketch: The idea is that the automaton runs on
(t, ζ) and simulates U , but Adam is never allowed to move
upwards. Instead, at any time, Adam can issue a request to
stay in the same position, change state, and output some action,
which represents an assertion that there is some play consistent
with ζ that would have looped back to the current position.

When Adam makes a request like this, Eve can either grant
him the request, or challenge the request. If she grants the
request, then she just uses the move described by Adam. If she
challenges the request, then the automaton enters a different
mode where Adam must actually witness the requested loop
with some finite play. Note that in order to witness it, he may
need to make additional requests, which Eve can also decide
to challenge. The parity condition is used to enforce that any
challenged request is eventually witnessed.

A final transformation is used to eliminate the stationary
moves, to ensure the resulting automaton is truly 1-way.



This 1-way dist ∧ parity automaton B can be simulated by
a nondeterministic S ∧ parity automaton.

Lemma 16. Let B be a 1-way alternating dist ∧ parity tree
automaton.
• If B uses priorities {0, 1}, then there is a 1-way non-

deterministic S ∧ parity tree automaton S of elementary
size such that [[S]] ≈ [[B]]. Moreover, using (EXP-Dual-
Finite), S is of size |B|f(m), with at most |B|f(m) states,
m counters, and priorities {1, 2} where m is the number
of states of B and f is a polynomial independent of B.

• If B uses arbitrary priorities, then using (Dual-Infinite)
there is a 1-way nondeterministic S∧parity tree automa-
ton S of elementary size such that [[S]] ≈ [[B]].

Proof sketch: We first consider the case for arbitrary
priorities. When running on t, the nondeterministic S∧ parity
automaton guesses a positional strategy ζ in G(B, t). Let w
be a word describing the strategy annotation labels along a
given branch in (t, ζ). There is a nondeterministic dist∧parity
automaton on infinite words that guesses a play described by
w and outputs the value of this play. The number of states
is polynomial in |QA| (since the automaton only needs to
remember the currently guessed state on this play). By (Dual-
Infinite), there is an equivalent history-deterministic S∧parity
automaton H of elementary size. There is a deterministic
tree automaton D (with no counters and using only priori-
ties {0, 1}) of size exponential in the number of states and
priorities of A that checks that a given annotation of a tree
t actually corresponds to a positional strategy in G(B, t). The
desired automaton S is obtained by guessing an annotation
ζ, simulating D on (t, ζ), and simultaneously running H on
each branch. Since positional strategies suffice in dist ∧ parity
games (Proposition 13), this automaton is ≈-equivalent to B.

In the special case when B uses only priorities {0, 1},
then we can optimize the construction to get the improved
complexity bounds stated above. In addition to the positional
strategy, the automaton guesses infinitely many “breakpoints”
(based on occurrences of priority 1 and increments). The value
of the strategy can then be defined as the limit of the values
of the strategy up to these breakpoints. This means the value
of plays along a single branch can be computed by a cost
automaton on finite words. This allows us to make use of
(Dual-Finite) or (EXP-Dual-Finite) instead of (Dual-Infinite),
which yields the improved complexity bounds.

Finally, the desired nondeterministic 1-way automaton Snd
for Theorem 14 is obtained by guessing a strategy annotation
ζ in G(A, t), running a deterministic tree automaton (without
counters) that checks that this is a valid annotation, and
simulating S on (t, ζ). The correctness of this construction
relies on Proposition 13, Lemma 15, and Lemma 16.

This concludes the proof sketch of Theorem 14.

VI. COMPLEXITY OF BOUNDEDNESS PROBLEMS FOR
GUARDED LOGICS

Upper bounds. The following corollary, obtained by combin-
ing Theorem 9 and Theorem 3, summarizes our work so far.

Corollary 17. Let ϕ be a cGNFP sentence. Boundedness
for [[ϕ]] is in elementary time for
• alternation-free distance cGNFP;
• arbitrary distance cGNFP, using (Dual-Infinite).

Using (EXP-Dual-Finite), this can be improved to 2EXP-
TIME for alternation-free distance cGNFP and EXPTIME for
alternation-free fixed-width distance cGFP.

We can use this to derive upper bounds on the complexity
of boundedness for some guarded logics and query languages.

Theorem 18. Boundedness is decidable in elementary time
for the answer-guarded fragments of the following logics:
• GNF and GF;
• GNFP and GFP, using (Dual-Infinite).

Using (EXP-Dual-Finite), this can be improved to 2EXPTIME
for answer-guarded GNF and GF, and EXPTIME for fixed-
width answer-guarded GF.

Proof: Consider a formula ϕ(x, X) in answer-guarded
GNFP[σ] or answer-guarded GFP[σ]. The goal is to write a
sentence in cGNFP that expresses what it means for ϕ to be
bounded. Informally, this means that it should express

∀x.
(
[µX,x.ϕ(x, X)](x)→ [µNX,x.ϕ(x, X)](x)

)
.

We must be more careful to ensure this actually meets the
syntactic conditions for cGNFP, so we actually consider the
following distance cGNFP sentence ϕ′:

¬∃x.

(
gdd(x) ∧ [µX,x. gdd(x) ∧ ϕ(x, X)](x)

∧ ¬[µNX,x. gdd(x) ∧ ϕ(x, X)](x)

)
.

It is straightforward to check that [[ϕ′]] is bounded iff ϕ is
bounded.

The complexity bounds follow from Corollary 17, ob-
serving that ϕ′ is in alternation-free cGNFP when ϕ is in
answer-guarded GNF or answer-guarded GF.

We can also give better bounds on the complexity for GN-
Datalog boundedness.

Theorem 19. Full boundedness for GN-Datalog programs is
decidable in elementary time. Using (EXP-Dual-Finite), this
can be improved to 2EXPTIME.

Proof: Fix some GN-Datalog program Π = 〈Π1, . . . ,Πj〉.
For each level i, we can view Πi as a system Si of
GNFP formulas over the signature EDBΠi ∪ IDBΠi . For each
IDBΠi predicate X , there is a GNFP formula ϕXi (x) =
[µX,x.Si](x) asserting that x is in the X-component of the
least fixpoint. This formula is answer-guarded, because all
tuples generated by a GN-Datalog program must be guarded.

With this in mind, we can construct a DAG-representation of
a system of answer-guarded GNFP formulas for the program
up to level i (starting at the lowest stratum, and working
upwards). This transformation can be done in polynomial
time, with the DAG-representation polynomial in the size
of 〈Π1, . . . ,Πi〉. Each formula in the system is an alternation-
free GNFP formula in weak GN-normal form with simul-
taneous fixpoints, but these simultaneous fixpoints can be
eliminated with only an additional polynomial blow-up.



The GN-Datalog program is fully bounded if for each level i
and for each X ∈ IDBΠi , the alternation-free GNFP formula
ϕXi is bounded. Using a similar argument as Theorem 18, we
can decide boundedness for each ϕXi . The complexity bounds
follow from Corollary 17 and the fact that the formulas we
are testing are alternation-free.
Extensions. Boundedness for non answer-guarded GF and
GFP formulas can be reduced to the answer-guarded case:
indeed, given φ in GF or GFP, φ(x) is bounded iff gdd(x)∧φ
is bounded [5]. Hence the boundedness results for answer-
guarded GF and GFP extend to the non answer-guarded case.

However, for non answer-guarded GNF or GNFP, bound-
edness is undecidable. This can be seen by observing that the
body of a single Datalog rule can be trivially written as a
non answer-guarded GNF formula φ, and boundedness of this
single-rule Datalog program (undecidable by [9]) is equivalent
to boundedness of φ.
Lower bounds. For these guarded logics, lower bounds for
boundedness follow from lower bounds on the complexity of
the satisfiability problem and from the containment problem.
The latter bound relies on a recently-proven lower bound for
containment of Monadic Datalog in UCQs [27].

Theorem 20. Boundedness is 2EXPTIME-hard for
answer-guarded GF and also for Monadic Datalog (hence
for GN-Datalog). It is EXPTIME-hard for fixed-width
answer-guarded GF without equality.

VII. CONCLUSIONS

In this paper we have re-visited the translation from guarded
logics to automata, extending it to the setting of costs. This
allows us to isolate the complexity of the boundedness prob-
lem. We also believe our translations give some insight into
automata for guarded logics, which may serve as a basis for
other results — e.g. complexity bounds for richer guarded
logics, or better bounds for fragments.

Boundedness coincides with first-order definability for
answer-guarded GNF and GN-Datalog by the Barwise-
Moschovakis theorem [28]. This is not the case for bound-
edness of answer-guarded GNFP, due to the presence of
additional fixpoints. Thus our work leaves open the question
of whether one can decide if a GNFP formula is equivalent to
a first-order formula.

Note that combining the results here with those of [14] gives
the first elementary bounds on deciding the FO-rewritability of
conjunctive queries over guarded and frontier-guarded tuple-
generating dependencies (see Section 5 of [14] for the relevant
definitions). We believe that the results here should also be
applicable to many decision problems involving reasoning with
incomplete information (e.g. chase termination).
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APPENDIX A
MISSING PROOFS FROM SECTION III

A. Proof sketch for special case of Theorem 3 (Complexity of
deciding cost automata boundedness)

We sketch the proof of the complexity bound for deciding
boundedness of [[A]], when A is a nondeterministic S∧ parity
automaton with m states, n counters, and l priorities. Roughly
speaking, the complexity is exponential in n and l and only
polynomial in m; we state more precise bounds at the end of
this section.

We refer the interested reader to [21, Theorem 4.2] for the
full proof of a more general decidability result for the problem
of testing [[A]] 4 [[B]]. But complexity bounds were not stated
there.

We proceed in stages, eventually reducing the boundedness
problem to solving a certain Rabin game. We assume familiar-
ity with traditional winning conditions like this (see, e.g., [29]).

Stage 1: S ∧ parity game G. Let G be the S ∧ parity game
where Eve guesses a tree and simulates A on it. Positions in
the game are of the form q ∈ Q. The initial position is q0. At
position q, the game proceeds as follows:
• Eve selects a letter a ∈ Σ, and a disjunct ϕ of δ(q, a).
• Adam selects a conjunct (d, (c, p), r) in ϕ.
• The counter action and priority (c, p) is output, and play

proceeds from state r.
The objective is taken directly from A.

The idea is that Eve is trying to choose a tree and a run of
A on this tree with a large value.

Note that the game graph has m nodes, n counters, and l
priorities.

Stage 2: B ∧ parity game G̃. We now transform the S∧parity
game into a B ∧ parity game.

There is a history deterministic B∧ parity automaton H on
infinite words that reads S∧ parity actions and converts to an
equivalent (up to ≈) sequence of B∧parity actions [21, Lemma
3.3]. The number of states of this automaton is exponential in
n, and it uses n counters and l priorities.3

Positions are of the form (q, q′) ∈ QA ×QH.
• Eve selects a letter a ∈ Σ, and a disjunct ϕ of δ(q, a).
• Adam selects a conjunct (d, (c, p), r) in ϕ and a transition

(r′, (c′, p′)) ∈ δH(q′, (c, p)).
• The counter action and priority (c′, p′) is output, and play

proceeds from state (r, r′).
The objective is now B ∧ parity, so Eve is trying to maximize
the value.

Note that the game graph is of size at most |A|f(nl) for
some polynomial function f independent of A, and it has n
counters and l priorities.

Stage 3: Rabin game G̃′. Finally, we construct a Rabin game
G̃′ based on G̃. Recall that a Rabin condition is given by a
set of pairs {(E1, F1), . . . , (Es, Fs)}, and a play is winning

3No complexity bound is stated in [21, Lemma 3.5], but it is the result of
taking the product of n copies of the 3-state automaton in [21, Figure 3.3].

with respect to this condition if there is some i such that Ei
is visited only finitely often, but Fi is visited infinitely often.

We define the game graph for G̃′ to be the same as in G̃.
However, we now view it as an ω-regular game where the
winning condition expresses
• the parity condition is not satisfied or
• at least one counter is incremented infinitely often and

reset finitely often.
We emphasize that the counter actions are now evaluated
according to this ω-regular condition, so the resulting game
is no longer a cost game.

It is straightforward to convert a parity condition (or the
negation of a parity condition) with l priorities into a cor-
responding Rabin condition with l pairs. The second part of
the winning condition above fits exactly the structure of a
Rabin condition with n pairs (since we are expressing that
there is some i, such that counter i is reset finitely often
but incremented infinitely often). The disjunction of Rabin
conditions is again a Rabin condition, so overall this is a Rabin
condition where the number of pairs is at most n+ l.

Traditionally, Rabin games like this do not have edge labels,
so we can convert to a more traditional game by shifting the
output to nodes (this results in increasing the size of the game
graph by the size of the edge alphabet, in this case 2(n+ l)).

Hence, the overall size is at most |A|f ′(nl) for some
polynomial function f ′ independent of A, and the number
of pairs is at most n+ l.

We can then use a pumping lemma to prove that a winning
strategy in G̃′ can be used to generate a family of trees and
runs of A that witness the unboundedness of [[A]].

Lemma 21. [[A]] is unbounded iff Eve has a winning strategy
in the Rabin game G̃′.

This means that we can decide boundedness by solving the
Rabin game G̃′.

Rabin games can be solved in time O((MN)3N ) [26] where
M is the size of the game graph and N is the number of pairs.
Hence, solving G̃′ can be done in time O((MN)3N ) where
M = |A|f ′(nl) and N = n+ l.

Because the transformations fromA to G̃′ in each stage were
also bounded by this time, the overall complexity of deciding
boundedness for [[A]] is also |A|f ′′(nl) for some polynomial
function f ′′ independent of A.



APPENDIX B
MISSING PROOFS FROM SECTION IV

A. Proof of Proposition 7 (Normal form sizes)

We seek to prove Proposition 7:
Let ψ be a formula in cGNFP (respectively, answer-
guarded cGFP) with m = |ψ| and k = width(ψ).
We can construct a DAG representation of a sentence
ϕ in weak GN-normal form such that [[ϕ]] ≈ [[ψ]] and
• the size of the DAG representation for ϕ is at most

2f(m) (respectively, f(m)),
• width(ϕ) ≤ m (respectively, width(ϕ) = k),
• |cl+(ϕ)| ≤ 2f(m) (respectively, |cl+(ϕ)| ≤ f(m)·

2f(k)),
where f is a polynomial function independent of ψ.
There is no change in alternation-depth and counting
alternation-depth. These bounds apply even when ψ
uses simultaneous fixpoints.

We present the argument first for formulas ψ without
simultaneous fixpoints, and then argue how to extend the result
to formulas with simultaneous fixpoints.

We start by proving some lemmas about the conversion of
formulas into weak GN-normal form. We track the change in
size, width, and CQ-rank during this conversion. For φ′ in
weak GN-normal form, we define rankCQ(φ′) to be the max-
imum number of conjuncts ψi in any CQ-shaped subformula
∃x.

∧
i ψi of φ′ for non-empty x. For the purposes of CQ-

rank, α(x) ∧ φ(x) and α(x) ∧ ¬φ(x) are treated as single
conjuncts in a CQ-shaped subformula. The size, width, and
CQ-rank will be parameters when calculating the size of the
closure set.

Lemma 22. Let φ be a cGNFP formula without simul-
taneous fixpoints. We can construct an equivalent φ′ in
weak GN-normal form (in fact, a stronger GN-normal form)
such that [[φ]] = [[φ′]] and
• |φ′| is exponential in |φ|;
• width(φ′) ≤ |φ|;
• ad(φ′) = ad(φ);
• rankCQ(φ′) ≤ |φ|.

Proof: Use the transformations described in [3] to convert
to GN-normal form (although it is stated for GNF and GNFP,
the same transformation works for cGNFP and satisfies [[φ]] =
[[φ′]]).

Likewise, formulas in answer-guarded cGFP can be con-
verted to weak GN-normal form with only a polynomial blow-
up. Note that this result only holds for answer-guarded cGFP
formulas (not arbitrary cGFP formulas).

Lemma 23. Let φ be a answer-guarded cGFP formula without
simultaneous fixpoints. We can construct an equivalent φ′ in
weak GN-normal form such that [[φ]] = [[φ′]] and
• |φ′| is polynomial in |φ|;
• width(φ′) = width(φ);
• ad(φ′) = ad(φ);
• rankCQ(φ′) = 1.

Proof: We proceed by structural induction on φ.
• Assume φ is atomic. Then set φ′ := φ.
• Assume φ is ¬η(y). Then set φ′ := gdd(y) ∧ ¬η′(y).
• Assume φ is φ1 ∧ φ2. Inductively, construct φ′i and

set φ′ := φ′1 ∧ φ′2. Although φ′1 ∧ φ′2 is a CQ-shaped
subformula with two conjuncts, it does not contribute to
the CQ-rank, since there is no outer quantification.
Similarly for φ of the form φ1 ∨ φ2.

• Assume φ is ∃x.β(xy) ∧ η(xy). Inductively, construct
η′ for β(xy)∧ η(xy) and set φ′ := ∃x.β(xy)∧ η′(xy).
Note this CQ-shaped formula has CQ-rank 1 because β
guards all of the variables in η′, and the width of the
formula is unchanged.

• Assume φ is [λX,x.η](y). Inductively, construct η′ and
set φ′ := [λX,x. gdd(x) ∧ η′](y). Correctness can
be seen by observing that (i) y must be guarded by
assumption that φ is answer-guarded (ii) any occurrence
of Xz inside η either satisfies z ⊆ y so z is guarded,
or z 6⊆ y so Xz must appear inside some guarded
quantification in η and hence z is guarded.

This transformation satisfies [[φ]] = [[φ′]]. The other properties
are straightforward to check.

We now compute the size of the closure set for a formula
in weak GN-normal form.

Lemma 24. Given a cGNFP formula φ′ in
weak GN-normal form |cl+(φ′)| ≤ f(m) · 2f(kr) where
m = |φ′|, k = width(φ′), r = rankCQ(φ′) and f is a
polynomial function independent of φ′. These bounds apply
even when φ′ is given as a DAG and m is the size of the
DAG-representation.

Proof: We have gdd(x) ∈ cl+(φ′) for every vector of k
variable names Hence, there are kk guardedness predicates in
cl+(φ′).

There are at most m subformulas of φ′, all of which
appear in cl+(φ′). However, each CQ-shaped subformula ψ
can contribute additional formulas to the closure set due to
specializations.

Fix some CQ-shaped subformula ψ of φ′. There are at
most 2r additional CQ-shaped subformulas ψ′ obtained by
choosing some subset of the conjuncts in ψ. In each ψ′, there
are at most 2k choices of the inside variables, and kk ways
to partition the outside variables resulting in specializations
ψ′′ of ψ′. Notice that these specializations ψ′′ only have
CQ-shaped subformulas resulting from taking some subset
of the conjuncts in the original CQ-shaped formula ψ, so
these formulas have already been accounted for. Hence, ψ
contributes at most 2r2kkk new CQ-shaped subformulas to
cl+(φ′).

Overall, this means |cl+(φ′)| ≤ m · 2r2kkk + kk.
Putting the conversion lemmas and the previous lemma

together, we can get the stated bounds on the size of closure
set for Proposition 7. The cGFP bounds follow because the
CQ-rank of an answer-guarded cGFP formula is 1.
Simultaneous fixpoints. As mentioned in Proposition 7, these
bounds apply even when the original formula uses simultane-



ous fixpoints. The idea is that we would first adapt the transfor-
mations in Lemmas 22 or 23 to handle formulas with simulta-
neous fixpoints, and then use a standard procedure known as
the Bekič principle to eliminate any simultaneous fixpoints
(see, e.g., [13]). This procedure preserves alternation-depth
and counting alternation-depth. It can distort the values of the
function defined by the formula, but it preserves the function
up to ≈. The elimination can also result in an exponential
blow-up in the size of the formula due to the duplication of
subformulas, but by using a DAG-representation, this can be
done with only a polynomial increase in the size. Finally, we
can observe that the bounds on the size of the closure set
given in Lemma 24 apply even when the formula is presented
as a DAG. Hence, by using a DAG-representation for the
intermediate weak GN-normal form formula, Proposition 7
applies even to formulas that have simultaneous fixpoints.

B. Proofs of Theorem 9 and Corollary 10 (cGNFP to Au-
tomata)

First, recall the statement of Theorem 9:
Let ϕ be a sentence in cGNFP[σ] in
weak GN-normal form such that width(ϕ) = k.
Then there is a B ∧ parity tree automaton Aϕ
using directions {0, l} such that for all consistent
Kσ,k-trees t,

[[ϕ]](D(t)) = n iff [[Aϕ]](t) = n.

The size of Aϕ is exponential in |cl+(ϕ,Uk)|,
but the number of states is polynomial in
|cl+(ϕ,Uk)|. Moreover, Aϕ uses priorities
from {0, . . . , 2 · ad(ϕ) + 1}, and counters from{
γX : X is a µN -variable in ϕ

}
.

We will give the construction that proves this, and later
analyze it further to obtain the corollary about special classes
mentioned in Corollary 10, which we will review below.

For the inductive proof we must deal with formulas with
free-variables, so we introduce some more notation for this.

For free second-order variables Z, each Z ∈ Z induces
additional unary predicates Za for each free second-order
variable Z ∈ Z with arity j and for each a ∈ U jk . We
write Ẑ for these new predicates, and write (t, Ẑ) for the
annotation of a tree encodingt with information about these
new predicates. In order for (t, Ẑ) to be consistent, the
consistency requirements described before must be satisfied
not only for relations R ∈ σ but also for Z ∈ Z. For such a
consistent tree, we write D(Ẑ) for {[v,a] : Za(v)} in D(t),
the decoding of relation Z in D(t).

Likewise, for free first-order variables, we need to indicate
both a node and a name for which to evaluate these variables
at. For notational convenience, given vectors v = v1 . . . vj
and a = a1 . . . aj , we write [v,a] for [v1, a1], . . . , [vj , aj ].
Likewise, given a single node v and a vector a = a1 . . . aj , we
write [v,a] for [v, a1], . . . , [v, aj ]. Finally, we write [v,a] =
[w,a] if [vi, ai] = [w, ai] for all i.

We now prove two technical lemmas leading to Theorem 9.

As a first step, it is straightforward to construct an automa-
ton that checks a UCQ-shaped query when running on trees
annotated with the answer-guarded subqueries. The idea is that
the automaton guesses a specialization of each CQ, and uses
the annotations to check that this specialization is actually
realized.

Lemma 25. Let ψ(a,Z,S) be a UCQ-shaped formula from
cl+(ϕ,Uk) with every answer-guarded subquery χ replaced by
a new predicate Sχ (we write S for this set of new predicates).
There exists a parity tree automaton Cψ such that for all
consistent Kσ,k-trees (t, Ẑ, Ŝ) and for all nodes v ∈ dom(t),

[[ψ]](D(t), [v,a],D(Ẑ),D(Ŝ)) = 0 iff [[Cψ]]v(t, Ẑ, Ŝ) = 0.

The size of Cψ is exponential in |cl+(ψ,Uk)|, but the number
of states in Cψ is polynomial in |cl+(ψ,Uk)|. Moreover, Cψ is
weak and uses no counters.

Proof: Assume we have constructed automata for each
CQ in ψ, of size exponential in k and r. Then it is easy to
create an automaton for ψ of the desired size by taking the
disjoint union of the automata for each CQ.

Hence, it suffices to show that for each CQ-shaped formula
ψ, we can construct an automaton of size polynomial in
|cl+(ψ,Uk)|.

Fix such a ψ. The states of Cψ are CQ-shaped formulas in
cl+(ψ,Uk).

Assume Eve is in state ψ(a) (a CQ-shaped formula) at
position w ∈ dom(t). Eve immediately loses if w does not
contain a.

If ψ does not begin with existential quantifiers, then the
automaton checks locally if this part of the formula is satisfied,
based on the facts from the tree encoding, and the annotations
provided by Ẑ and Ŝ.

Otherwise, the automaton outputs priority 1 and proceeds
as follows:

• Eve guesses a specialization χ0(ay) ∧∧
j∈{1,...,l} ∃zj .χj(ayzj) of ψ and some names b

appearing in w.
• Adam chooses some j ∈ {0, . . . , l}.
• If j = 0, then the automaton remains in the same position

and moves to state χ0(ab). Otherwise, Eve selects a
neighboring node w′, and the automaton moves to state
∃zj .χj(abzj) in w′.

The constructed automaton is weak since there is no cy-
cle that visits both even and odd priorities. Correctness of
the construction follows from the following results about
specializations. We say that a specialization is non-trivial if
either there are no outside variables (thus the specialization is
only χ0), or χ0 is non-empty, or the partition of the outside
variables is non-trivial (l > 1).

Claim 26. Let φ(y) ∈ GNFP be a CQ-shaped formula
∃x.

∧
i ψi(xy). Given a structure M and a tree decomposition

T of M, if there exists a node v with b ⊆ T (v) and
M, b |= φ(y), then there is a non-trivial specialization φ′(yz)



of φ and a node w with a tuple c such that bc ∈ T (w) and
M, bc |= φ′(yz).

Proof: For elements d and a node w with a neighboring
node w′ we say that d is contained in the direction of w′ if
(i) w′ is the parent of w and d appears in the tree resulting
from removing from T the subtree rooted at w, or (ii) w′ is a
child of w and d appears in the subtree rooted at w′.

We can now prove the lemma. There must be some tuple
a = a1 . . . am of elements (corresponding to x = x1 . . . xm)
such that M,ab |=

∧
i ψi(xy).

If there is a node w in the tree decomposition T with
ab ⊆ T (w), then it is easy (take the specialization where
all variables x are inside variables).

Otherwise, there is a node w in T with b ⊆ T (w) and such
that ab is not contained in the direction of any neighbor of
w (if not, then starting at the node v containing b, we could
eventually reach a node w′ with ab ⊆ T (w′), which we are
assuming is not possible).

Let z be the tuple of variables from x corresponding to
elements in c := T (w) ∩ a (i.e. xi ∈ z iff ai ∈ T (w)). Take
yz to be the inside variables, corresponding to elements bc
(the elements inside T (w).

Let O be the nonempty set of elements from a that are not in
T (w) (i.e. the elements that correspond to outside variables).
Let Ow′ be the set of elements from O that are contained in
the direction of a neighbor w′ of w. Because o ∈ O do not
appear in T (w) and |O| ≤ k, {Ow′ : w′ is a neighbor of w} is
a partition of O into at most k partition elements. This induces
a partition of the outside variables based on what variables
belong together because the witnesses are contained in the
same direction from w.

Taking the resulting non-trivial specialization φ′, we have
M, bc |= φ′(yz).

In the other direction, every specialization of φ logically
implies φ.

Claim 27. Let φ(y) be a formula of the form ∃x.
∧
i ψi(xy).

For all structures M and for all specializations φ′(yz) of φ,
if M, bc |= φ′(yz), then M, b |= φ(y).

This concludes the proof of Lemma 25.
Using this lemma, we define the B ∧ parity automaton that

checks ϕ when running on tree encodings (t, Ẑ). In order to
correctly handle negation, we need to consider the polarity of
subformulas ψ ∈ cl+(ϕ), i.e. whether ψ occurred positively
(in the scope of an even number of negations) or negatively (in
the scope of an odd number of negations) in ϕ. For polarity
p ∈ {+,−}, we write pψ to denote ψ (respectively, ¬ψ) if
p = + (respectively, p = −). The definition of the automaton
for ψ depends on the polarity of ψ.

Lemma 28. Let ψ(a,Z) ∈ cl+(ϕ,Uk). If ψ appears with
polarity p in ϕ, then there exists a B ∧ parity automaton Bpψ
such that for all consistent Kσ,k-trees (t, Ẑ) and for all nodes
v ∈ dom(t),

[[pψ]](D(t), [v,a],D(Ẑ)) = n iff [[Bpψ]]v(t, Ẑ) = n.

The size of Bpψ is exponential in |cl+(ψ,Uk)|, but the number
of states in Bpψ is polynomial in |cl+(ψ,Uk)|. Moreover, Bpψ
uses priorities from {0, 1, . . . , 2 · ad(ψ) + 1}, and counters
from

{
γX : X is a µN -variable in ψ

}
.

Proof: We describe the construction of Bpψ , and then give
the proof of correctness.

We proceed by induction on the structure of ψ.

• Assume ψ is a UCQ-shaped subformula. If p = +
(respectively, p = −), then let Bpψ be the automaton
where Eve (respectively, Adam) chooses a valuation Ŝ,
Cψ (respectively, the dual of Cψ) from Lemma 25 is
simulated, and Adam (respectively, Eve) can choose to
launch Bpψ′′ from a node w if Sψ′′(w).

• Assume ψ is of the form α(a)∧p′ψ′, where p′ ∈ {+,−}
indicates whether ψ′ appears positively or negatively in
ψ. If p = + (respectively, p = −), then Eve (respec-
tively, Adam) chooses a conjunct. If α(a) is selected,
then the automaton immediately accepts if α(a) appears
(respectively, does not appear) in the tree encoding at v.
Otherwise, simulate Bp

′

ψ′ .
• Assume ψ is of the form gdd(a) ∧ ψ′. If p = +

(respectively, p = −), then Eve (respectively, Adam)
chooses a conjunct. If gdd(a) is selected, then simulate
Bpχ where χ is the UCQ equivalent to gdd(a). Otherwise,
simulate Bpψ′ .

• Assume ψ is a fixpoint subformula [λX,x. gdd(x) ∧
ψ′(x, X,Z)](a) where λ ∈ {µ, µN} and alϕ(X) = j. If
p = + (respectively, p = −), then let Bpψ be the automa-
ton where Eve (respectively, Adam) chooses valuation X̂ ,
Bpgdd(a)∧ψ′(a,X,Z) is simulated, and Adam (respectively,
Eve) can choose to launch Bpgdd(b)∧ψ′(b,X,Z) from w if
Xb(w). In case Xb(w) is challenged, the priority output
is 2j − 1 (respectively, 2j) and counter γj′ is reset for
any Xj′ @ϕ Xj . In addition, if λ = µN , then counter
γj is incremented at the beginning of the simulation and
any time some Xb(w) is challenged.

We focus on the interesting case in the proof when ψ is a
fixpoint predicate [λXi,x.η](x). We assume that there are no
free second-order variables in ψ, since these do not affect the
arguments below. Let G := G(Bpψ(a), t, v). In the arguments
below, we also consider approximant games G(Bpη(a), t, X̂i, v),
which are intermediate games based on evaluating the body
of the fixpoint with some valuation X̂i.

Case p = + and λ ∈
{
µ, µN

}
. We start by assuming

[[pψ]](D(t), [v,a]) ≤ n. We show how to construct an n-
winning strategy for Eve in G.

There is some least ordinal α such that D(t), n |=
ηα([v,a]). Moreover, α is a successor ordinal and D(t), n |=
η([v,a])[ηα−1(y)/Xi(y)]. Consider the encoding of a val-
uation X̂i for Xi such that Xi,b(w) holds iff D(t), n |=
ηα−1([w, b]). By the inductive hypothesis, there is an n-
winning strategy ζ ′ for Eve in the approximant game Gα :=
G(Bpη(a), t, X̂i, v). We construct a strategy in G in which Eve



selects the valuation X̂i defined above, and uses this strategy
ζ ′ from Gα.

If Adam never challenges an annotation, then the play is n-
winning by assumption on ζ ′. Otherwise, if Adam challenges
some Xi,b(w) in X̂i, then there is some least ordinal β ≤
α − 1 such that D(t), n |= ηβ([w, b]). From this position,
we use the inductively-defined n-winning strategy in Gβ :=
G(Bpη(b), t, X̂i, w) with the X̂i valuation based on the (β−1)-
approximant, and reason as before.

Continuing to reason in this fashion, Eve must eventu-
ally choose a valuation for X̂i that is the empty valuation
(otherwise α > β > · · · would be an infinite descending
chain, contradicting the well-foundedness of the ordinals).
This means any play in the constructed strategy will eventually
stabilize in some approximant game. This ensures that the
parity condition is satisfied in any play in ζ. Moreover, when
Xi is a µN -variable, this ensures that the value of counter γi
is at most n.

However, it remains to show that any other counters used by
Bpη(x) never exceed value n. Notice that in between challenges
by Adam, each counter in Bpη(x) can be incremented at most n
times, by the assumption on the inductively-defined strategies.
Moreover, at each challenge, any counter that was used in the
previous approximant game Gα, Gβ , etc. is reset (because any
counter that is used in some play that eventually returns to Xi

must correspond to a µN -variable Xj with Xj @ϕ Xi. Overall,
this means that the constructed strategy in G is n-winning for
Eve as desired.

Next, assume [[pψ]](D(t), [v,a]) > n and λ = µN . We show
how to construct an (n+ 1)-winning strategy for Adam in G.

Consider the valuation X̂i for Xi such that Xi,b(w) holds
iff D(t), n |= ηn([w, b]). Because [[pψ]](D(t), [v,a]) > n, this
means that [v,a] is not in this valuation. Let ζ ′ be an optimal
strategy for Adam in G′ := G(Bpη(a), t, X̂i, v), based on this
valuation. Note that this strategy might not be (n+1)-winning
for Adam.

We construct Adam’s strategy in G so that he starts by
playing from ζ ′. If Eve deviates from the valuation for Xi

described above (by guessing additional tuples), then Adam
challenges this tuple, and starts using a new strategy based on
an appropriate approximant game and the new valuation such
that Xi,b(w) holds iff D(t), n |= ηn−1([w, b]).

If Adam challenges at least n times, then the γi counter
will achieve value n + 1. Otherwise, the play stabilizes in
some approximant game G′ based on the m-th unfolding
(0 ≤ m ≤ n) of η for some challenged tuple [w, b]. If Adam
has an (n + 1)-winning strategy in this game, then we are
done. If Adam’s optimal strategy is not (n+1)-winning in this
approximant game, then there is an n-winning strategy for Eve
in this approximant game selecting an Xi valuation with only
tuples in approximant m − 1. By the inductive hypothesis,
this would imply that D(t), n |= ηm([w, b]), which would
contradict Adam’s challenge of this particular tuple.

If λ = µ, then the reasoning would be similar, starting with
the valuation X̂i for Xi such that Xi,b(w) holds iff D(t), n |=

[µXi,x.η]([w, b]). Let ζ ′ be an optimal strategy for Adam
from G′ := G(Bpη(a), t, X̂i, v), based on this valuation.

We construct Adam’s strategy in G so that he starts by
playing from ζ ′. If Eve deviates from the valuation for Xi

described above (by guessing additional tuples), then Adam
challenges this tuple, and starts using a new strategy based
on the appropriate approximant game (but with the same
valuation).

If Adam challenges infinitely many times during the play,
then it will be (n+1)-winning since it fails to satisfy the parity
condition. Otherwise, the play stabilizes in some approximant
game G′ based on η for some challenged tuple [w, b]. If Adam
has an (n + 1)-winning strategy in this game, then we are
done. If Adam’s optimal strategy is not (n+1)-winning in this
approximant game, then there is an n-winning strategy for Eve
in this approximant game selecting an Xi valuation with only
tuples that were actually in the least fixpoint (tuples that would
not be challenged by Adam). By the inductive hypothesis, this
would imply that D(t),D(X̂i), n |= η([w, b]), so D(t), n |=
[µXi,x.η]([w, b]), a contradiction.

Case p = − and λ = µ. Recall that µN cannot appear
negatively in ϕ, so this is the only case with p = −.

Assume [[pψ]](D(t), [v,a]) ≤ n. We describe an n-winning
strategy ζ for Eve in G.

Let X̂n
i be the valuation for Xi such that Xi,b(w) holds

iff [[pψ]](D(t), [w, b]) > n. Let ζ ′ be an optimal strategy
for Eve in G(Bpη(a), t, X̂

n
i , v), based on this valuation. We

construct Eve’s strategy ζ in G so that she starts by playing
from ζ ′. If Adam asserts some Xi,b(w) that is not in X̂n

i , then
Eve challenges this tuple, starts using an optimal strategy in
G(Bpη(b), t, X̂

n
i , w), and we continue as before.

First observe that Eve’s strategy in any of the ap-
proximant games must be n-winning. Suppose not. Then
[[Bpη(b)]](t, w, X̂

n
i ) > n, which by the inductive hypoth-

esis implies that [[pη]](t, [w, b], X̂n
i ) > n. This in turn

implies that [[¬η[ψ(y)/Xi(y)]]](D(t), [w, b]) > n. But
[[¬η[ψ(y)/Xi(y)]]] = [[¬ψ]], so we have [[¬ψ]](D(t), [w, b]) >
n, which contradicts the fact that in the constructed strategy ζ,
Eve only challenges tuples not in the valuation X̂n

i . Moreover,
when Eve challenges some new tuple, all of the counters in
the previous approximant game are reset.

If Eve challenges infinitely many times during the play, then
the play is n-winning since 2j is the highest even priority
occurring infinitely often, where j = alϕ(Xi). Otherwise, the
play eventually stabilizes in some approximant game for some
challenged tuple, and as argued above, the strategy in this
approximant game must be n-winning.

Next, assume [[pψ]](D(t), [v,a]) > n. We show how to
construct an (n+ 1)-winning strategy ζ for Adam in G.

For ordinals α, let X̂α
i denote the valuation for Xi such that

Xi,b(w) iff [[¬ηα]](D(t), [w, b]) > n.
Observe that [[¬ψ]](D(t), [v,a]) > n implies that

D(t), [v,a], n 6|= ¬ψ′ where ψ′ is the result of substituting
the n-th approximants for each µN -subformula in ψ. Hence,
D(t), [v,a] |= ψ′, If η′ is the result of doing this substitution



in η, then D(t), [v,a] |= (η′)α for some least ordinal α. But
this means that D(t), [v,a] 6|= ¬(η′)α, and D(t), n 6|= ¬ηα
and hence [[¬ηα]](D(t), [v,a]) > n.

Hence, there is some least ordinal α such that
[[¬ηα]](D(t), [v,a]) > n. Moreover, α is a successor
ordinal and [[¬η[ηα−1/Xi]]](D(t), [v,a]) > n. Hence,
[[¬η]](D(t), [v,a], X̂α−1

i ) > n. By the inductive hypothe-
sis, there is an (n + 1)-winning strategy ζ ′ for Adam in
G(Bpη(a), t, X̂

α−1
i , v). We construct a strategy ζ in G in which

Adam selects the valuation X̂α−1
i defined above, and uses this

strategy ζ ′ from Gα. If Eve challenges some Xi,b(w) in the
valuation, then there is some least ordinal β ≤ α−1 such that
[[¬ηβ ]](D(t), [w, b]) > n. Using similar reasoning as above,
Adam has an (n+1)-winning strategy in G(Bpη(b), t, X̂

β−1
i , w).

Hence, when Eve challenges some tuple, Adam switches to
selecting the valuation X̂β−1

i and playing his inductively-
defined (n + 1)-winning strategy from G(Bpη(b), t, X̂

β−1
i , w).

Adam continues updating the approximant and his strategy in
the approximant game like this after each challenge by Eve.

On any play, there can be only a finite number of challenges
by Eve (otherwise α > β > · · · would be an infinite
descending chain, contradicting the well-foundedness of the
ordinals). This means that any play in the constructed strategy
will eventually stabilize in some approximant game, where
Adam can play his n-winning strategy.

This concludes the proof of Lemma 28.
The desired B∧parity automaton Aϕ in Theorem 9 checking

ϕ in D(t) is the result of running the B ∧ parity automaton
B+
ϕ starting from the root of t. This concludes the proof of

Theorem 9.

Refined analysis. Recall that Corollary 10 states results for
both general cGNFP formulas and for restricted classes:

Let ϕ be a sentence in cGNFP[σ] in
weak GN-normal form such that width(ϕ) = k.
Then there exists a B ∧ parity tree automaton Bϕ
such that [[ϕ]] is bounded over all σ-structures iff
[[Bϕ]] is bounded over all Kσ,k-trees.
The size of Bϕ is exponential in |cl+(ϕ,Uk)|, but
the number of states is polynomial in |cl+(ϕ,Uk)|.
The number of priorities and counters is linear in
|ϕ|.
Moreover, Bϕ is a dist ∧ parity automaton if ϕ is
in distance cGNFP, and is counter-weak if ϕ is
alternation-free.

In order to conclude the last sentence, we will need further
analysis of the translation given in Lemma 28.

Alternation-free case. Observe that if ϕ is alternation-free, then
the alternation-level of every fixpoint variable in ϕ must be
0. This means that in any cycle in a run of B+

ϕ that visits
both even and odd priorities, there must be some µN -variable
that subsumes the formulas responsible for the even priorities
and the formulas responsible for the odd priorities. Hence,
there is some counter that is incremented and not reset, so
the resulting automaton is counter-weak. This means that if

ϕ is alternation-free, then Bϕ is counter-weak, as stated in
Corollary 10.
Optimization for distance cGNFP case. In the automaton B+

ϕ

constructed using Lemma 28, a different counter is used for
each µN -variable Xi in ϕ. This leads to a slightly cleaner
proof because it means the bound n is preserved exactly
between [[ϕ]] and [[B+

ϕ ]].
When the original formula is in distance cGNFP, however,

we can optimize the construction so that the resulting au-
tomaton is a dist ∧ parity automaton, i.e. an automaton using
a single counter that is only incremented or left unchanged,
never reset. This ensures that in Corollary 10 we can construct
a dist∧parity automaton when starting from a distance cGNFP
formula.

Before we describe the optimization, we show that when
the construction in Lemma 28 is applied to a distance cGNFP
formula ψ, the following property holds.

Claim 29. In any n-winning play for Eve in G(Bpψ(a), t, Ẑ, v),
the total number of increments is at most (2n)j where j is the
number of µN -variables in ψ (not including any µN -variables
that are free).

Proof: The proof is by induction on the structure of ψ.
Again, the interesting case is when ψ is a fixpoint predicate
[λXi,x.η](x).

If p = + and λ = µN , then we observed in the proof
above that any play must stabilize in an approximant game
after at most n increments of counter γi. By the inductive
hypothesis, each of the at most n different approximant games
can contribute (2n)j−1 increments. Hence, the total number
of increments is n(2n)j−1 + n ≤ (2n)j .

If p ∈ {+,−} and λ = µ, then by the definition of distance
cGNFP, Xi cannot occur free in η (otherwise, the counting
level of Xi would be greater than 0). Consider a partial play
ending in a challenge that starts a new approximant game.
Such a challenge is only possible in the approximant game if
the automaton is currently processing some formula with Xi

as a dependency (i.e. Xi occurs free). Thus, as soon as any
counter is incremented in the approximant game, it means that
no additional challenges are possible (by definition of distance
cGNFP, no µN -variable can depend on a least or greatest
fixpoint variable). Hence, the only approximant game that can
contribute increments during the play is the approximant game
in which the play stabilizes. This has at most (2n)j increments
by the inductive hypothesis. This concludes the proof of the
claim.

This means we can replace the individual counters by a sin-
gle counter γ that is incremented any time one of the original
counters would have been incremented, but is otherwise left
unchanged. If we write [[B]] for the original automaton and
[[B′]] for this optimized version, then [[B]] is bounded (by n)
over all consistent Kσ,k-trees iff [[B′]] is bounded (by (2n)j)
over all consistent Kσ,k-trees.

Using this optimization of the translation in Lemma 28, this
means that if ϕ is in distance cGNFP, then Bϕ is a dist∧parity
automaton, as stated in Corollary 10.



C. Extension of Theorem 9 to handle constants and equality

Thus far, we have been assuming that the cGNFP formulas
do not make use of constants or equality.

We can introduce constants with minimal changes. It is
straightforward to prove that for a cGNFP formula ϕ with
constants we can restrict to tree-like structures as before.
However, as part of the definition of a consistent tree, we
enforce that the encodings of these tree-like structures include
information about the constants in every node of the encod-
ing. This ensures that information about these constants is
accessible to the automaton at any point during its run. This
is important because constants do not have to be guarded.
Hence, when it comes time to checking some answer-guarded
subquery ψ(x), we may need to be tracking the valuation of
x, which includes some guarded set of element names as well
as other constants that do not need to be guarded. Having this
information about the constants at each node means that it is
still possible to launch an automaton checking this answer-
guarded subquery subformula from a single node in the tree.
The state set of the constructed automata is now based on
cl+(ϕ,Uk ∪ C) where C is the set of constants used by ϕ.
Note that the size of cl+(ϕ,Uk ∪C) is (2k+ |C|)k · |cl+(ϕ)|
(versus (2k)k · |cl+(ϕ)| without constants), but this does not
affect the overall complexity.

Accommodating equality requires some additional technical
work. The idea is to first normalize the use of equality in the
cGNFP formula. This can be done so that the conversion of
the cGNFP to weak GN-normal form and this equality-normal
form is exponential in the size of the input (similar to the
general case in Theorem 7). Based on this, we can then place
additional requirements on the use of equality in the encod-
ings of the tree decompositions of these equality-normalized
formulas. After these adjustments, we can treat equality like
the other relations during the automata construction. We now
describe this equality-normalization process in more detail.

The first thing we show is that any cGNFP formula with
equality can be converted to a form with a very limited use
of equality. Let us say that a cGNFP formula φ is equality-
normalized if

(i) every occurrence of R t or X t in φ appears in conjunc-
tion with

all-distinct(t) :=
∧
t∈t

(t = t) ∧
∧

t,t′∈t,t6=t′
¬(t = t′),

(ii) whenever equalities are used as guards for negations,
then these equality guards are of the form x = x, and

(iii) every occurrence of equality in φ is either an equality
comparison of constants, or comes from (i) or (ii).

Let φ(x) be a GNF formula containing constants e, and let
≡ be any equivalence relation over x ∪ e. We denote by ξ≡
the first-order formula∧

s≡t
(s = t) ∧

∧
s6≡t

¬(s = t),

that is, the conjunction of all equalities and inequalities cor-
responding to ≡. Note that this formula does not necessarily
belong to GNF as it may contain unguarded inequalities.

Lemma 30. Let φ(x) be a GNF formula in
weak GN-normal form containing constants e, and let
≡ be any equivalence relation over the free variables and
constants in φ. We can construct a DAG-representation of an
equality-normalized φ′≡(x) in GN-normal form such that
• |= ∀x

(
ξ≡(x)→ (φ(x)↔ φ′≡(x))

)
;

• the size of the DAG-representation of φ′≡ is at most
p(|φ|k), where k is the width of φ, and p is a polynomial
function independent of φ;

• width(φ′≡) ≤ width(φ);
• rankCQ(φ′≡) ≤ rankCQ(φ).

Proof: Let x be the variables used in φ and e be the
constants used in it.

For each ≡-equivalence class, we fix an arbitrary repre-
sentative — a constant whenever possible. We replace all
occurrences of each variables and constant in x ∪ e by
the representative of its equivalence class. Next, we replace
subformulas of the form s = t, with s, t ∈ x ∪ e, by > if
s = t and by ⊥ otherwise; finally, we conjoin every relational
atom containing distinct s, t ∈ x ∪ e with ¬(s = t).

At this point, the conditions (i) and (ii) in the definition of
equality-normalized formulas are satisfied for equalities that
have a free variables or constants on both sides. It remains
only to take care of the equalities that involve a quantified
variable.

Consider any subformula of the form

ψ(z) = ∃y.χ(y, z)

We will essentially do a case distinction, for each quantified
variable yi ∈ y, of the possible values that yi may take. More
precisely, we replace ψ(z) by the disjunction, for each map
f : y → (y∪z∪e), of the formula ψf obtained from ψ by (i)
replacing each yi ∈ y by f(yi), (ii) replacing yi = yj by > if
f(yi) = f(yj) and by ⊥ otherwise, (iii) replacing yi = t or or
t = yi for t ∈ z∪e by > if f(yi) = t and by ⊥ otherwise (and
dropping the quantifiers corresponding to quantified variables
that no longer occur in the formula). Finally, we conjoin every
atom R(t) with

∧
t∈t(t = t) ∧

∧
t,t′∈t,t6=t′ ¬(t = t′). This

clearly preserves the semantics of the formula over structures
satisfying ξ≡. It does not change the CQ-rank because t is
guarded. The size blowup involved in this procedure is at most
exponential in the width of φ.

We obtain the desired equality-normalized φ′≡ in
weak GN-normal form by performing this rewriting in
a bottom-up fashion starting with the innermost quantifier. By
using a DAG-representation, the overall size of this equality-
normalized form is at most exponential in k (we remark
that using a tree representation, it would be exponential
in both k and the maximal nesting depth of quantifiers
in the formula). Furthermore, even though we introduce
disjunctions, the resulting formula is easily seen to be still in



weak GN-normal form. The bound on the width is immediate
from the construction.

Combining Lemma 30 with Lemma 22 we can obtain the
following result.

Proposition 31. Let φ be a cGNFP (respectively, cGFP)
sentence not necessarily in weak GN-normal form. We can
construct a DAG-representation of an equality-normalized φ′

in weak GN-normal form such that
• [[φ]] ≈ [[φ′]];
• the size of the DAG-representation of φ′ is at most

exponential in |φ| (respectively, p(|φ|)k where k is the
width of φ and p is a polynomial function independent of
φ);

• width(φ′) ≤ |φ| (respectively, width(φ′) ≤ width(φ));
• rankCQ(φ′) ≤ |φ| (respectively, rankCQ(φ′) = 1).

There is no change in the alternation-depth and counting
alternation-depth.

Proof sketch: Without loss of generality, we can assume
φ is a fixpoint subformula (since we can always wrap the
sentence in a new 0-ary fixpoint predicate).

We proceed with the conversion starting from the inner-
most fixpoint formulas. For [λX,x.ψ(x, X,Y )], we create
a simultaneous λ-fixpoint on variables X≡1

, . . . , X≡m
for

each equivalence class ≡i over x ∪ e (where e are the
constants in ψ). The fixpoint body corresponding to X≡i is
the weak GN-normal form formula equivalent to gdd(x) ∧
(ξ≡i

→ ψ′≡i
), obtained by applying Lemma 22 or Lemma 23

to convert ψ to weak GN-normal form and then applying
Lemma 30 to convert to equality normal form based on ≡i.
Fixpoint variables or other fixpoint subformulas are treated
as atomic during this transformation, so any occurrence of
Xt will be conjoined with all-distinct(t). We replace Xt
with X≡i

t where ≡i describes the equivalence class over
x ∪ e induced by all-distinct(t). Other fixpoint variables or
fixpoint subformulas are treated in a similar way. Repeating
this procedure for all fixpoint subformulas, we get a DAG-
representation of the desired size. This is only possible because
we are using a DAG-representation, and hence can avoid
additional exponential blow-ups from the nesting of fixpoints.

Finally, the simultaneous fixpoints can be eliminated with
only a polynomial blow-up, again taking advantage of the
DAG representation of the formula.

Overall, this results in a DAG-representation for φ′ of the
desired size. The other properties of φ′ are straightforward to
check. The difference in bounds between cGNFP and cGFP
comes from the difference between Lemma 22 and Lemma 23.

We note that the value of [[φ]] is not preserved ex-
actly because we split each µN fixpoint variable X into
X≡1

, . . . , X≡m
as described above. However, this distortion

in the value is acceptable up to ≈-equivalence, so [[φ]] ≈ [[φ′]].

We say that a consistent tree t is equality-trivial if for
all nodes v in t (i) s = s′ is asserted at v only if s and
s′ are the same term, and (ii) ¬(s = s′) is asserted at v
only if s and s′ are distinct terms. Note that an encoding

of a tree decomposition is naturally equality-trivial, and if
t is an equality-trivial consistent tree then distinct terms are
realized by distinct elements in D(t). Moreover, for equality-
normalized sentences, equality-trivial consistent trees contain
all of the information necessary to evaluate whether the
sentence holds in the corresponding structure, just treating
equality as any other relation.

Therefore, given some cGNFP sentence with equality and
constants, we can convert into weak GN-normal form and
equality-normalized form using Proposition 31, and then use
the automaton construction from Lemmas 25 and 28, treating
equality like any other relation. Proposition 31 ensures that the
conversion to this equality-normalized version and subsequent
automaton construction can be done with the same complexity
bounds as Theorem 9. Hence, we have the following extension
of Theorem 9.

Theorem 32 (Extension of Theorem 9 with equality and
constants). Let ϕ be a sentence in cGNFP[σ] (possibly using
equality and constants) such that width(ϕ) = k. Then there
is a B∧parity tree automaton Aϕ using directions {0, l} such
that [[ϕ]] is bounded over all σ-structures iff [[Aϕ]] is bounded
over all equality-trivial consistent Kσ,k-trees.

The size of Aϕ is exponential in |cl+(ϕ,Uk)|, but the
number of states is polynomial in |cl+(ϕ,Uk)|. Moreover, Aϕ
uses priorities from {0, . . . , 2 · ad(ϕ) + 1}, and counters from{
γX : X is a µN -variable in ϕ

}
.



APPENDIX C
MISSING PROOFS FROM SECTION V

A. Proof of Proposition 13 (Positional strategies in
dist ∧ parity games)

Observe that any dist ∧ parity game can be viewed as a
distance ∨ parity game simply by incrementing the priorities
by one (turning ‘good’ even priorities into ‘bad’ odd priorities,
and vice versa). Hence it suffices to prove the following:

If Eve has an N -winning strategy in a
distance ∨ parity game G, then Eve has an N -
winning positional strategy in G.

Consider a distance ∨ parity game G where Eve has an N -
winning strategy from the initial position v0. Let O be the
corresponding distance ∨ parity objective. A play π in such a
game is n-winning for Eve if it satisfies at least one of the
following conditions:
• π satisfies the parity condition, or
• π has counter value at least n.
We associate to each position v in the game G the greatest

n ≤ N such that Eve has a n-winning strategy in G starting
from v; let Wn denote the set of positions associated with n.

Let On be the objective such that a play π is winning
if π satisfies the parity condition or π has value at least
n (note that this is a traditional boolean winning condition,
rather than a cost objective). Let Gn be the boolean game
with objective On obtained by restricting G to positions in
W0 ∪ · · · ∪Wn, replacing any transitions to Wm for m > n
with a winning exit transition, and any transition outside of
W0∪ · · ·∪Wn with a losing exit transition. Technically, these
winning (respectively, losing) exit transitions require adding
a sink node to the game graph with even (respectively, odd)
priority. Note that by definition of the winning regions Wi,
Eve has a winning strategy in Gn starting from any position
in Wn. We proceed by induction on 0 ≤ n ≤ N to show that

there exists a positional strategy ζn that is winning
in Gn starting from any position in Wn.

The desired result follows by using ζN in G starting from the
initial position v0, which is in WN .

For the base case when n = 0, an arbitrary positional
strategy will work since any play will always have counter
value at least 0.

Now consider n > 0. Let Wn be the parity game obtained
from Gn by restricting to positions in Wn, and replacing any
transition with an increment that stays in Wn with a winning
exit transition. Moreover, any transitions that become exit
transitions (because their target is outside of Wn) are made
winning or losing as follows:
• transitions to Wm for m > n are winning;
• transitions to Wn−1 that perform an increment are win-

ning;
• transitions to Wn−1 without an increment are losing;
• transitions to Wm for m < n− 1 are losing.

Note that Wn is a parity game since all increments were
removed in the construction. The winning strategy in Gn

starting from a position v ∈ Wn induces a winning strategy
in Wn. Because Wn is a parity game, there is a positional
winning strategy τn for Eve in Wn [26].

Using τn together with the inductively defined positional
winning strategy ζn−1, we now construct a winning positional
strategy for Eve in Gn. The strategy ζn plays like τn while in
Wn (which can happen indefinitely). If the strategy τn uses an
exit transition that cannot be matched in Gn then there must
be a corresponding transition in Gn that either increments the
counter and stays in Wn, or increments the counter and moves
to Wn−1 (otherwise it would contradict the fact that τn is
winning in Wn). In the former case, we continue playing like
τn. In the latter case, we switch to using the strategy ζn−1

while we are in W0∪· · ·∪Wn−1. If there is an exit transition
that corresponds to a move to Wn, then we return to using τn,
and continue as before.

Now consider an infinite play π consistent with ζn that starts
in Wn. Either π eventually stabilizes in W0 ∪ · · · ∪Wn−1, or
π is in Wn infinitely often. If it stabilizes in W0∪· · ·∪Wn−1,
then it must have incremented the counter at least once before
entering Wn−1. Once it stabilizes in W0 ∪ · · · ∪Wn−1, the
resulting play must be winning for On−1 by the inductive hy-
pothesis. Overall, this means π is winning for On. Otherwise,
π returns infinitely often to Wn. Notice that each return to
Wn from Wn must be preceded by an increment. Likewise,
each return that goes via some Wm for m < n, must have
incremented the counter at least once when descending from
Wn to Wn−1. Hence, the counter value is ∞ and the play is
winning in Gn.

Although this is not necessary for our purposes, we note
that the positional strategy in this case preserves the value of
the game exactly. That is, if Eve can win with value n, then
she has a positional strategy that can win with value n.

B. Reduction to trees with finite branching

Recall that in Section III, step (2) of the conversion process
claimed that we could reduce to trees with some fixed finite
branching. We now prove this claim, formally stated here.

Proposition 33. Let A be a dist ∧ parity automaton. Then
[[A]] is bounded over trees with arbitrary branching iff [[A]]
is bounded over trees with branching degree bounded by the
number of states of A.

Proof: Let Q be the state set for A. Suppose for the sake
of contradiction that [[A]] is bounded over trees with finite
branching at most |Q|, but unbounded over all trees.

Since [[A]] is unbounded and dist ∧ parity games have posi-
tional strategies by Proposition 13, this means that for every
n, there is a tree tn such that Eve has a positional strategy
of value at least n in G(A, t). Such a strategy induces a finite
set of relevant nodes that the strategy actually uses for each
v ∈ dom(tn). Note that the positional strategy from v could
send state q to many different neighbors w of v, with possibly
different output actions. However, we could always send all
of these copies to the position w′ that the strategy used for
the worst possible action associated with q. Hence, for each



v ∈ dom(tn), the set of relevant nodes can be bounded by
|Q|.

For each n, construct a new tree t′n, obtained from tn by
starting at the root, and keeping only relevant children. This
new tree t′n has finite branching degree at most |Q|, and the
original positional strategy witnesses that [[A]](t′n) ≥ n.

Hence, (t′n)n∈N is a family of trees with finite branching
witnessing unboundedness of [[A]].

As stated in step (2) in Section III, this means we can
use more traditional automata that operate on trees with some
fixed, finite branching degree.

Proposition 34. Let A be a dist ∧ parity automaton using
directions {0, l} and m states. Then there is a dist ∧ parity
automaton A′ using directions {−1, 0, . . . ,m} such that [[A]]
is bounded over all trees iff [[A′]] is bounded over all trees
with branching degree m. The size of A′ is polynomial in the
size of A. The number of states, counters, and priorities is the
same in A and A′ (only the transition function changes).

Note that we can also enforce at this stage that the trees that
we operate on with A′ are full m-ary trees, i.e. every node has
precisely m children. This can be handled in the usual way,
by introducing some special symbol to label parts of the tree
that would otherwise be missing.

C. Proof of Lemma 15 (2-way universal dist ∧ parity to 1-way
alternating dist ∧ parity automata on annotated trees)

Let U be the 2-way dist ∧ parity universal automaton U
described in the body that runs on (t, ζ) and computes the
value of ζ, where (t, ζ) is a strategy annotation of t based
on a positional strategy ζ in G(A, t) for a 2-way alternating
dist ∧ parity automaton A.

We seek to prove:
We can construct a 1-way alternating dist ∧ parity
tree automaton B such that [[U ]] ≈ [[B]]. The size of
B is at most |A|f(m′) where m′ is the number of
states and priorities of A, and f is some polynomial
function independent of A. Moreover, the number
of states in B is polynomial in m′, and the number
of priorities and counters is the same as A.

Recall that a strategy annotation is a labelling of t such
that each node x is annotated with a function ζx mapping a
state q to the set of tuples (d, (p, c), r) such that it is possible
to move from (q, x) to (r, xd) with output (p, c) when using
the strategy ζ in the game in G(A, t). For technical reasons,
we will also assume that the annotation at each node x also
includes the functions ζxd for d ∈ {1, . . . ,m}.

Let Act be the set of actions for U ; each action is of the
form (p, c) where p is a priority from some set P of priorities
(for technical reasons in the construction below, the “empty”
priority ε is also included in P ) and c ∈ {ic, ε} is the
action on the single distance counter. Recall that with this
dist ∧ parity objective, Eve is trying to ensure that the parity
condition is not satisfied or the counter achieves a high value.

In state q at position x, U is designed such that Adam
chooses one of the moves (d, (p, c), r) ∈ ζx(q). After out-

putting action (p, c) and moving in direction d, play continues
from state r. The automaton is universal because Adam
controls every choice (Eve’s choices in A are dictated by ζ).
It is of size |A|f(m′) where m′ is the number of states and
priorities in A and f is a polynomial function independent
of A, since the number of strategy labels it can read is
exponential in m′. It has the same number of states, priorities,
and counters as A, however.

We first convert this 2-way universal automaton U into a
2-way alternating automaton B0↓ with no upward moves but
still using stationary moves and downward moves (directions
{0, 1, . . . ,m}). The price we pay to eliminate the upward
movement is that (i) we give some control back to Eve so
the automaton is no longer universal, and (ii) we increase
the size of the state set by a polynomial factor. The state set
for B0↓ is Q ∪ (Q × Act × Q). There are two modes of the
automaton, normal mode and challenge mode; states of the
form q ∈ Q correspond to normal mode, and states of the
form (q, c, q′) ∈ Q×Act×Q correspond to challenge mode.

In the normal mode, Adam can choose a stationary or
downward move consistent with the annotated strategy ζ.
Adam is not allowed to choose an upward move. However, he
can make a request to stay in the same position, output some
action, and (possibly) change state. Formally, a request is a
triple (q, c, q′) ∈ Q×Act×Q. Intuitively, a request when the
automaton is in state q in position x in the tree represents an
assertion by Adam that there is some play (consistent with ζ)
which would eventually return to x in state q′, after performing
global action c. The global action from a sequence of moves

(d1, (p1, c1), q2)(d2, (p2, c2), q3) . . . (dk, (pk, ck), qk+1)

is (max {p1, . . . , pk} ,max {c1, . . . , ck}) where ε < ic < ⊥
and ε < p for all p ∈ P . Likewise, given some se-
quence of actions (p1, c1), (p2, c2), . . . , (pk, ck) we will write
(p1, c1)(p2, c2) . . . (pk, ck) for the corresponding global ac-
tion (max {p1, . . . , pk} ,max {c1, . . . , ck}). We write (p, c) <
(p′, c′) if p < p′, or p = p′ and c < c′.

When Adam makes a request (q, c, q′) like this, Eve has a
choice: she can either grant him the request by outputting c,
moving to state q′, and remaining in normal mode, or she can
challenge the request by outputting (podd

max, ε), and moving to
state (q, c, q′), where podd

max is the maximum odd priority used
by U .

In challenge mode in some state (q, c, q′), Adam tries to
pick out a play that is consistent with his request (i.e. witness
the loop that would lead from q to q′ with global action c). He
has three possibilities for moves, which we denote by (A1)–
(A3).

Adam can move from (q, c, q′) to a state (r, c′, r′) with
output o if one of the following conditions holds:

(A1) there is a downward move (d, b, r) ∈ ζx(q) for d ∈
{1, . . . ,m}, and an upward move (−1, b′, q′) ∈ ζxd(r′)
such that bc′b′ = c and o = (podd

max, ε)bb
′;

(A2) there is a stationary move (0, b, r) ∈ ζx(q) such that
bc′ = c and o = (podd

max, ε)b;



where podd
max is the maximum odd priority used by U . Note that

Adam is not allowed to choose an upward move: the idea is
that if he had needed an upward move, he should have made
an earlier request to handle this.

The last option (A3) is that Adam can choose to request
(q, a1, q

′′) and (q′′, a2, q
′) with a1a2 = c. In this case Eve

selects which part to challenge. If she selects the first part,
then the automaton outputs (podd

max, ε)a2 and moves to state
(q, a1, q

′′). Similarly, if she selects the second part, then the
automaton outputs (podd

max, ε)a1 and moves to state (q′′, a2, q
′).

If Adam reaches a state (q, (ε, ε), q), then the automaton
moves into some sink state with even priority and no counter
actions (we have omitted this from the definition of the state
set for presentation purposes only). Otherwise, if he forever
remains in challenge mode, then the play does not satisfy
the parity condition, since podd

max is always output during the
challenge mode. This ensures that Adam loses when he fails
to witness the requested loop that was challenged by Eve.

Now that we have described the operation of B0↓, we must
prove that it correctly computes the value of ζ.

Lemma 35. If [[U ]](t, ζ) ≤ n, then [[B0↓]](t, ζ) ≤ n.

Proof sketch: If [[U ]](t, ζ) ≤ n, then there is a play π
consistent with ζ that has value at most n.

The idea is to guide Adam’s choice of moves in B0↓ using π.
If part of the play corresponds to a loop, then Adam makes

a request based on this, faithfully stating the global action
of this loop. Otherwise, Adam chooses the move exactly
corresponding to the move in π.

If Eve never challenges a request, then we know that the
output from the play is at most value n (since in general we
copy all of the actions faithfully, and any counter action from
a request is at most the value of the loop itself).

If Eve does challenge a request, then Adam can continue
faithfully playing according to π. Because he only makes
requests on actual (finite) loops in π, once the play en-
ters challenge mode, he will only make a finite number of
additional requests, and will eventually close the loop. If
a loop has actions c1c2 . . . ck, then (for distance actions)
changing the order of these actions does not affect the value,
so c1ckc2ck−1 . . . has the same value as c1c2 . . . ck, and the
global action from, say, c1ck is at most the actual value of
c1ck Hence, the value must still be bounded by n.

Lemma 36. If [[U ]](t, ζ) > n · 2n, then [[B0↓]](t, ζ) > n.

Proof: Assume [[U ]](t, ζ) > n · 2n.
We describe an n-winning strategy ζB0↓ for Eve in

G(B0↓, (t, ζ)). This strategy must specify when she should
challenge requests that Adam makes.

Assume the automaton is in normal mode and Adam makes
a (q, (p, c), q′) request at position x in t, when the value of
the current play in B0↓ is m. Let C (respectively, M ) denote
the minimum global action (respectively, actual value) over of
all loops consistent with ζ starting in q in x, ending in q′ in x,
and with maximum priority p (and let C = ⊥ and M =∞ if

there are no such loops). Define ζB0↓ such that Eve challenges
(q, (p, c), q′) if C > c, or M > 2n−m.

Likewise, assume the automaton is in challenge mode and
Adam makes a request req1 = (q, (p1, c1), q′′) and req2 =
(q′′, (p2, c2), q′) at position x in t when the value of the
current play in B0↓ is m. Let Ci (respectively, Mi) denote the
minimum global action (respectively, value) over of all loops
consistent with ζ and the starting and ending states in req i and
with maximum priority pi (let Ci = ⊥ and Mi = ∞ if there
are no such loops). Define ζB0↓ such that Eve challenges req i
if Ci > ci (if both C1 > c1 and C2 > c2, then we choose
arbitrarily that Eve challenges req1). Likewise, if Ci ≤ ci
for i ∈ {1, 2}, then Eve challenges req1 if M1 ≥ M2 and
challenges req2 otherwise.

We first prove the following claim.

Claim 37. Let π be a finite (partial) play consistent with ζB0↓

when the initial value is m ≤ n and is in position x in t. If
π starts in state (q, a, q′) at x, ends in state (r, (ε, ε), r) at x,
and has value at most n−m, then there is a play in A from q
at x to q′ at x with global action a and value at most 2n−m.

Proof of claim: We proceed by induction on the length
of π.

If the length is 1, then π = (q, (ε, ε), q), and the result
trivially holds.

If the length is greater than 1, then we must consider the
different cases depending on the first move.

• If the first move is from (A1) or (A2) and uses no incre-
ments, then the result follows by the inductive hypothesis.

• If the first move is from (A1) and uses an increment, then
we can have at most two actual increments (on the upper
and downward part). By induction, there is a 2n−m−1

play from the remaining part. Overall, this means there
is a play of value 2 + 2n−m−1 < 2n−m.

• If the first move is from (A2) and uses an increment,
then similar reasoning shows that the value is at most
1 + 2n−m−1 < 2n−m.

• If the first move is a request for (q, a1, q
′′) and (q′′, a2, q

′)
from (A3) and both a1 and a2 use ic, and (q, a1, q

′′) is
selected by Eve, then by the inductive hypothesis, there
is a (q, a1, q

′′) loop of value at most 2n−m−1. But by
construction of Eve’s strategy, this was only chosen if
this part had the higher value. Hence, there is also a
(q′′, a2, q

′) loop of value at most 2n−m−1. These can
be combined to form a (q, a, q′) play of value at most
2n−m.

• If the first move is a request for (q, a1, q
′′) and (q′′, a2, q1)

from (A3) with ic in a1 but not in a2, then it must
be (q, a1, q

′′) that is challenged. But that means we can
apply the inductive hypothesis to get a loop of value at
most 2n−m, joined together with a loop of value 0.

Consider a play in G(B0↓, (t, ζ)) consistent with ζB0↓ .
Suppose for the sake of contradiction that it has value at
most n.



Assume that it never enters challenge mode. Then there can
be at most n requests using ic. Since all of these request went
unchallenged, by construction of Eve’s strategy, this means
that each request can be expanded into a partial play of value
at most 2n−m (where m is the value of the play from ζB0↓

before the request). All of the other ε-requests can be expanded
into loops with no increments (otherwise, they would have
been challenged). Hence, we can expand this into a play in
G(U , (t, ζ)) of value at most

Σn−1
m=02n−m ≤ n · 2n.

This contradicts the fact that [[U ]](t, ζ) > n · 2n.
Now assume that the play enters challenge mode. Since

the play has finite value, it must reach (q, (ε, ε), q) (since
the priority output during the challenge mode is always odd).
Consider the suffix of this play during which the automaton
is in challenge mode; assume that the value of the prefix
leading up to this moment is m. By the claim, there is a loop
corresponding to the request that is consistent with ζ and of
value at most 2n−m. But this contradicts the fact that Eve only
challenges if every loop consistent with her strategy is greater
than 2n−m.

This completes the proof of Lemma 36.
Hence, with the help of the previous two lemmas, we have

shown the following lemma.

Lemma 38. We can construct a 2-way alternating automaton
B0↓ using directions {0, 1, . . . ,m} such that [[B0↓]] ≈ [[U ]]. The
size of [[B0↓]] is at most |A|f(m′) where m′ is the number of
states and priorities in A, and f is some polynomial function
independent of A. The number of states in B0↓ is polynomial
in m′ and the number priorities and counters is the same as
in A.

Observe that the constructed automata still uses stationary
moves. These can be eliminated to yield the desired 1-way
alternating dist ∧ parity automaton B.

Lemma 39. We can construct a 1-way alternating
dist ∧ parity automaton B using directions {1, . . . ,m} such
that [[B0↓]] ≈ [[B]]. The size of [[B0↓]] is at most |A|f(m′) where
m′ is the number of states and priorities in A, and f is some
polynomial function independent of A. The number of states in
B is polynomial in m′ and the number priorities and counters
is the same as in A.

Proof sketch: For each state q, letter a, and goal set
G of downward moves, we consider a local game G(q, a,G)
describing the stationary moves that are possible before mov-
ing downwards. Downward moves are terminal positions in
the game: they are winning if they are in the goal set G,
and losing otherwise. This is a dist ∧ parity game. It can be
shown that it is decidable whether Eve wins such a game. The
idea is to transform this dist ∧ parity game into a game with
an ω-regular winning condition. The Rabin winning condition
expresses
• the parity condition is not satisfied or
• the counter is incremented infinitely often.

This can be done using l+1 Rabin pairs, where l is the number
of priorities in B0↓. We emphasize that the counter actions are
now evaluated according to this ω-regular condition, so the
resulting game is no longer a cost game, it is a finite Rabin
game which can be solved using [26].

We can construct and solve all of these finite Rabin games in
time |B0↓|f

′(l) where f ′ is a polynomial function independent
of B0↓ and l is the number of priorities used by B0↓.

The desired 1-way automaton B has the same input alpha-
bet, set of states, set of counters, and initial state as B0↓. For
a state q and input letter a, its transition function is defined
as follows: Eve chooses a goal set G such that she wins in
G(q, a,G); then Adam chooses any transition (d, c, q′) ∈ G
and performs it. Hence, we can ensure that the size and time
complexity of constructing this B is at most |A|f(m′) where
m′ is the number of states and priorities of A.

This completes the proof of Lemma 15.

D. Proof sketch of special case of Lemma 16 (Alternating to
nondeterministic automata)

We provide more details for one case of Lemma 16. Essen-
tially, it is the construction in [21, Section 4.3.2], however, we
use slightly different notation here, and emphasize where we
are using the results about cost automata on words that impact
the complexity.

Let B be a 1-way dist ∧ parity automaton B. If
B uses only priorities {0, 1}, then there is a 1-
way nondeterministic S ∧ parity automaton S of
elementary size such that [[S]] ≈ [[B]]. Moreover,
assuming (EXP-Dual-Finite), S has at most |B|f(m)

states, m counters, and priorities {1, 2} where m is
the number of states of B and f is a polynomial
function independent of B.

Fix some n-winning strategy ζ for Eve in G(B, t). We can
view this strategy as a finitely branching strategy tree, where
each branch corresponds to a different play that is possible
using this strategy.

We can “slice” this tree into infinitely many sections, where
each slice must witness priority 1, or the partial play leading
to the slice must have witnessed value n from the counters.
Indeed, if this were not possible, then König’s lemma would
imply that there is a play consistent with ζ with only finitely
many 1 and counter value less than n, contradicting the fact
that the strategy is n-winning. Formally, the slices are an
infinite set of strictly increasing frontiers of the strategy tree.
These slices are sometimes referred to as “breakpoints”.

We now consider t annotated with a positional strategy ζ
and a set E of infinitely many slices, denoted (t, ζ, E).

Let u be a finite word describing the annotations along a
prefix of a given branch in (t, ζ, E). There is a nondetermin-
istic B-automaton on finite words that guesses a partial play
described by u, and assigns value ∞ if there is priority 1
in every slice, and otherwise outputs the counter value up
to and including the first slice that does not have priority
1. Hence, by (Dual-Finite) (respectively, (EXP-Dual-Finite))
there is an equivalent history-deterministic S-automaton H



of elementary size (respectively, exponential size, with only
m = |QB| counters).

For an infinite word w describing the annotations along a
given branch in (t, ζ, E), the value of the plays described by
w is equal to the supremum of the values assigned by [[H]] on
each of the finite prefixes u of w. Hence, by viewing H as an
S ∧ parity automaton (with accepting states assigned priority
2, and everything else assigned priority 1), H is an S∧ parity
automaton using priorities {1, 2} computing the value of the
plays on w.

Overall, the desired S ∧ parity automaton S in Lemma 16
operates as follows: on input t, (i) Eve selects a positional
strategy ζ in G(B, t), (ii) Eve guesses a set E of infinitely many
slices, and (iii) H is simulated on every branch of (t, ζ, E).

APPENDIX D
MISSING PROOFS FROM SECTION VI

A. Proof of Theorem 20 (lower bounds for boundedness)

Recall the statement:

Boundedness is 2EXPTIME-hard for answer-guarded GF
and also for Monadic Datalog (hence for GN-Datalog). It
is EXPTIME-hard for fixed-width answer-guarded GF without
equality.

The 2EXPTIME lower bound for boundedness of
answer-guarded GF follows from the 2EXPTIME lower
bound for satisfiability of GF sentences (similarly for the
EXPTIME lower bound for fixed width GF) [30]. This general
technique is described in [5, Observation 8.2]. Let ψ(x,X)
be an answer-guarded GF formula that is unbounded, such as
ψ(x,X) := Sx ∨ ∃y.(Rxy ∧Xy) where R is a fresh binary
relation and S is a fresh unary relation. Then we claim that a
GF sentence φ is unsatisfiable iff ψ(x,X)U

′ ∧φU is bounded,
where χU is the result of relativizing the quantification in χ
to some fresh unary predicate U . If φ is unsatisfiable then
ψ(x,X)U

′ ∧ φU is unsatisfiable, so the closure ordinal of
ψ(x,X)U

′ ∧ φU is trivially 0, and the formula is bounded.
If φ is satisfiable, then ψ(x,X)U

′ ∧ φU is unbounded due to
the ψ(x,X)U

′
conjunct.

A 2EXPTIME lower bound for boundedness of GN-Datalog
can be done via a similar reduction from satisfiability. For the
lower bound for GN-Datalog, observe that any GNF sentence
φ in weak GN-normal form can be expressed as a GN-datalog
program Π = 〈Π1, . . . ,Πj〉 with some 0-ary IDB predicate
Zφ in Πj such that A |= φ iff Π∞(A) |= Zφ. The size
of the program is polynomial in the size of φ, and uses
the stratified negation to get the arbitrary nesting of UCQ-
shaped subformulas in φ. Let Zφ be the 0-ary IDB in Πj ,
corresponding to φ itself. Let S,R be fresh EDB predicates,
and let Y be a fresh IDB predicate. Then φ is unsatisfiable
iff Π′ = 〈Π1, . . . ,Πj ,Πj+1〉 is unbounded, where Πj+1 has
rules

Y y ←
(
(Sy ∧ Zφ)

)
and Y y ←

(
(Y x ∧Rxy)

)
.

Hence, the 2EXPTIME lower bounded for boundedness of GN-
Datalog follows from the 2EXPTIME lower bound for GNF
satisfiability (see Theorem 2).

To show that boundedness is hard for Monadic Datalog,
we need a new idea, since satisfiability of Monadic Datalog
is trivial due to the absence of negation. We use a reduction
from the containment problem instead:

Claim 40. There is a many-one reduction from the problem
of containment of a Datalog query in a union of conjunc-
tive queries to the Boundedness problem for Datalog, with
the redution taking containment problems involving boolean
Monadic Datalog to Monadic Datalog boundedness problems.

Proof: Given boolean Datalog query QD with goal predi-
cate GoalD(), and boolean UCQ QU over schema S, consider
a schema which adds to the extensional predicates of S an



additional binary relation R and an additional unary relation
U .

Consider the Datalog program with goal predicate Goal(y)
formed by adding to the rules of QD the following rules:

Goal(y)← Goal(x) ∧R(x, y)

Goal(y)← GoalD() ∧ U(y)

Goal(y)← QU () ∧R(z, y)

Goal(y)← QU () ∧R(y, z)

Goal(y)← QU () ∧ U(y)

Here QU () abbreviates rules that would capture QU in
Datalog.

The last three rules guarantee that when QU holds, every
element that is in the domain of R or U is returned. Since the
first two rules only return elements in the domain of U or of
R, this means that whenever QU holds, exactly the elements
in the domain of U or R are returned.

Suppose QD is contained in QU . Then by the above, we
have that the query is exactly the result of the last three rules,
which is bounded.

Suppose QD is not contained in QU , with instance I for
schema S having QD holding QU failing.

Then considering all expansions of I to have R and U , we
see that the Datalog program is equivalent to the one in the
first two rules, which is easily seen to be unbounded.

Combining the reduction above with the 2EXPTIME lower
bound for Monadic Datalog containment in UCQs from [27]
we obtain:

Corollary 41. Boundedness for Monadic Datalog is
2EXPTIME-hard.


