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Abstract

Cost automata are traditional finite state automata enriched with a finite set of
counters that can be manipulated on each transition. Based on the evolution of
counter values, a cost automaton defines a function from the set of structures under
consideration to N∪{∞}, modulo an equivalence relation ≈ that ignores exact values
but preserves boundedness properties.

Historically, variants of cost automata have been used to solve problems in lan-
guage theory such as the star height problem. They also have a rich theory in their
own right as part of the theory of regular cost functions, which was introduced by
Colcombet as an extension to the theory of regular languages. It subsumes the clas-
sical theory since a language can be associated with the function that maps every
structure in the language to 0 and everything else to ∞; it is a strict extension since
cost functions can count some behaviour within the input.

Regular cost functions have been previously studied over finite words and trees.
This thesis extends the theory to infinite trees, where classical parity automata are
enriched with a finite set of counters. Weak cost automata, which have priorities {0, 1}
or {1, 2} and an additional restriction on the structure of the transition function, are
shown to be equivalent to a weak cost monadic logic. A new notion of quasi-weak cost
automata is also studied and shown to arise naturally in this cost setting. Moreover,
a decision procedure is given to determine whether or not functions definable using
weak or quasi-weak cost automata are equivalent up to ≈, which also proves the
decidability of the weak cost monadic logic over infinite trees.

The semantics of these cost automata over infinite trees are defined in terms
of cost-parity games which are two-player infinite games where one player seeks to
minimize the counter values and satisfy the parity condition, and the other player
seeks to maximize the counter values or sabotage the parity condition. The main
contributions and key technical results involve proving that certain cost-parity games
admit positional or finite-memory strategies.

These results also help settle the decidability of some special cases of long-standing
open problems in the classical theory. In particular, it is shown that it is decidable
whether a regular language of infinite trees is recognizable using a nondeterministic
co-Büchi automaton. Likewise, given a Büchi or co-Büchi automaton as input, it is
decidable whether or not there is a weak automaton recognizing the same language.
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Chapter 1

Introduction

Cost automata are an extension of finite state machines with a finite set of counters.
These counters are initialized to value 0 and then take on values from the natural
numbers N based on counter operations (such as increment or reset) on each tran-
sition. The counters cannot be used to affect control flow, so there is no test that
can be used to determine the next state based on the counter value.1 Instead, the
counters are used as a way to assign values to runs and input structures. Just as a
traditional automaton defines a language based on the structures that are accepted
by it, a cost automaton defines a function from the set of input structures to N∪{∞},
based on the evolution of the counter values during accepting runs.

Historically, variants of cost automata have been used to answer challenging ques-
tions from language theory such as the star height problem. They also have a rich
theory in their own right as part of the theory of regular cost functions introduced
by Colcombet [Col09c].

In this chapter, we briefly review some motivating examples from language theory,
and describe how cost automata fit into the theory of regular cost functions. We then
outline the main contributions of this thesis.

1.1 Motivation from language theory
Consider the following question from language theory, known as the finite power
property:

Given a regular language L of finite words, is there n ∈ N such that
L∗ = (L+ ε)n?

1It is important to note that cost automata are not like counter automata in the sense of Min-
sky [Min67], which allow a zero-test and in the one counter case are really a form of pushdown
automaton.
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Chapter 1 · Introduction

The question is whether the concatenation of any finite sequence of words in L can
actually be represented by some bounded iteration of words in L. This problem
was raised by Brzozowski in 1966 and solved independently by Simon [Sim78] and
Hashiguchi [Has79].

Let us consider a technique that uses automata with counters to decide whether or
not L satisfies the finite power property. Since L is regular, we can start by looking at
the finite state automaton A with L = L(A). Recall that the language L(A) accepted
by A is defined as the set of words u for which there is a run of A on u starting in the
initial state and ending in a final state. By adding new ε transitions from any final
state to the initial state, we get an automaton A′ that recognizes L∗. In fact, we can
describe the finite power property in terms of runs of A′: the finite power property is
satisfied if and only if there is some bound n such that for all u ∈ L∗, there is a run
of the automaton that takes the new ε edges at most n times.

We want to capture the fact that these new edges are costly, whereas the original
edges can be taken for free. One way to do this is to endow the automaton with a
counter that is initialized to value 0 and incremented each time these new costly edges
are taken and left unchanged when the original transitions from A are used. A cost
automaton with one counter that can be incremented or left unchanged, as in this ex-
ample, is known as a distance automaton, a model introduced by Hashiguchi [Has82].
The cost of a run of this distance automaton is the highest value the counter achieves,
and the cost of a word is the minimum value over all accepting runs. This means
that A′ not only recognizes the language L∗, but also defines a function that maps
every word u ∈ L∗ to the minimum number of times the new edges are taken in
an accepting run on u. We can rephrase the problem in terms of this function: the
language L satisfies the finite power property if and only if there exists n ∈ N such
that for all words u ∈ L(A′) the function defined by A′ has value at most n on u. A
function like this which is bounded over all accepted words is said to be limited.

Formally, the limitedness problem for a class C of automata with counters, such
as the distance automata described above, asks:

Given an automaton A with counting features that is in the class C , is
there n ∈ N such that every word accepted by the automaton has an
accepting run of value at most n? In other words, is the function defined
by the automaton bounded over its domain (of accepted words)?

Returning to the example, we see that the construction described above is a reduction
of the decidability of the finite power property to the decidability of the limitedness

2



1.1 · Motivation from language theory

problem for distance automata. Hashiguchi proved that the limitedness problem is
decidable for the class of distance automata [Has82], so this implies the decidability
of the finite power property.

A number of questions emerged that could be reduced to the limitedness of func-
tions defined by automata with counters in a similar way as the finite power property.
Historically, the most famous problem like this is the star height problem which was
introduced by Eggan [Egg63]:

Given a regular language L of finite words and n ∈ N, is there a regular
expression for L using concatenation, union, and Kleene star (∗) operators
with at most n nestings of Kleene stars?

For instance, the star height of the regular expression (b + aa∗b)∗aa∗ is 2. However,
it turns out that the star height of this language is 1, since it can be defined by a
simpler expression, namely (a+ b)∗a.

Hashiguchi [Has88] gave a reduction of the star height problem to the limitedness
of distance automata, providing the first decidability proof for this problem. Unfor-
tunately, this reduction was complicated and the algorithm was of non-elementary
complexity.

More recently, Kirsten [Kir05] provided an alternative proof by reducing the star
height problem to a more powerful automaton model called nested distance desert au-
tomata. Kirsten proved that the limitedness problem for this class of automata is also
decidable (in fact, PSPACE-complete). This proof showed that the star height prob-
lem is in 22O(m) space, where m is the number of states in the given nondeterministic
automaton recognizing L.

The nested distance desert automata that Kirsten introduced can be viewed as
cost automata with a set of ordered counters that can be incremented, reset, or left
unchanged on each transition, but with an additional nesting condition based on the
counter ordering: if some counter is incremented or reset then all lower counters in
the ordering must be reset and all higher counters must be left unchanged. We now
describe informally the construction for star height 0 and 1, and how these multiple
counters and resets are used.

Let L be a regular language given by a finite state automaton. The construction
starts by converting this automaton into a special canonical form called the universal
automaton for L. This transformation is effective but may result in an increase in
the size of the automaton. Let A be this universal automaton for L.

3



Chapter 1 · Introduction

The language L is of star height 0 if and only if it is finite. This means that any
accepting path through the graph of A has to be bounded by the number of states
(i.e. there are no loops), so we simply add a single counter to A, and increment this
counter on each transition. This new automaton A0 is limited if and only if L has
star height 0.

A language L of star height 1 can always be written as a finite union of languages
of the form a1K

∗
1 · · · ajK∗j aj+1, where each ai is an individual letter and each Ki is

a language of star height 0 (see [Kir05]). This means that an automaton A for L
may have loops corresponding to the iteration of some Ki. The new automaton A1

uses multiple copies of A. The idea is that A1 simulates A, but uses copies of the
automaton during loops. Within each copy, every transition increments counter 1,
in order to ensure that this copy (if it is limited) can only define a language of star
height 0. Entering and exiting these copies must happen on the same state, and
results in a reset of counter 1. This represents the fact that iterating languages of
star height 0 is allowed in a language of star height 1. Edges in the master copy
increment counter 2 and can never be reset. This represents the fact that each
a1K

∗
1 · · · ajK∗j aj+1 can contain only a finite concatenation of star height 0 languages.

Based on this construction, it turns out that A1 is limited if and only if L has star
height at most 1. Testing for larger star heights requires additional nested counters,
but works in a similar way.

We have already seen two problems (the finite power property and the star height
problem) that can be reduced to questions of limitedness for cost automata. Problems
like this are not restricted to language theory: there are applications of automata with
counters in areas such as speech recognition [Moh97], database theory [BPR11], and
verification [AKY08], but we do not focus on these applications in this thesis.

These problems are also not restricted to languages of finite words. Colcombet and
Löding showed the star height problem is decidable for regular languages of finite trees
by reduction to a question of boundedness for functions defined by tree automata with
counters [CL08a]. One of the motivating examples for this thesis is a question about
regular languages of infinite trees. Regular languages of infinite trees are recognizable
by nondeterministic parity automata. The parity acceptance condition is commonly
given by a mapping from states to a set of priorities {i, i+ 1, . . . , j}, and a run is
accepting if the maximum priority occurring infinitely often on each branch in the
run is even. The parity index is the range of priorities used by the automaton, and
provides a measure of how complicated the language is (in a similar way as the star
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1.2 · Theory of regular cost functions

height provides a measure of complexity for languages of finite structures). The
nondeterministic parity index problem for regular languages of infinite trees asks:

Given a regular language L of infinite trees and i ≤ j, is there a non-
deterministic parity automaton using only priorities {i, i+ 1, . . . , j} that
recognizes L?

In [CL08b], Colcombet and Löding provided a reduction of the parity index problem
to a question of boundedness for cost-parity automata on infinite trees (tree automata
that combine the parity acceptance condition with the counting features of cost au-
tomata). However, they were unable to show that limitedness was decidable for this
entire class of cost automata over infinite trees, so the decidability of the parity index
problem remained open. This open problem provides one motivation for the study of
cost automata over infinite trees pursued in this thesis.

1.2 Theory of regular cost functions
The problems mentioned in the previous section inspired many lines of research over
the past few decades, particularly on algebraic and topological techniques to reason
about automata with counters (or more general weighted automata, see Section 2.4).
Building on this work, Colcombet [Col09c] showed that a theory could be developed
around the functions defined by cost automata that subsumes the theory of regular
languages.

This classical theory of regular languages and finite state automata without coun-
ters dates back to early work by Kleene [Kle56] and Rabin and Scott [RS59]. Regular
languages are fundamental in computer science because they are a robust class of lan-
guages that enjoys strong closure properties and multiple representations using finite
state automata, regular expressions, logic, and algebra. Regular languages also ben-
efit from good decidability properties, namely the decidability of language inclusion
and language emptiness.

Instead of recognizing a language like a traditional automaton, a cost automaton
defines a function based on the evolution of the counters during accepting runs. What
is a natural (and useful) decision procedure for these functions, in analogy to deciding
language inclusion or language emptiness for traditional automata? One possibility
would be to assert that a function f defined by a cost automaton evaluates to a
particular value n ∈ N for all inputs u in some domain D of structures (f(u) = n

for all u ∈ D). This is immediately decidable for a large class of structures because
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Chapter 1 · Introduction

Input structures D

0
1
2

...

∞

h

g
f

Figure 1.1. Functions such that f ≈ g but f, g 6≈ h.

we could encode this fixed bound in the state of a traditional automaton without
counters, but it is not very interesting. Given two functions f and g, it would be
more interesting to assert f(u) = g(u), or f(u) ≤ g(u), across all inputs u ∈ D . A
result due to Krob [Kro94], however, implies that this is undecidable.

In order to recover decidability, Colcombet introduced the domination preorder
(written 4) and the boundedness relation (written ≈) [Col09c]. These relations are
weaker than ≤ and =, but retain information about boundedness which is useful for
solving the sort of problems discussed in the previous section. These relations are
defined over some domain D of input structures (usually labelled words or trees). We
say a function f : D N∪{∞} is bounded on some set U ⊆ D if there is some n ∈ N
such that f(u) ≤ n for all u ∈ U . Given f, g : D N ∪ {∞},

f 4 g if for all U ⊆ D , if g is bounded on U then f is bounded on U.

Likewise, f ≈ g if f 4 g and g 4 f . In other words,

f ≈ g if for all U ⊆ D , f is bounded on U if and only if g is bounded on U.

This means that f and g satisfying f ≈ g may not agree on exact values but do
agree on boundedness properties across all subsets of the domain of input structures.
This makes these relations perfectly suited for attacking problems of boundedness
like those described in the previous section.

Consider the functions in Figure 1.1 (we assume the domain D of input structures
is infinite and the functions continue in the expected way). On any subset U ⊆ D for
which h is bounded (i.e. any finite set of input structures), f and g are also bounded.
This means that f 4 h and g 4 h. However, the infinite set of structures that has
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1.2 · Theory of regular cost functions

output of value 0 on both f and g, has unbounded output value via h, so h 64 f and
h 64 g. On the other hand, f ≈ g. This is true even though they do not agree on
the exact values across all inputs and there are some inputs u with f(u) < g(u) and
some with g(u) < f(u). From the perspective of boundedness properties, f and g are
indistinguishable.

A cost function is defined as an equivalence class of functions under ≈, but we
blur the distinction between a particular function and its equivalence class. By only
considering functions up to ≈ (i.e. always viewing functions as cost functions), Col-
combet was able to develop a rich theory that parallels the theory of regular languages.
In particular, Colcombet [Col09c] showed that a class of regular cost functions over
finite words can be equivalently defined (up to ≈) in terms of cost automata, a
logic (known as cost monadic second-order logic), an extension of regular expres-
sions (known as BS-regular expressions), and an algebraic notion (called stabilization
monoids). Moreover, given two regular cost functions f, g over finite words, it is
decidable whether or not f 4 g [Col09c] (although this result actually follows from
earlier work in [BC06], see Section 2.4). Since functions rather than languages are
the central objects, it is called the theory of regular cost functions [Col09c].

This theory of regular cost functions subsumes the classical theory of regular
languages because a language L can be associated with its characteristic function χL
that maps every word in the language to 0 and every word outside of the language
to ∞. The classical problem of testing language inclusion K ⊆ L is equivalent to
testing χL 4 χK . It is a strict extension of the classical theory since regular cost
functions can count some behaviour within the input structures. Indeed, it subsumes
the results of Hashiguchi, Kirsten, and others regarding the decidability of limitedness
for distance automata and nested distance desert automata since these automata
models are special cases of cost automata, and deciding limitedness is a special case
of deciding 4 (see Remark 2.2).

This rich theory has been the subject of a number of papers [Col09c, Col09a,
CKL10, Kup11] and is explained in more detail in the next chapter. The theory has
also been extended to finite trees [CL10]. This thesis can be viewed as an extension
of this theory to infinite trees.

In terms of automata, one of the key ideas in the theory is the use of two dual
forms of cost automata called B-automata and S-automata. These dual B and S

forms were already present in a slightly different form in earlier work due to Bojańczyk
and Colcombet [BC06] (see Section 2.4). Roughly speaking, B-automata are designed
to witness boundedness whereas S-automata are designed to witness unboundedness.

7
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Switching between these two dual forms in the cost setting corresponds to finding an
automaton for the complement language in the classical setting (see Example 2.3).
A crucial and non-trivial result in the theory over finite words is that regular cost
functions can be recognized by both B-automata and S-automata [Col09a, BC06].
Proving a similar result over infinite trees is one of the major problems tackled by
this thesis, and one to which we are only able to give a partial solution.

1.3 Contributions and document structure
This thesis extends the theory of regular cost functions to infinite trees, particularly in
relation to various weak forms of cost automata. Although the results have analogies
in well-understood classical results, many of the extensions to the cost setting are
non-trivial. We use the results to prove the decidability of special cases of challenging
problems in language theory. The thesis is structured as follows.

Preliminaries

Chapter 2 provides additional background material on the theory of regular cost
functions over finite words and finite trees. The goal is to provide definitions and
examples. In particular, we provide examples of the two types of cost automata (the
B and S form) and state the important result that every regular cost function over
finite words or trees can be recognized by both a nondeterministic B-automaton and
a nondeterministic S-automaton.

We then adapt this framework to infinite words and trees in Chapter 3. In place
of classical acceptance and winning conditions, we use objectives that describe how
to assign values based on both the counters and a classical condition (such as a Büchi
condition or parity condition). We write, for instance, B-parity automata, for cost
automata that combine the parity acceptance condition with the counting features
of B-automata. We then describe the semantics of alternating cost-parity automata
over infinite trees in terms of an infinite duration cost game where one player seeks to
minimize the value and the other player seeks to maximize the value according to the
objective. We also prove some basic results about cost-parity automata over infinite
trees. For instance, we show that it is straightforward to convert alternating B-parity
to alternating S-parity automata, and vice versa (just as it is easy to complement
alternating automata in the classical setting).

Most of the definitions and results in this chapter are straightforward extensions
of [CL10] and were presented in [VB11].
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1.3 · Contributions and document structure

Strategies in cost-parity games

Chapter 4 is the technical core of the thesis. By adapting a result from [CL10], we
show that for cost functions f and g over infinite trees, f 4 g is decidable when
f is given by a nondeterministic S-parity automaton and g is given by a nonde-
terministic B-parity automaton. This decidability result establishes the goal of the
remaining work: given any alternating cost-parity automaton, construct a nondeter-
ministic B-parity automaton and nondeterministic S-parity automaton recognizing
the same function (up to ≈). Being able to do this for all cost-parity automata would
mean that 4 is decidable for all regular cost functions over infinite trees. In this the-
sis, however, we are able to accomplish this goal for a restricted class of cost-parity
automata.

We start by looking more closely at the strategies required in cost-parity games.
We show that simple strategies that use only finite memory are sufficient in certain
cost-parity games with only two priorities. Even in these cases, finite memory strate-
gies cannot always guarantee the optimal value in the game. Instead, we prove that
we can bound the value when the player is restricted to finite memory strategies as
a function of the number of counters and the value when arbitrary strategies are al-
lowed. The proofs utilize a number of techniques including transformation between
objectives (which parallels the transformation between winning conditions known
from the literature, e.g. [GH82]) and a slicing technique (related to the breakpoint
construction in [MH84]).

These memory results are used to show that alternating B-Büchi (respectively,
S-Büchi) automata can be simulated by nondeterministic B-Büchi (respectively, S-
Büchi) automata, generalizing the classical result due to Muller and Schupp [MS95]
that alternating Büchi automata can be simulated by nondeterministic Büchi au-
tomata. The idea is that the nondeterministic automaton guesses a finite memory
strategy based on the alternating automaton and then computes its value.

This chapter is a more complete presentation of work first described in [VB11].

Weak and quasi-weak cost automata

Chapters 5 and 6 describe weak and quasi-weak cost automata, two classes of cost
automata over infinite trees for which 4 is decidable. These cost-parity automata over
infinite trees use only two priorities and have certain restrictions on the structure of
the transition function that make these automata weaker than arbitrary alternating
cost-parity automata.

9
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Weak cost automata are similar to classical weak automata: there is a fixed
bound across all runs on the number of alternations between accepting and reject-
ing states/priorities. On the other hand, quasi-weak cost automata (introduced by
Kuperberg and the author in [KVB11]) exhibit a variant of weakness that is new to
the cost setting: the number of alternations is bounded based on the counter values,
which can vary across runs. In both cases, the simulation result from Chapter 4 can
be used to show that weak and quasi-weak cost automata can be converted to both
nondeterministic B-Büchi and S-Büchi automata, so 4 is decidable.

We also show links to other formalisms. Going back to the work of Büchi [Büc60],
automata were used to show the decidability of logics. We study an extension of weak
monadic second-order logic (WMSO) with a predicate |X| ≤ N that can assert that
the cardinality of X (where X is some second-order variable) is at most N . Sentences
in this logic, called cost WMSO, define cost functions. We show that cost WMSO
and weak cost automata define the same class of cost functions, and this equivalence
is effective. This implies a decision procedure for this cost WMSO logic. Chapter 5
focuses on this result, which was first published in [VB11].

Rabin [Rab70] famously showed that weakly definable languages (languages de-
finable in WMSO or recognizable by weak automata) could be characterized by de-
finability of the language and its complement with Büchi automata. We show that it
is the larger class of quasi-weak cost automata that admits a Rabin-style characteri-
zation: a cost function is recognizable by a quasi-weak cost automaton if and only if
the function is recognizable by both a B-Büchi and S-Büchi automaton. This marks
an interesting divergence from the classical theory. Constructing a quasi-weak au-
tomaton from nondeterministic B-Büchi and S-Büchi automata requires significant
technical work, inspired by the construction due to Kupferman and Vardi [KV99].
This construction is given in Chapter 6 and is based on joint work with Kuperberg
published in [KVB11].

Application to the parity index problem

In Chapter 7, we use the results about cost functions over infinite trees developed in
this thesis in order to solve special cases of two challenging problems about regular
languages of infinite trees.

First, we show that the results from Chapter 4 and [VB11] (combined with re-
sults due to Colcombet and Löding [CL08b]) prove that the nondeterministic parity
index problem is decidable for the [0, 1] or co-Büchi level: given an arbitrary parity
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automaton, we can decide whether there is a nondeterministic co-Büchi automaton
defining the same language.

We also show the decidability of a special case of the weak definability problem:
given an (alternating) Büchi or co-Büchi automaton, we can decide whether or not
there is a weak automaton recognizing the same language. We show that this result
follows from the Rabin-style characterization in Chapter 6, but we also give an al-
ternative construction that gives more intuition into why quasi-weak automata are
needed. This application to the weak definability problem is based on joint work with
Kuperberg [KVB11].

In Chapter 8, we conclude with open questions and further research directions
based on the work in this thesis.
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Chapter 2

Theory of Regular Cost Functions

The theory of regular cost functions is a robust quantitative extension to the the-
ory of regular languages. In Sections 2.1 to 2.3, we review the technical background
necessary for understanding cost automata and the larger theory of regular cost func-
tions over finite words and finite trees. We primarily follow the presentation from
Colcombet and Löding [Col09a, CL10], which is the starting point for our work over
infinite trees later in this thesis. We also describe in Section 2.4 some related work
that influenced the theory of regular cost functions.

In order to understand this new theory, it is helpful to remember connections with
classical results. For instance, determinization and complementation are fundamental
in the theory of regular languages. Unlike the classical setting, cost automata cannot
always be determinized. Instead, cost automata over words can be made history
deterministic, a form of nondeterminism with some deterministic-like properties. In
place of closure under complementation, there is a duality theorem that allows a
switch between dual B and S forms of a cost automaton. We provide a series of
examples of these dual forms and history deterministic cost automata in Section 2.2.
We also summarize other closure and decidability properties of these automata over
finite words in Section 2.2 and finite trees in Section 2.3.

Notation and Conventions

Let N be the set of non-negative integers. For i ≤ j, we write [i, j] to denote the
finite interval {i, i+ 1, . . . , j} of N. We write N∞ to denote N ∪ {∞}, ordered such
that 0 < 1 < · · · <∞. We let inf ∅ =∞ and sup ∅ = 0 (the usual convention).

An alphabet A is a finite set of symbols (each symbol is called a letter). The set
of finite (respectively, infinite) words over A is denoted A∗ (respectively, Aω). The
empty word is denoted ε, and A+ is A∗ \ {ε}. If u ∈ A∗ ∪ Aω, then u(i) denotes the
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Chapter 2 · Theory of Regular Cost Functions

ith letter of u. We write |u| for the length of u (∞ if u ∈ Aω). If a ∈ A, |u|a ∈ N∞
denotes the cardinality of {i : u(i) = a}, i.e. the number of a-labelled positions in u.
We write | · | and | · |a to denote the functions that map finite or infinite words u to
|u| and |u|a, respectively.

Given a set S, we write P(S) for the powerset of S, the set of all subsets of S.
Likewise, we write B+(S) for the set of formulas that are positive boolean combina-
tions of elements from S (formulas constructed by combining elements from S using
conjunction and disjunction, but not negation). Given a formula ϕ, we write ϕ[s′/s]
for the result of replacing every occurrence of s with s′.

2.1 Boundedness relation and domination preorder
Functions rather than languages are the central components in the theory of regular
cost functions. Given a domain D of structures (e.g. the set of words or trees over a
fixed finite alphabet A) we seek to analyse functions f from D to N∞.

Let f, g : D N∞. Given a set U ⊆ D , we write f(U) = {f(u) : u ∈ U}. We say
f(U) is bounded if there exists n ∈ N such that sup f(U) ≤ n. We say g dominates f
(written f 4 g) if and only if for all U ⊆ D , if g(U) is bounded then f(U) is bounded.
We write f ≈ g if and only if f 4 g and g 4 f .

If we want to be more precise about the relationship between f and g, we can
annotate 4 and ≈ with a correction function α : N N, a non-decreasing function
that satisfies α(n) ≥ n for all n. We write f 4α g if f(u) ≤ α(g(u)) for all u ∈ D

(with the convention that α(∞) =∞). Thus, α describes how much we may need to
“stretch” g such that it dominates f . Note that f 4 g if and only if there is some
correction function α such that f 4α g. To compare single values m,n ∈ N, we also
write m 4α n if m ≤ α(n). Finally, we write f ≈α g if f 4α g and g 4α f .

For the identity correction function id(n) = n for all n ∈ N, 4id and ≈id coincide
with the relations ≤ and =, respectively. In general, 4α and ≈α are weakened versions
of ≤ and = that ignore exact values of f and g, but preserve boundedness properties.

Example 2.1. Let D = {a, b}∗ be the set of {a, b}-labelled words. Then | · |a ≈α 2| · |a
for α(n) = 2n, but | · |a 6≈ | · |b and | · |a 6≈ | · | (consider the set U = {bn : n ∈ N} that
is bounded on | · |a but unbounded on | · |b and | · |).

However, | · | ≈α max(| · |b,max-sega) for α(n) = (n+ 1)2 where max-sega(u) is the
maximum length of a segment of consecutive a’s in u. One direction is immediate:
max(| · |b,max-sega) ≤ | · |. We also have | · | 4α max(| · |b,max-sega): assuming that
max(| · |b,max-sega) is bounded by some n on some set U of words, the longest word
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that could be in U is of the form (anb)nan, which has length n(n+ 1) + n < (n+ 1)2,
so | · | is bounded by α(n) on U .

We refer the reader back to Figure 1.1 for additional examples.

With these relations, we can formally define a cost function F to be an equivalence
class of ≈, but we will blur the distinction between a particular function f : D N∞
and its equivalence class F . Unless otherwise stated, equivalence of functions in this
thesis is always up to ≈.

Remark 2.2. The classical language inclusion problem and the limitedness problem
are special cases of deciding the domination preorder.

• We can identify a language L ⊆ D with its characteristic function χL that maps
u ∈ L to 0 and u /∈ L to ∞. Then K ⊆ L if and only if χL 4 χK .

• Given a cost function f , the limitedness problem for f is equivalent to f 4 f ′

where f ′(u) is 0 if f(u) < ∞ and ∞ otherwise. A related problem called
boundedness or uniform universality asks whether f is bounded across all inputs;
this is equivalent to f 4 0 where 0 is a constant function mapping all inputs
to 0.

2.2 Cost automata on finite words
We use cost automata to recognize cost functions. A nondeterministic cost automaton
A over finite words is a tuple

〈Q,A, q0,Γ, F,∆〉

where Q is a finite set of states, A is a finite alphabet, q0 ∈ Q is the initial state, Γ is a
finite set of counters, F ⊆ Q is a set of accepting states, and ∆ : Q×A× (C∗)Γ×Q is
the transition function where C := {i, r, c} is the alphabet of atomic counter actions.

Each counter is initially assigned value 0, but can take on any value from N based
on the sequence of counter actions from C on each transition. The counters can be
incremented i, reset r to 0, checked c, or left unchanged ε.1 We care about the
value of the counter at the moment(s) when it is checked. Given a word w over the
alphabet C describing the actions on some counter γ ∈ Γ, we define a set C(w) ⊆ N
that collects all of the checked values of γ. For instance, C(iriiicriic) = {2, 3}

1Although ε is usually used to denote the empty word, we use ε to denote the special empty word
of counter actions.
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since the first time the counter is checked it has value 3 and the second time it has
value 2. In the case of a finite set of counters Γ and a word w over the alphabet (C∗)Γ,
C(w) := ⋃

γ∈Γ C(prγ(w)) (where prγ(w) is the γ-projection of w). Notice that we do
not care about when these checked values appear, how many times they appear, or
which counter or counters they come from.

A run ρ of a cost automaton on an input word u = a1 · · · an ∈ A∗ is a sequence of
transitions ρ = (q0, a1, c1, q1) · · · (qn−1, an, cn, qn) ∈ ∆∗. The run is accepting if qn ∈ F .
The output out(ρ) is the sequence of counter actions c1 · · · cn.

Like a classical automaton, we say that A recognizes the language L(A) where

L(A) := {u ∈ A∗ : there is an accepting run of A on u} .

However, there are also two dual semantics, B and S, that are used to assign values.2

Given a sequence of counter actions w ∈ (C∗)Γ, the B-value is the maximum checked
value of any counter, whereas the S-value is the minimum checked value:

valueB(w) := supC(w) and valueS(w) := inf C(w).

The value of a run ρ is the value of the output, so we have valueB(ρ) := valueB(out(ρ))
and valueS(ρ) := valueS(out(ρ)). Finally, a value is assigned to each word u ∈ A∗

using one of these semantics:

JAKB(u) := inf {valueB(ρ) : ρ is an accepting run of A over u}

JAKS(u) := sup {valueS(ρ) : ρ is an accepting run of A over u}

The convention is that inf ∅ = ∞ and sup ∅ = 0, so in the case that there are no
accepting runs, the B-semantics assign value ∞ and the S-semantics assign value 0.
If there are accepting runs, then the B-semantics (respectively, S-semantics) minimize
(respectively, maximize) the checked counter values over the accepting runs.

We refer to an automaton as a B-automaton or an S-automaton depending on
the desired semantics. When the intended semantics are clear, we will just write JAK
for the function from A∗ to N∞ defined by A. We say that A recognizes a function
f : A∗ N∞ if f ≈ JAK. That is, A recognizes the cost function JAK.

2This B and S notation was originally used in [BC06] to stand for sequences of counter values that
were bounded and strongly unbounded (converged to infinity); see Section 2.4 for more information.
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2.2.1 Examples

We give a few examples (mostly from [Col09a]). In each case, A := {a, b}.

Example 2.3. If A is a traditional automaton without counters recognizing a lan-
guage L, then JAKB = χL (the characteristic function for L that maps u ∈ L to 0 and
u /∈ L to ∞) and JAKS = χL, where L is the complement of L, in this case A∗ \ L.

This example supports the idea that B and S are dual semantics. It shows that
switching between B and S in the cost setting takes the place of complementing
languages in the classical setting.

Of course, cost automata are designed to count some behaviour within the input
structure. Perhaps the simplest example is a cost automaton counting the occurrences
of some letter a ∈ A in a word u ∈ A∗.

Example 2.4. Consider the function | · |a that maps a word u to the number of
a-labelled positions in u.

The B-automaton B that recognizes this function has a single state (which is
initial and accepting) and a single counter that is incremented and checked (ic) each
time an a is seen, and left unchanged (ε) otherwise. Because this automaton is
deterministic, for each word u there is only a single run ρ, and this run is accepting.
Since the counter is checked each time an a is seen, C(out(ρ)) = {1, 2, . . . , |u|a} and
valueB(ρ) = supC(out(ρ)) = |u|a, so JBKB = |u|a.

The corresponding S-automaton S increments (i) the counter when reading an a,
and then guesses when the end of the word is reached and performs a check-reset (cr).3

For a given word u, there is only one accepting run ρ, which moves from the initial
state to the accepting state on the last letter. If the last letter is a, then valueS(ρ) =
inf {|u|a − 1} = |u|a − 1; if the last letter is b, then valueS(ρ) = inf {|u|a} = |u|a.
Notice that it does not define exactly the function | · |a but it does recognize the
cost function corresponding to | · |a. Indeed, since the value may be off by one when
the word ends in a, the S-automaton recognizes |u|a with a correction function of
α(n) = n+ 1, written JSKS ≈α |u|a.

These automata are shown in Figure 2.4. The initial state (respectively, final
state(s)) are indicated by unlabelled ingoing (respectively, outgoing) edges, as usual.
An edge labelled e : c means that when reading input e ∈ A the output action is c.

3The automaton could also use just a check (c) instead of a check-reset (cr). The counter actions
in this example (and in the remaining examples) have been chosen to be “simple”, which will be
explained on page 20.
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a : ic
b : ε

a : i
b : ε a : cr

b : cr

Figure 2.1. B-automaton and S-automaton recognizing |u|a (see Example 2.4).

a : ε

b : ε

a : i
b : cr

a : ε
b : ε

a : ic a : ε
b : ε

b : ε b : ε

Figure 2.2. B-automaton and S-automaton recognizing min-blocka (see Example 2.5).

Example 2.5. Now consider the function min-blocka that maps a word u to the
minimum size of a block of a’s surrounded by b’s in u (and ∞ if there is no such
block). This function is recognized by a nondeterministic B-automaton with one
counter and a deterministic S-automaton with one counter, shown in Figure 2.2.

The checked value from each accepting run ρ of the B-automaton corresponds
to the size of a particular block of a’s surrounded by b’s. Hence, the infimum over
the values of the accepting runs is exactly the minimum length of a block of a’s
surrounded by b’s. Notice that if there are no such blocks (i.e. there are less than two
b’s in the word), then there will be no accepting run of the automaton and the value
will be inf ∅ =∞ as desired.

The S-automaton is deterministic and all runs are accepting. Let ρ be the unique
run for some word u. If u has no block of a’s surrounded by b’s, then the counter
is never checked so valueS(ρ) = inf ∅ = ∞ as desired. Otherwise, the automa-
ton counts every block of a’s surrounded by b’s so valueS(ρ) = inf C(out(ρ)) =
inf {n : banb is a factor of u} = min-blocka(u).

Since nondeterminism in a B-automaton (respectively, S-automaton) is resolved
into taking an infimum (respectively, supremum), one should think of a B-automaton
as trying to find the accepting run that will minimize (respectively, maximize) the
counter value. This nondeterminism is essential. Indeed, it is straightforward to prove
that there is no deterministic B-automaton recognizing min-blocka, even up to ≈.

The automata in the previous example can be adapted to show that max-blocka
(the maximum length of a block of a’s surrounded by b’s, or 0 if there is no such
block) is recognizable by both a B- and S-automaton. In that case, the B-automaton
is deterministic and the S-automaton uses nondeterminism to guess the largest block
to count.
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a : (ε, ε)
a : (i, ε)
b : (cr, i)

b : (r, i)
a : (r, cr)
b : (cr, cr)

Figure 2.3. S-automaton recognizing g(u) = min {min-blocka(u), |u|b} (see Example 2.6).

We now consider a simple example that makes use of two counters.

Example 2.6. Let g(u) = min {min-blocka(u), |u|b}. The B-automaton recognizing g
guesses at the outset whether to run the B-automaton from Example 2.5 or Exam-
ple 2.4 (adjusted to count b’s instead of a’s).

The S-automaton recognizing g has two counters γ1 and γ2, where γ1 is responsible
for computing min-blocka(u) and γ2 is responsible for computing |u|b. This automaton
is shown in Figure 2.3; we write e : (c1, c2) where ci is the action for γi when reading
e ∈ A. Consider some word u. If u has no b’s, then g(u) = 0 and there is no accepting
run of the automaton so the value is 0 as desired. If u has one b, then g(u) = 1 and
there is either no accepting run (if u ends with b) or a single accepting run with
checked value 1 (if u ends with a). Otherwise, if u has at least two b’s, then there is a
single accepting run ρ and C(out(ρ)) contains the sizes of each block of a’s surrounded
by b’s (taken from the checked values of γ1), and |u|b if the word ends in a or |u|b− 1
if the word ends in b (taken from the checked value of γ2). Overall, this S-automaton
recognizes g with a correction function of α(n) = n+ 1.

In general, increasing the number of counters increases the expressive power of
the cost automata. That is, for all k, there is a cost function definable using a cost
automaton with k counters that is not definable using less than k counters [Col12b].

2.2.2 Duality

The examples above hide some of the difficulties inherent in finding both a B- and
S-automaton recognizing a cost function. This is due to the fact that in most of the
examples so far, either the B or S form of the automaton is deterministic. When
starting from a deterministic cost automaton, it is straightforward to construct a
(nondeterministic) cost automaton for its dual form. For instance, a deterministic
S-automaton can be simulated by a nondeterministic B-automaton by using exactly
the same counter actions except for checks: the B-automaton guesses a single check
to duplicate and ignores all other checks from the output of the original S-automaton
[Col09a, Proposition 5]. Recall that Example 2.3 showed that switching between
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B and S forms in the cost setting is like complementation in the classical setting; since
complementation is easy for deterministic automata, it makes sense that dualizing is
easy in this case as well. Unfortunately, unlike the classical setting, not all cost
automata are determinizable [Col09c].

Consider the following example: take f(u) = min {max {|v|a, |w|b} : u = vw}.
There is a very natural B-automaton recognizing f that guesses the factorization
of u into v and w and then counts the appropriate letters in each segment. What
is the corresponding S-automaton? Since nondeterminism in an S-automaton cor-
responds to taking a maximum, we can no longer use the nondeterminism to guess
the factorization, so it is not clear how to construct an S-automaton recognizing the
correct function.

To aid in this transformation between B and S forms, Colcombet shows that these
cost functions can also be defined using an algebraic structure. Reasoning about
automata using algebra is nothing new. It is well-known that a finite automaton
can be represented by a monoid (a set with an associative binary operation · and an
identity) that defines the same language of finite words (we refer the interested reader
to [PP04]). Unfortunately, the classical translation of a finite automaton to a finite
monoid carries no quantitative information about the automaton. This is due to the
properties of the product in a monoid: if e is idempotent (i.e. e2 = e), then en = e for
all n ≥ 1. This means we cannot count the number of times we take the product of
such an element e in a standard monoid.

In order to get around this limitation, Colcombet introduces algebraic structures
called stabilization monoids 〈M, ·,≤, ]〉 in [Col09a] that enhance a monoid with an
ordering ≤ and a stabilization operator ]. The stabilization operation is defined only
on idempotent elements. The idea is that en should be e when n is “small” and e]

when n is “large”. Of course, this vague notion about what is “small” and “large”
would not be useful if we were interested in particular values of these functions, but
it is exactly what is needed for cost functions that care only about boundedness.

It is this rich algebraic structure where much of the technical work for the the-
ory of regular cost functions over finite words is performed. In general, in order to
convert between the B and S forms, the original automaton is converted first into a
stabilization monoid. From this stabilization monoid both a B- or S-automaton can
be constructed that is equivalent to the original, up to ≈.

In fact, we get more from this conversion through the algebra. The cost automata
that come out of this transformation have the following features:
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• Simple counter actions: atomic counter actions for B-automata (respectively,
S-automata) are restricted to B := {ε, ic, r} (respectively, S := {ε, i, r, cr}).

• Hierarchical counter actions: the set of counters Γ is some set [1, k] and if the
action for counter j is not equal to ε, then all counters j′ < j are reset (r) and
counters j′ > j are left unchanged (ε).4 We write, e.g. hB-automaton for a
B-automaton with hierarchical counter actions.

• History deterministic transition relation: a nondeterministic transition relation
with some deterministic-like properties; this is defined formally in the next
section and is crucial for the extension of this theory to trees.

We point out that Examples 2.4–2.6 have simple counter actions. The one-counter
automata in Examples 2.4–2.5 are trivially hierarchical, but the two-counter automa-
ton in Example 2.6 does not have hierarchical counter actions (an S-automaton with
hierarchical counters can be constructed for it, but we leave this as an exercise for
the reader). The deterministic automata in the examples so far are trivially history
deterministic, but the nondeterministic cost automata are not (history deterministic
versions will be given in the next section).

Remark 2.7. Special types of cost automata have been previously studied under
different names.

• Distance automata ([Has82]) are B-automata with one counter and restricted
actions {ic, ε}.

• Desert automata ([Kir04, Bal04]) are B-automata with one counter and re-
stricted actions {ic, r}.

• Nested distance desert automata ([Kir05]) and R-automata ([AKY08]) are B-
automata with hierarchical simple counter actions.

• ωB- and ωS-automata ([BC06]) are discussed in Section 2.4.
4This definition is slightly different than in [Col09a] where if the action for counter j is not equal

to ε, then lower counters j′ < j are allowed action cr or r. This is not a significant difference
because these two forms are equivalent, up to ≈, using the transducer described in Lemma 2.17
which reads arbitrary S-actions and converts into hierarchical actions in line with the definition
above. The definition we give here is better suited for later applications in this thesis, namely for
the construction in Chapter 6.
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By passing through the algebra, we get the following important result that Col-
combet refers to as the duality theorem. Recalling Example 2.3, this theorem can
be viewed as the cost version of a combined determinization and complementation
procedure. Indeed, Colcombet has given an alternative proof using ideas from Safra’s
determinization construction [Col11].

Theorem 2.8 ([Col09c, Theorem 1]). It is effectively equivalent for a cost function f
over finite words to be recognized by the following types of cost automata:

• nondeterministic B-automaton;

• nondeterministic S-automaton;

• history deterministic hB-automaton with simple, hierarchical counter actions;

• history deterministic hS-automaton with simple, hierarchical counter actions.

Such a function f is called a regular cost function over finite words.

From now on, we will assume cost automata have simple counter actions unless
otherwise stated. Indeed, assuming simple and hierarchical counter actions is often
useful in proofs because it gives more structure to the automata.

A nice corollary of this result concerns the closure properties of cost automata.
The natural closure properties of these automata differ from the classical setting
since they are on functions rather than languages. For instance, instead of closure
under union and intersection, cost automata are closed under taking min and max
(of functions); the constructions (using a disjoint union and product) are the same as
in the classical setting, however.

The most interesting cases (indeed, the cases where Theorem 2.8 is needed) cor-
respond to projection in the classical setting. In the cost setting, these operations
are inf-projection and sup-projection. Let h : A′ A be a map between alphabets
A′ and A such that A′ ⊇ A and h(a) = a for all a ∈ A. We write h(u′) = u for the
extension of h to words that relabels u′ ∈ (A′)∗ according to h. The op-projection of
some cost function g : (A′)∗ N∞ over h : A′ A is the function gop,h : A∗ N∞
such that

gop,h(u) := op {g(u′) : h(u′) = u}

where op is inf or sup. The idea is that on input u, the op-projection of g over h
combines (using the operation op) all of the values of g on words u′ that could be
projected to u via h.
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2.2 · Cost automata on finite words

B-automata are naturally closed under inf-projection since the nondeterminism
resolves into taking an infimum: on input u, the B-automaton guesses some u′ such
that h(u′) = u and then simulates the B-automaton for g on u′. Likewise, S-automata
are naturally closed under sup-projection. Because of Theorem 2.8 we can switch
between these dual forms and get closure for all cost automata (and hence all regular
cost functions) under these operations.

Proposition 2.9 ([Col09c]). Regular cost functions over finite words are closed under
min, max, inf-projection, and sup-projection.

These closure properties can be useful when proving that some cost function is
regular. For instance, consider again f(u) = min {max {|v|a, |w|b} : u = vw}. Let
A′ := {a, b, $} and A := {a, b}. It is easy to construct a B-automaton that reads
words u′ over A′, and counts the number of a’s before $ and the number of b’s after
$ (and rejects if there is not exactly one $ in the word). Let h : A′ A such that
h($) = ε and h(e) = e for e ∈ {a, b} (so h “erases” the $). Then f = JAKinf,h, so f is
regular by Proposition 2.9.

2.2.3 Decidability

As mentioned in Chapter 1, these cost automata were designed as a tool for decision
procedures about questions of boundedness. Hence, the crucial result in the theory
of regular cost functions over finite words is that the domination preorder and the
boundedness relation are decidable.

Theorem 2.10 ([Col09c, Theorem 4] following from [BC06]). Given regular cost func-
tions f and g over finite words, it is decidable whether or not f 4 g.

Like dualization, the proof of this result goes through algebra: it uses a satura-
tion procedure based on the algebraic representation of a regular cost function as a
stabilization monoid. We refer interested readers to Section 2.4 and [Col09c].

By Remark 2.2, this subsumes the decidability of the language inclusion problem
(for classical automata), and the limitedness for distance and nested distance desert
automata. As mentioned in Chapter 1, regular cost functions over finite words can
also be defined using a cost monadic second-order logic, so Theorem 2.10 implies the
decidability of this cost logic. We delay further discussion of the logic until Chapter 5.
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2.2.4 History determinism

Crucial for the extension to the tree case is the fact that cost automata over words
can be made history deterministic. This property was mentioned in Theorem 2.8,
and we explain this concept now. History determinism was introduced by Colcom-
bet [Col09c] as a weakening of the standard notion of determinism. Informally, a
history deterministic cost automaton is a nondeterministic automaton where all of
the “guesses” depend only on the history. That is, there should be an oracle which
given the history of the word, and the desired value for the run, is able to choose de-
terministically the next transition. Formally, we define this oracle in terms of a family
(ϑn)n∈N of translation strategies, one for each possible value n, described below.

Fix some nondeterministic cost automaton A = 〈Q,A, q0,Γ, F,∆〉. A translation
strategy ϑ : A∗ × A ∆ for A describes how to deterministically construct the next
move in a run of A over a word u ∈ A∗ given the prefix of the word already read
(i.e. the “history”). We can extend this into a mapping ϑ̃ : A∗ ∆∗ defined such
that

ϑ̃(u) = ϑ(ε, a1)ϑ(a1, a2)ϑ(a1a2, a3) · · ·ϑ(a1a2 · · · ak−1, ak)

for u = a1a2 · · · ak ∈ A∗. We say ϑ drives the run ϑ̃(u) ∈ ∆∗ if ϑ̃(u) is a valid run of
A on u. From now on, we restrict to translation strategies ϑ such that ϑ̃(u) is a valid
run of A over u for all u ∈ A∗.

Given a family of translation strategies (ϑn)n∈N, we can define the B-semantics
relative to (ϑn)n∈N and S-semantics relative to (ϑn)n∈N as follows:

JAKϑB(u) := inf
{
n : ϑ̃n(u) is an accepting run of value at most n

}
,

JAKϑS(u) := sup
{
n : ϑ̃n(u) is an accepting run of value at least n

}
.

A cost automaton A is history deterministic if and only if there is some family of
translation strategies (ϑn)n∈N and some correction function α such that JAKϑ ≈α JAK.
If we want to make the correction function explicit, we say that A is α-history-
deterministic. In other words, for all u ∈ A∗, the value obtained when A is restricted
to accepting runs driven by (ϑn)n∈N on u is ≈α-equivalent to the value obtained when
considering any accepting run of A on u.

We can assume that (ϑn)n∈N is monotonic in the following sense (which depends
on the semantics being used): if A is a B-automaton and ϑ̃n(u) is an accepting run
of value at most n, then for all n′ ≥ n, ϑ̃n′(u) is an accepting run of value at most n′;
likewise, if A is an S-automaton and ϑ̃n(u) is an accepting run of value at least n,
then for all n′ ≤ n, ϑ̃n′(u) is an accepting run of value at least n′.
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2.2 · Cost automata on finite words

Unpacking the definition above, a B-automaton A is α-history-deterministic if
there is a family of translation strategies (ϑn)n∈N such that for all u ∈ A∗,

if JAKB(u) ≤ n then ϑ̃α(n)(u) is accepting and valueB(ϑ̃α(n)(u)) ≤ α(n).

Likewise, an S-automaton A is α-history-deterministic if for all u ∈ A∗,

if JAKS(u) ≥ α(n) then ϑ̃n(u) is accepting and valueS(ϑ̃n(u)) ≥ n.

The important point is that history determinism is weaker than the standard
notion of determinism. In a deterministic automaton, the next state is determined
entirely by the current state and input letter. In a history deterministic automaton,
the desired value n, the history of the play, and the input letter uniquely determine
the next transition. Moreover, an automaton may not be able to actually implement
this deterministic choice since it may need unbounded memory to store, for instance,
the counter values on a partial run.

Remark 2.11. Usually, we seek to simultaneously prove that a cost automaton A
is history deterministic and recognizes a cost function f . If A is a B-automaton
(respectively, S-automaton) it suffices to prove that JAKϑB 4 f 4 JAKB (respectively,
JAKS 4 f 4 JAKϑS) for some family ϑ of translation strategies. This follows from the
fact that JAKB ≤ JAKϑB (respectively, JAKϑS ≤ JAKS).

We now consider a few examples of history deterministic cost automata. We will
not prove in a formal way that these automata are history deterministic, but we will
describe informally the translation strategies that witness the history determinism.
We will return to this notion in Section 3.2, where some more formal proofs about the
properties of history deterministic automata (in the context of games) will be given.

Example 2.12. Consider the automata recognizing |u|a given in Example 2.4. The B-
automaton B is deterministic so it is trivially history deterministic: there is a unique
run ρ of B on any input word, so all of the strategies ϑn should simply select ρ.

The S-automaton S for |u|a is not history deterministic, however, since it requires
a guess about the end of the word, and this is not dependent on the history. We
can make it history deterministic by adding a loop on the final state that on any
input leaves the counter unchanged (shown in Figure 2.4). We call this automaton
S ′. There is no longer a single accepting run of the automaton on a given input.
Instead, S ′ is allowed to move to the accepting state at any point during the run, but
must check-reset the counter at that time. The idea is that S ′ now guesses when the

25



Chapter 2 · Theory of Regular Cost Functions

a : i
b : ε a : cr

b : cr

a : ε
b : ε

Figure 2.4. History deterministic S-automaton recognizing |u|a (see Examples 2.4 and 2.12).

counter reaches a high enough value. This sort of guessing is acceptable in a history
deterministic automaton since the choice depends only on the history. Formally, the
translation strategy ϑn stays in the initial state until the counter value reaches n, and
then proceeds to the accepting state.

Note that the optimal value for S ′ on some input always corresponds to the value
from a run driven by one of the translation strategies ϑn. For this reason, we say that
S ′ is id-history-deterministic, where id is the identity correction function id(n) = n.
Although S ′ is id-history-deterministic, it only recognizes |u|a up to the correction
function α(n) = n + 1 since the value is off by one if the last letter is an a. Overall,
we have JS ′Kϑ = JS ′K ≈α | · |a for α(n) = n+ 1.

Example 2.13. Now consider another function that counts the number of a’s in an
input word u if u ends in a, but otherwise assigns value 0. The most natural B-
automaton for this function would simply guess at the beginning the last letter, only
counting the number of a’s if the last letter was guessed to be a, and then checking
at the end of the word that the initial guess was correct. As in the previous example,
this is not history deterministic because there is no way to drive the run given just
the history (the guess depends on the future).

The history deterministic version is shown in Figure 2.5. The translation strategies
(ϑn)n∈N witnessing the history determinism are defined as follows. The strategy
ϑn stays in state q as long as the next letter will not result in the counter value
exceeding n, otherwise it moves to state r. Fix some u. If the last letter in u is b,
then for all n, ϑn will drive an accepting run of value at most n so JAKϑ(u) = 0. If the
last letter is a, then only ϑn for n ≥ |u|a will drive accepting runs, so JAKϑ(u) = |u|a.
The idea is that the automaton tries to stay in the accepting state q for as long as
possible. While there, it is forced to count the number of a’s. It delays the guess
about the last letter for as long as possible, only guessing that the last letter is b if the
counter value gets too high (where the threshold depends on the translation strategy
being used). Again, this is id-history-deterministic.
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q

r

s

a : ε

b : εa : ε

b : ε

a : ic
b : ε

a : ε

b : ε

Figure 2.5. History deterministic B-automaton (see Example 2.13).

q r s

a : ε
b : r

a : ic

b : ε

a : ε

a : ε
b : ε

Figure 2.6. History deterministic B-automaton recognizing min-blocka (see Examples 2.5
and 2.14).

Example 2.14. The last example is a history deterministic B-automaton shown in
Figure 2.6 that recognizes min-blocka as defined in Example 2.5. The S-automaton
for min-blocka is deterministic and therefore trivially history deterministic.

Recall that the original B-automaton recognizing min-blocka guessed the smallest
block of a’s surrounded by b’s, which is not dependent solely on the past and can-
not be implemented by a translation strategy. The automaton below instead starts
counting every block of a’s (with the exception of an initial prefix of a’s). The only
nondeterminism is in state r. The translation strategies ϑn are defined such that ϑn
stays in state r for as long as possible, and only moves to state q if the counter would
otherwise exceed value n. Thus, ϑn can be seen as the strategy that is trying to prove
that there is a block of size n, and therefore min-blocka(u) ≤ n. If there is such a
block, then the automaton will stay in state r long enough to be able to take the
transition from r to the accepting state s. If not, then there will be no accepting run
driven by ϑn.

As a side note, we remark that an automaton without counters is history determin-
istic if and only if it contains a deterministic sub-automaton for the same language,
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i.e. the automaton can be made deterministic simply by removing edges [Col12a]. Re-
stricted to automata without counters, history deterministic automata correspond to
the good for games automata that were introduced independently by Henzinger and
Piterman [HP06]. This name was chosen because these automata compose well with
games. Indeed, it is these good properties with games that make history deterministic
automata important in this work. We will make this more precise in Section 3.2.

Transducers

We can use cost automata over words as transducers that read a word of counter
actions and output different actions that preserve the value, at least up to ≈.

As a simple example of this idea, we start by describing a B-automaton transducer
that converts a word over the alphabet {ic, ε}Γ to actions over {ic, ε}. Although
increasing the number of counters usually increases expressivity, when restricting to
actions {ic, ε}, multiple counters do not add to the expressivity, and therefore can
be converted to a sequence of actions using a single counter.

Lemma 2.15 ([CL12]). For all Γ, there is a deterministic B-automaton DΓ
{ic,ε} with

one counter and actions {ic, ε} such that JDΓ
{ic,ε}K(u) ≈α valueB(u) for all words

u ∈ ({ic, ε}Γ)∗ where α(n) = n · |Γ|.

Proof. The automaton DΓ
{ic,ε} has one state (which is initial and accepting) and

one counter. When reading some c ∈ {ic, ε}Γ, if there is some γ ∈ Γ such that
prγ(c) = ic, then DΓ

{ic,ε} outputs ic. Otherwise, DΓ
{ic,ε} outputs ε.

We aim to show that JDΓ
{ic,ε}K(u) ≈α valueB(u) for all words u ∈ ({ic, ε}Γ)∗. We

actually break the proof into two directions, first showing valueB(u) ≤ JDΓ
{ic,ε}K(u)

and then showing JDΓ
{ic,ε}K(u) 4α valueB(u) for α(n) = n · |Γ|.

Fix some u ∈ ({ic, ε}Γ)∗ and assume that JDΓ
{ic,ε}K(u) is bounded by some n ∈ N.

Since DΓ
{ic,ε} always increments the counter when there is an underlying increment

for some counter γ ∈ Γ, each of the original counters can achieve value at most n.
Hence valueB(u) ≤ JDΓ

{ic,ε}K(u).
Now assume valueB(u) ≤ n ∈ N. Then each counter γ ∈ Γ is incremented at

most n times in u. Each increment induces an output ic in the run of DΓ
{ic,ε},

and since these increments could could occur at different positions in u, the value
according to DΓ

{ic,ε} is at most n · |Γ|. This means that JDΓ
{ic,ε}K(u) 4α valueB(u) for

α(n) = n · |Γ|.

28
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A similar result holds when the actions are restricted to {ic, r}. This was observed
in [CKL10] where B-automata using only actions ic and r are called temporal B-
automata.

Lemma 2.16 ([CKL10]). For all Γ, there is a deterministic B-automaton DΓ
{ic,r} with

one counter and actions {ic, r} such that JDΓ
{ic,r}K(u) ≈α valueB(u) for all words

u ∈ ({ic, r}Γ)∗ where α(n) = 2n+ 1.

Proof. The B-automaton DΓ
{ic,r} has states Q := P(Γ). All states are accepting and

the initial state is ∅. When in state q ∈ P(Γ) and reading action c ∈ {ic, r}Γ, we
let q′ = q ∪

{
γ : prγ(c) = r

}
. If q′ 6= Γ, then the automaton outputs ic and moves to

state q′. Otherwise, if q′ = Γ, then the automaton outputs r and moves to state ∅,
and continues operating as before.

Fix some u ∈ ({ic, r}Γ)∗ such that valueB(u) ≤ n ∈ N. The run of DΓ
{ic,r} starts

from state ∅. Since valueB(u) ≤ n, after at most n + 1 positions every counter must
be reset at least once. Hence, during this part of the run, DΓ

{ic,r} can output ic at
most n times before it outputs r and moves back to state ∅. Continuing to reason in
this way, we can build up the run of DΓ

{ic,r} witnessing JDΓ
{ic,r}K(u) ≤ n.

Now assume for the sake of contradiction that there is some u ∈ ({ic, r}Γ)∗ such
that JDΓ

{ic,r}K(u) ≤ n ∈ N but valueB(u) > 2n+1. Then there is some some counter γ
and some subword v of length 2n + 2 in u that has 2n + 2 increments for γ but no
resets for γ. Let q be the state of DΓ

{ic,r} when it starts reading v. If γ /∈ q, then
DΓ
{ic,r} will output only ic on v, contradicting JDΓ

{ic,r}K(u) ≤ n. If γ ∈ q, then DΓ
{ic,r}

can reach state ∅ and output r at most once while reading v. Due to the length of v,
there must be a subword of v of length at least n+ 1 where DΓ

{ic,r} outputs only ic,
contradicting JDΓ

{ic,r}K(u) ≤ n.

We now describe automata that read arbitrary counter actions and output hier-
archical counter actions. We include these results for completeness and also to give
an example of a more involved cost automaton construction. These results are not
new. The first part of the proof is given in [CL10] and the second part was known but
unpublished [CL12]. Readers familiar with the latest appearance record construction
[GH82] will recognize similarities here; this is not surprising, since the latest appear-
ance record construction is used to derive a more structured acceptance condition
(going from a Muller condition condition to a parity condition, see Table 3.1), and
here we are trying to derive more structured counter actions.
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Lemma 2.17 ([CL10, CL12]). For all Γ, there is a deterministic hB-automaton HΓ
B

such that JHΓ
BK ≈α valueB and there is a history deterministic hS-automaton HΓ

S

such that JHΓ
SK ≈α valueS with α(n) = k · (n+ 1)k where k = |Γ|.

Proof. Fix some set Γ = [1, k] of counters. Our first goal is to build a deterministic
hB-automaton HΓ

B with the same counters Γ such that JHΓ
BK ≈α valueΓ

B but using
hierarchical counter actions. We indicate the new hierarchical actions by writing opi
for the hierarchical action that performs action op on counter i, resets counter i′ ≤ i,
and leaves i′ > i unchanged. We write r0 for the operation that leaves all counters
unchanged.

The set of states in HΓ
B are of the form 〈γ1, . . . , γk〉 where 〈γ1, . . . , γk〉 is a permu-

tation of the counters in Γ (i.e. a permutation of [1, k]). Every state is accepting.
The idea is that HΓ

B mimics the original action, but only on the highest counter
(the counter that is the furthest to the right in the permutation). If the counter is
reset, then it is moved to the beginning of the permutation.

Consider a state q = 〈γ1, . . . , γk〉 and an input letter a ∈ BΓ. We describe the
edges in the transition relation starting from q. Let i ∈ [1, k] be the largest index
such that prγi(a) 6= ε. Then

• q a : r0 〈γ1, . . . , γk〉 if no such i exists;

• q a : ici 〈γ1, . . . , γk〉 if prγi(a) = ic;

• q a : ri 〈γi, γ1, . . . , γi−1, γi+1, . . . , γk〉 if prγi(a) = r.

We prove that JHΓ
BK ≈α valueB.

We start by showing that JHΓ
BK ≤ valueB. Assume that there is some u ∈ (BΓ)∗

such that JHΓ
BK(u) = n ∈ N. Then the run of HΓ

B on u that outputs hierarchical
actions w has a subsequence w′ that contains n occurrences of ici and no higher
counter operation. Since no higher counter operation appears in w′, the counter γ
indexed by position i in the permutation remains stable while HΓ

B is reading the
corresponding subsequence u′ of u. Moreover, the actions ici are induced in w′ by
reading ic for γ in u′, and there can be no r for γ in this subsequence, otherwise γ
would not be stable in the permutation. This means that γ achieves value at least n
in u, so n = JHΓ

BK(u) ≤ valueB(u) for all u.
Next, we show valueB 4α JHΓ

BK. Assume for the sake of contradiction that there
is u ∈ (BΓ)∗ such that JHΓ

BK(u) < n but valueB(u) ≥ α(n). Let u′ be a subsequence
that contains α(n) increments of some counter γ with no reset for γ. Each ic for γ
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induces ici where γ = γi in the permutation. Because there are no resets for γ in u′,
γ can only move right in the permutation and this can only occur at most k times.

Since α(n) = k · (n + 1)k, there must be a subsequence u′′ of u′ with at least
(n + 1)k increments for γ during which the index i of γ in the permutation remains
stable. While the position of γ remains stable at some position i, there are no resets of
counters indexed by some i′ ≥ i. Hence, each increment of γ results in ici. However,
if some counter γi′ for i′ > i is incremented, then this induces a reset of counter i. We
can show by induction on k that while the counters in positions i′ ≥ i remain stable
like this and JHΓ

BK(u) < n, there must be strictly less than (n+ 1)k increments for γ,
which implies the desired contradiction.5

Our next goal is to build a history deterministic hS-automaton HΓ
S using the same

counters Γ such that JHΓ
SK ≈ valueS but with hierarchical counter actions. The set

of states in HΓ
S includes a sink state ⊥ and all tuples of the form (X, 〈γj, . . . , γk〉)

where X ⊆ Γ, j = |X| + 1, and 〈γj, . . . , γk〉 is a permutation of Γ \ X. We write
〈Y, γj, . . . , γk〉 to denote the permutation that lists the elements of Y in ascending
order followed by γj, . . . , γk. The initial state is (∅, 〈Γ〉). Every state except ⊥ is
accepting.

The active counters are the counters in the permutation γj, . . . , γk. The safe coun-
ters are the counters in X. The idea is that the automaton mimics the original action
on the highest active counter (the counter furthest to the right in the permutation).
Once a counter reaches a high value, it gets check reset and moved to the safe set X
where further increments are ignored. If cr or r is seen for a counter in the safe set,
then this counter gets moved back to the beginning of the active permutation. If r
is seen for an active counter, then it is moved to the beginning of the permutation.
However, if cr is ever seen for an active counter, then the automaton moves immedi-
ately to the rejecting sink state. Thus, in order to maximize the value of the run, HΓ

S

must ensure that any counter that is actually check-reset in w is moved to the safe
set before this occurs.

Consider a state q = (X, 〈γj, . . . , γk〉) and an input letter a ∈ SΓ. We describe the
edges in the transition relation starting from q.

5The base case for k = 1 is trivial. For k > 1, the inductive hypothesis is that there are less than
(n + 1)k−1 increments for γ when utilizing counters up to k − 1 and keeping JHΓ

BK(u) < n. After
such a block of increments, however, there could be an increment of γ′ = γk that induces a reset
for lower counters and allows another application of the inductive hypothesis and another block of
increments for γ. Since JHΓ

BK(u) < n and γ′ is never reset (since the positions i′ ≥ i are stable in
the permutation), there can be at most n − 1 increments of γ′. This means we can account for at
most (n− 1)(n+ 1)k−1 < (n+ 1)k increments for γ.
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If there is i ∈ [j, k] such that prγi(a) = cr then q a : r0 ⊥ is the only possible
transition.

Otherwise, let Y =
{
γ ∈ X : prγ(a) ∈ {r, cr}

}
.

If prγi(a) = ε for every i ∈ [j, k], then q a : r0 (X \ Y, 〈Y, γj, . . . , γk〉).
If i ∈ [j, k] is the largest index in the active set of counters such that prγi(a) 6= ε,

then q a : cri ((X ∪ {γi}) \ Y, 〈Y, γj, . . . , γi−1, γi+1, . . . , γk〉) is a possible transition, as
well as one of the following transitions depending on prγi(a):

• q a : ii (X \ Y, 〈Y, γj, . . . , γk〉) if prγi(a) = i;

• q a : ri (X \ Y, 〈Y, γi, γj, . . . , γi−1, γi+1, . . . , γk〉) if prγi(a) = r.

Consider the family (ϑn)n∈N of translation strategies that wait to take the cri
transition until counter i reaches value n. By Remark 2.11, it suffices to show that
JHΓ

SK 4 valueS 4α JHΓ
SKϑ.

We start by showing JHΓ
SK ≤ valueS. Let u ∈ (SΓ)∗ and let w be some output

sequence from a run of HΓ
S on u. Assume that valueS(u) = n ∈ N. Then there is

some counter γ and some subword u′ of u beginning with a reset for γ (or the initial
position in u) and ending with a check-reset for γ such that there are n increments
and no intermediate resets or check-resets for γ in u′. Because u′ starts with the
initial position or a reset for γ, the state (X, 〈γj, . . . , γk〉) when HΓ

S starts to read u′

must have γ = γi for some i ∈ [j, k]. If the automaton HΓ
S does not move γ to the

safe set while reading u′, then it will move to state ⊥ at the end of u′ so the run
has value 0. Otherwise, γ is moved to the safe set while HΓ

S is reading u′. Before it
is moved to the safe set, it may move right from position i to position i + 1 in the
permutation, but doing so resets the value of counter i and counter i + 1. Let i′ be
the highest index of γ before it is moved to the safe set. In this position, there can be
at most n increments for ii′ (induced by the original increments for γ in u′). Hence,
counter i′ is check-reset with value at most n when γ is moved to the safe set. Since
the value of w is the minimum checked counter value, this means that JHΓ

SK(u) ≤ n

as desired.
Next, we show valueS 4α JHΓ

SKϑ. Assume for the sake of contradiction that there
is some u with valueS(u) ≥ α(n) but JHΓ

SKϑ(u) < n.
If valueS(u) = ∞, then there is no cr for any counter in u. This means that for

all n, the run driven by ϑn is accepting and has value n, so JHΓ
SKϑ(u) =∞ as well.

If valueS(u) ∈ N and at least α(n), then consider any subsequence u′ of u that
begins after a reset for some counter γ (or is the initial position in u) and ends with a
check-reset for γ. There must be at least α(n) increments and no intermediate resets
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or check-resets for γ in u′ since valueS(u) ≥ α(n). Because u′ starts with the initial
position or a reset for γ, the state (X, 〈γj, . . . , γk〉) when HΓ

S starts to read u′ must
have γ = γi for some i ∈ [j, k].

Since there are no intermediate resets or check-resets for γ on u′, γ can only be
moved right in the active permutation during any run of HΓ

S on u′ (unless it is check-
reset, in which case it is moved to the safe set, and remains there until the end of u′).
Recall that the translation strategy ϑn moves an active counter into the safe set once
it reaches value n. After at most (n+ 1)k increments for γ, some counter must have
reached value n and have been moved into the safe set (this could be shown formally
by induction on k). This means that after at most (n+ 1)k increments, γ must have
reached value n and have been moved to the safe set, or γ must have been moved
right in the permutation because another counter (higher in the permutation) was
moved to the safe set. Since there are k counters, k(n + 1)k increments for γ ensure
that γ has been moved into the safe set after being check-reset with a value of n.
Because this is true for any such subsequence u′, the run driven by ϑn has value at
least n, a contradiction.

2.3 Extension to finite trees
Building on the results described earlier, Colcombet and Löding extended the theory
of regular cost functions to finite trees [CL10], so versions of Theorem 2.8, Proposi-
tion 2.9, and Theorem 2.10 also hold for regular cost functions over finite trees.

For the purposes of this thesis, we do not need to define cost automata over finite
trees formally, but the idea is that a traditional top-down tree automaton is enriched
with a finite set of counters. In a nondeterministic cost automaton over finite trees,
one copy of the automaton is sent in each direction of the tree with the transition
relation describing the state and counter action associated with each copy. The B-
value (respectively, S-value) of the run is the maximum (respectively, minimum)
checked value across all branches in the run, and the value of the input tree is the
minimum (respectively, maximum) value over all accepting runs.

As part of the development of this theory over finite trees, alternating cost au-
tomata over finite trees are also utilized. An alternating automaton generalizes the
nondeterministic model by allowing the automaton to send more than one copy (or
none at all) in each direction. Colcombet and Löding show that alternation does not
increase the power of the automaton model, and that any alternating cost automa-
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ton can be simulated by a nondeterministic cost automaton using either the B- or
S-semantics.

Theorem 2.18 ([CL10, Theorem 12]). It is effectively equivalent for a cost function
f over finite trees to be recognized by alternating B-, hB-, S-, and hS-automata, as
well as their nondeterministic versions. We call such a cost function a regular cost
function over finite trees.

Using this simulation and duality result, closure properties and decidability of the
domination preorder can also be shown.

Proposition 2.19 ([CL10, Lemma 11]). Regular cost functions over finite trees are
closed under min, max, inf-projection, and sup-projection.

Theorem 2.20 ([CL10, Theorem 13]). Given regular cost functions f and g over finite
trees, it is decidable whether or not f 4 g.

Instead of the algebraic approach used to prove these results over words, these
results over trees exploit a connection between automata and two-player turn-based
games. This approach will be explained in the next chapter since it is essential for
the development of the theory of regular cost functions over infinite trees as well.

2.4 Discussion
In this chapter, we have summarized the main results in the theory of regular cost
functions over finite words and finite trees, including the duality theorem (Theo-
rems 2.8 and 2.18) and the decidability of 4 (Theorems 2.10 and 2.20). We conclude
this chapter by discussing some related work that influenced (and continues to influ-
ence) the theory of regular cost functions.

Variants of cost automata have been studied under many different names in-
cluding distance automata [Has82], nested distance desert automata [Kir05], BS-
automata [BC06], and R-automata [AKY08]. This theory of regular cost func-
tions, however, grew out of two main lines of work: research by Hashiguchi [Has82],
Kirsten [Kir05], and others who were studying problems that could be reduced to lim-
itedness of functions (the most famous problem like this being the star height problem
discussed in Chapter 1); and research by Bojańczyk and Colcombet [Boj04, BC06] on
extensions of monadic second-order logic that can assert properties related to bound-
edness.
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Many of the algebraic methods that are central to Colcombet’s theory of regular
cost functions over finite words were developed earlier in the context of weighted
automata, a model that allows each transition to be assigned a weight from some
set S in a semiring (S,⊕,⊗, id⊕, id⊗), rather than the counter operations seen in
cost automata (see, e.g. [DKV09]). A weighted automaton over (S,⊕,⊗, id⊕, id⊗) is
a nondeterministic automaton such that each transition is assigned some weight in S,
and the weight of a path is found by ⊗-multiplying the weights of the transitions on
that path. The weight of a word is the ⊕-sum of the weights of all accepting paths
(with weight id⊕ assigned to any word that is not accepted).

Classical nondeterministic finite state automata can be viewed as weighted au-
tomata over the Boolean semiring ({0, 1},∨,∧, 0, 1) where each transition has weight 1
(this makes sense since in the traditional model of finite automata a word is either
accepted or rejected). One of the most common semirings in the weighted automata
literature, however, is the min-plus or tropical semiring (R∪{∞} ,min,+,∞, 0) intro-
duced by Simon [Sim78] in his study of the finite power property. Indeed, the distance
automata described earlier can be viewed as a special case of weighted automata over
the tropical semiring in which the weights are restricted to 0 or 1, since the weight
of an accepted word is obtained by taking the minimum (over all accepting runs) of
the sum of the weights on the run. Following Hashiguchi’s proof of the decidabil-
ity of limitedness for distance automata [Has82], Leung [Leu88] gave an alternative
proof using an extension of the tropical semiring and the new idea of a stabilization
operator ]. These ideas continued to develop through the work of Simon, Leung,
Kirsten, and others, and their influence can be seen in Colcombet’s theory of regular
cost functions.

The notion of the dual B and S forms of automata with counters also came
from earlier work, this time due to Bojańczyk and Colcombet [BC06]. In this work,
they introduced ωBS-automata (which are actually defined on infinite rather than
finite words). An ωBS-automaton is a nondeterministic finite state automaton with
a finite set of counters Γ (partitioned into a set of B-counters ΓB and a set of S-
counters ΓS). Similar to cost automata, the transitions are labelled with actions i,
r, or ε. Like classical automata, however, these automata recognize languages rather
than functions.

The acceptance condition describes desired asymptotic behaviour for the counter
values. Given a run ρ of an ωBS-automaton and a counter γ ∈ Γ, let value(ρ, γ)i be
the value of counter γ immediately before the ith reset. This induces a sequence of
values in N∞ (denoted value(ρ, γ)) that is used to define the acceptance condition. A

35



Chapter 2 · Theory of Regular Cost Functions

run ρ is accepting if for every counter γ ∈ Γ, the sequence value(ρ, γ) is infinite (i.e.
γ is reset infinitely many times) and

if γ ∈ ΓB then γ is bounded: lim sup
i

value(ρ, γ)i <∞,

if γ ∈ ΓS then γ is strongly unbounded: lim inf
i

value(ρ, γ)i =∞.

This is where the B and S notation comes from. If the automaton has counters
of only one type, then it is called an ωB-automaton or ωS-automaton as appro-
priate. For instance, an ωB-automaton could define the language consisting of all
words an1ban2b · · · such that (ni)i∈N is bounded. The word (a100b)ω would be in this
language, but a1ba2ba3b · · · would not.

The class of ωBS-automata is closed under union, intersection, and projection,
but fails to be closed under complement [BC06]. However, the complement of a
language definable using an ωB-automaton is an ωS-automaton, and vice versa. This
is a complicated proof and results in a nonelementary blowup of the state space.
However, a proof of Theorem 2.8 and Theorem 2.10 can be extracted from this result.
For example, say we are trying to show that some B-automaton A which reads finite
words over A satisfies JAK 4 0 (the simplest case of deciding the domination preorder).
Consider the ωB-automaton A′ based on A defined as follows: to every final state
of A, add a new edge that when reading a new symbol $, resets all counters and moves
the automaton back to its initial state. Then JAK 4 0 if and only if L(A′) = (A∪{$})ω

if and only if L(A′′) = ∅ where A′′ is the complement of A′. By the results in
[BC06], the ωS-automaton A′′ can be found effectively and the emptiness of L(A′′)
is decidable. Hence, JAK 4 0 is decidable.

The motivation for studying these automata came from an extension of monadic
second-order logic with an unbounding quantifier U (originally introduced in its
negated form in [Boj04]), where UX.ϕ(X) expresses “there is no bound on the size
of sets X satisfying ϕ(X)”. Fragments of this logic (with some restrictions on nega-
tion) correspond to definability via ωB-automata and ωS-automata, and hence these
fragments are decidable. However, no automaton model is known for the full logic
(and in fact, it has been shown that no nondeterministic automaton model with a
Borel acceptance condition can suffice [HST10]), so the decidability of the full logic
remains open.

This prompted Toruńczyk [Tor11] to introduce a related algebraic structure (which
he also calls a stabilization semigroup) to reason about these boundedness problems.
His approach is inspired by the more topological viewpoint of Leung, and uses the
idea of profinite words. It provides yet another proof of Theorem 2.10, but the
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decidability of the full monadic second-order logic with U over infinite words remains
open. Despite these connections to the theory of regular cost functions, the work on
ωBS-automata and the unbounding quantifier appears to be largely orthogonal to
Colcombet’s work. Indeed, when moving from words to trees, the decidability results
in these two lines of research no longer appear to be reducible to one another. It
would be interesting to study more closely the relationship between these lines of
work in the future.
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Chapter 3

Cost Automata and Games

Cost automata over infinite structures combine a classical acceptance condition with
the counting features described in the previous chapter. We capture these conditions
in the form of an objective that describes how to assign values to plays based on both
the classical condition and the counter values. We begin by describing this automaton
model over infinite words in Section 3.1 and then over infinite trees in Section 3.3.

In Section 3.2, we also define two-player cost games. These games are infinite-
duration two-player games on labelled graphs where one player seeks to minimize
the value of the play and the other player seeks to maximize the value based on
the objective. There is a strong connection between automata over infinite trees
and games in the classical theory, and this connection extends to the cost setting.
Indeed, the semantics of cost automata over infinite trees are defined in terms of
these cost games. Moreover, we show that we can convert between cost games with
different objectives, in analogy to classical conversions between different types of
winning conditions, and this allows us to prove a duality theorem (Theorem 3.15) for
alternating cost-parity automata over infinite trees.

Many of the proofs in this chapter are adaptations of the corresponding results
for cost automata over finite trees in [CL10], and were first presented in [VB11].

3.1 Automata on infinite words
For automata over finite words, the notion of an accepting run is very natural: a run
is accepting if the final state of the automaton after reading the entire word belongs to
some special set of accepting states F . When moving to infinite structures, however,
this condition no longer makes sense since there is no final state in the run.
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Name Description Condition
Büchi F ⊆ Q Inf(ρ) ∩ F 6= ∅
co-Büchi F ⊆ Q Inf(ρ) ∩ F = ∅
Muller F ⊆P(Q) ∃F ∈ F .F = Inf(ρ)
Rabin F ⊆P(Q)×P(Q) ∃(E,F ) ∈ F . Inf(ρ) ∩ E = ∅ ∧ Inf(ρ) ∩ F 6= ∅
Streett F ⊆P(Q)×P(Q) ∀(E,F ) ∈ F . Inf(ρ) ∩ F 6= ∅ ⇒ Inf(ρ) ∩ E 6= ∅
parity P ⊆ N, Ω : Q P max(Ω(Inf(ρ))) is even

Table 3.1. Common acceptance conditions for automata over infinite words.

Instead, the acceptance condition for an automaton A = 〈Q,A, q0,Acc,∆〉 over
infinite words is usually based on the set of states that occur infinitely many times
in a run ρ of A, which we denote by Inf(ρ). Table 3.1 summarizes some of the most
common acceptance conditions, and the finite description Acc of this condition. We
assume some familiarity with these acceptance conditions and the theory of regular
languages over infinite words (see [Tho97] for a survey).

In this thesis, we concentrate on the parity condition which can be defined by a
set of priorities P ⊆ N, together with a mapping Ω : Q P from states to priorities.
A run ρ satisfies the parity condition if the maximum priority that occurs infinitely
often in the run (after mapping states to priorities using Ω) is even.1

We remark that the parity condition over priorities P = [0, 2j + 1] can be viewed
as a special case of a Rabin condition, where F = {(E0, F0), . . . , (Ej, Fj)} and Ei =
{q : Ω(q) > 2i} and Fi = {q : Ω(q) = 2i} for i ∈ [0, j]. It is straightforward to see
that a run satisfies the parity condition if and only if there exists some (E,F ) ∈ F
such that Inf(ρ) ∩ E = ∅ and Inf(ρ) ∩ F 6= ∅. Likewise, the parity condition can be
viewed as a special case of the Streett condition (the dual of the Rabin condition)
where Ei = {q : Ω(q) > 2i+ 1} and Fi = {q : Ω(q) = 2i+ 1} for i ∈ [0, j].

A Büchi (respectively, co-Büchi) condition described by accepting states F can
be seen as a special case of a parity condition where Ω : Q [1, 2] (respectively,
Ω : Q [0, 1]) and

Ω(q) =

1 (respectively, 0) if q /∈ F
2 (respectively, 1) if q ∈ F

.

We will usually view a Büchi and co-Büchi condition as a parity condition like this.
1This condition is also known as the max-parity condition to distinguish it from the min-parity

condition which requires the minimum priority occurring infinitely often to be even. In this thesis,
parity condition always means max-parity condition.
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Moreover, it turns out that any language definable using nondeterministic au-
tomata over infinite words with one of the conditions in Table 3.1 can be expressed
using a deterministic parity automaton (see, e.g. [GTW02]).

Theorem 3.1. It is effectively equivalent for a language L of infinite words to be
recognizable by the following types of automata:

• nondeterministic Büchi automata;

• deterministic or nondeterministic Rabin or Streett automata;

• deterministic or nondeterministic Muller automata;

• deterministic or nondeterministic parity automata.

We say such a language L is regular (or ω-regular).

The fact that deterministic parity automata capture all regular languages of infi-
nite words is one motivation for using automata with the parity acceptance condition.
Other motivations arise in the context of games, which will be examined in Chapter 4.

3.1.1 Objectives

In this thesis, we will combine the classical parity condition with the cost features
described in Chapter 2. Following [CL10], we define a general notion of objective that
will take the place of acceptance conditions for automata and winning conditions for
games.

An objective O is a tuple 〈C, f, goal〉 where C is a finite alphabet of actions,
f : Cω N∞ is a valuation that maps sequences of actions to a value in N∞, and
goal ∈ {min,max} describes how f should be optimized.

For example, a parity condition with priorities P is described by the parity objec-
tive CostPparity := 〈P, costPparity,min〉 where P ⊆ N is a finite set of priorities and
costPparity : P ω {0,∞} maps a word u ∈ P ω to 0 if the maximum infinitely-
occurring priority in u is even and ∞ otherwise. For instance, cost[1,2]

parity((12)ω) = 0
but cost[1,2]

parity(21001ω) = ∞. The goal is min since satisfying the parity condition
corresponds to minimizing the valuation costPparity.

We want to enrich this parity objective with conditions involving counters so that
values come from N∞ (instead of only {0,∞}). We do this by defining objectives
that combine a classical parity condition with particular atomic counter actions and
valuations.
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• The B-parity objective (over counters Γ and priorities P ) is defined as CostΓ,P
B :=

〈BΓ × P, costΓ,P
B ,min〉 such that

costΓ,P
B (u) := sup

(
C(u) ∪

{
costPparity(u)

})
,

where C(u) is the set of checked counter values in u (see Section 2.2) and
costPparity(u) is the function described above that interprets the parity condi-
tion on the projection of u to its last component. The atomic actions for
each counter are simple B-actions from B = {ε, ic, r}. If the parity condi-
tion is satisfied, then the value is the supremum of the checked counter values;
otherwise, the counters are ignored and the value is ∞. For example, if u =(
(ic, 2)(ic, 2)(ε, 1)(r, 2)(ic, 1)

)ω
, then cost{1},[1,2]

B (u) = sup({1, 2, 3}∪{0}) = 3.

• The hB-parity objective is a variant of the B-parity objective with hierarchical
counters Γ = [1, k] such that whenever γ ∈ Γ is incremented or reset, all γ′ < γ

are reset. Formally, CostΓ,P
hB := 〈HΓ

B × P, costΓ,P
B ,min〉 where

HΓ
B :=

{
c ∈ BΓ : prγ(c) 6= ε implies prγ′(c) = r for all γ′ < γ

}
.

• The S-parity objective (over counters Γ and priorities P ) is defined as CostΓ,P
S :=

〈SΓ × P, costΓ,P
S ,max〉 where

costΓ,P
S (u) := inf

(
C(u) ∪

{
costPparity(u)

})
and costPparity(u) is 0 (respectively,∞) if costPparity(u) is∞ (respectively, 0). The
atomic actions for each counter are simple S-actions from S = {ε, i, r, cr}. If
the parity condition is not satisfied then the counters are ignored and the value
assigned is 0; otherwise, the minimum checked value is used (∞ if no counter
is checked). For example, if u = (i, 0)(r, 1)(i, 0)(ε, 1)(i, 1)(cr, 0)((i, 0))ω then
cost{1},[0,1]

S (u) = inf({2} ∪ {∞}) = 2.

• The hS-parity objective is a variant of the S-parity objective with hierarchical
counters Γ = [1, k]. Formally, CostΓ,P

hS := 〈HΓ
S × P, costΓ,P

S ,max〉 where

HΓ
S :=

{
c ∈ SΓ : prγ(c) 6= ε implies prγ′(c) = r for all γ′ < γ

}
.

Given an objective O = 〈C, f, goal〉, the dual objective O is obtained from O by
switching min to max and vice versa.

The objectives above (together with their dual versions) are the most common ob-
jectives, but additional objectives will be introduced as needed (see, e.g. Section 4.2).
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3.1.2 Cost automata on infinite words

A nondeterministic cost automaton A on infinite words is a tuple

〈Q,A, q0, O,∆〉

where Q is a finite set of states, A is a finite alphabet, q0 ∈ Q is the initial state,
O = 〈C, f, goal〉 is an objective, and ∆ ⊆ Q×A×C×Q is the transition relation. If
for all (q, a) ∈ Q×A there is a unique element (c, r) ∈ C×Q such that (q, a, c, r) ∈ ∆,
then we say that A is deterministic.

We will often refer to a cost automaton by its objective, i.e. writing O automaton
for a cost automaton with objective O. For notational simplicity, we will write,
e.g. hB-[1, 2] or hB-Büchi instead of CostΓ,[1,2]

hB . We will also use the term cost-parity
automaton to describe an automaton that has one of the four standard objectives
described above.

A run ρ of A over input u = a1a2 · · · ∈ Aω is (qi, ai+1, ci+1, qi+1)i∈N ∈ ∆ω, an
infinite word that describes a possible sequence of states and actions during the
operation of A on u.2 The output out(ρ) from the run ρ is c1c2 · · · ∈ Cω.

The objective O = 〈C, f, goal〉 is used to assign a value to runs and words. The
value of a run ρ is value(ρ) := f(out(ρ)). The value of a word u is

JAK(u) :=

inf {value(ρ) : ρ is a run of A over u} if goal = min
sup {value(ρ) : ρ is a run of A over u} if goal = max

.

Thus, JAK : Aω N∞ is a function that maps words u ∈ Aω to a value in N∞. If
JAK ≈ g then we say that A recognizes g.

If we want to emphasize that the objective O is a B-parity objective or S-parity ob-
jective, we will write JAKB or JAKS, respectively. Notice that the definition above coin-
cides with the semantics of B- and S-automata described in the previous chapter. For
instance, recall that a nondeterministic B-automaton maps a word to the minimum of
the values over all accepting runs on that word. Since non-accepting runs are imme-
diately assigned value ∞ by the B-objectives, inf {value(ρ) : ρ is a run of A over u}
is exactly the minimum of the values over all accepting runs.

Remark 3.2. One peculiarity with this model is that counter and priority actions
both occur on transitions, whereas priorities usually label states. We remark that
it is straightforward to translate between transition-labelled automata and the more
common state-labelled automata, at the price of increasing the number of states.

2We require that a run is infinite: if there is no infinite sequence (qi, ai+1, ci+1, qi+1)i∈N ∈ ∆ω

describing the operation of A on u = a1a2 · · · ∈ Aω, then there is no run of A on u.
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3.1.3 History determinism

The notion of history determinism in Section 2.2 extends to cost automata over infinite
words in a natural way.

Given a cost automaton A = 〈Q,A, q0, 〈C, f, goal〉,∆〉 and a family of translation
strategies (ϑn)n∈N with ϑn : A∗ × A ∆, we define

JAKϑ(u) :=

inf
{
n : value(ϑ̃n(u)) ≤ n

}
if goal = min

sup
{
n : value(ϑ̃n(u)) ≥ n

}
if goal = max

where ϑ̃n(u) ∈ ∆ω is the run driven by ϑn on a word u ∈ Aω (we restrict to translation
strategies for which ϑ̃n is a valid run for all u ∈ Aω). ThenA is α-history-deterministic
if and only if JAKϑ ≈α JAK.

Equivalently, A is α-history-deterministic if there is a family of translation strate-
gies (ϑn)n∈N such that for all u ∈ Aω,

if goal = min and JAK(u) ≤ n then value(ϑ̃α(n)(u)) ≤ α(n),

if goal = max and JAK(u) ≥ α(n) then value(ϑ̃n(u)) ≥ n.

Note that the runs driven by the translation strategies are now infinite and the
definition allows arbitrary objectives, but otherwise the definition matches the finite
word case. Remark 2.11 still applies and will be used in the lemmas below.

Many classical results about regular languages of infinite words can be lifted to the
cost setting. For instance, history deterministic cost-Büchi automata are strictly less
expressive than nondeterministic cost-Büchi automata (just as deterministic Büchi au-
tomata are strictly less expressive than nondeterministic Büchi automata over infinite
words), but history deterministic cost-parity automata recognize the entire class of
regular cost functions over infinite words.

Theorem 3.3 ([Col12b]). It is effectively equivalent for a cost function over infinite
words to be recognizable by the following types of automata:

• nondeterministic B-Büchi and S-Büchi automata;

• nondeterministic or history deterministic B-parity and S-parity automata.

We call such a cost function a regular cost function over infinite words.

44



3.1 · Automata on infinite words

Another well known classical result states that a regular language L of infinite
words is recognizable by a deterministic Büchi automaton if and only if L = limU

for some regular language U where

limU = {u : u(0) · · ·u(i) ∈ U for infinitely many i ∈ N} .

The following lemma can be viewed as a generalization of part of this result.

Lemma 3.4. Let g be a regular cost function over finite words and let

f(u) = inf {n : ∃ infinitely many prefixes v of u such that g(v) ≤ n} ,

f ′(u) = sup {n : ∃ infinitely many prefixes v of u such that g(v) ≥ n}

be cost functions over infinite words. Then f (respectively, f ′) is recognizable by a
history deterministic hB-Büchi (respectively, hS-Büchi) automaton.

Proof. By Theorem 2.8, we can assume that there is a αhd-history-deterministic hB-
automaton Afin (over finite words) with a family ϑ of translation strategies such that
for all u we have

f(u) ≈α inf {n : ∃ infinitely many prefixes v of u such that JAfinK(v) ≤ n} .

We can view this Afin as a hB-[1, 2] automaton A over infinite words, with the same
structure but where the accepting states in Afin now output priority 2 and all other
states output priority 1. We claim A is equivalent to f and is history deterministic
(witnessed by the same family ϑ of translation strategies). By Remark 2.11, it suffices
to show that JAKϑ 4 f 4 JAK.

Let β := αhd ◦ α. We first prove JAKϑ 4β f . Assume f is bounded by N on
some set U of input words. Then for every u ∈ U , there must be some infinite set of
indices I such that JAfinK is bounded by α(N), and hence JAfinKϑ is bounded by β(N)
on prefixes u(0) · · ·u(i) for all i ∈ I. This means that using the translation strategy
ϑβ(N) to drive the automaton Afin on u(0) · · ·u(i) results in an accepting run bounded
by β(N). Moreover, because ϑβ(N) deterministically specifies how to construct the
run, the runs driven by ϑβ(N) on prefixes u(0) · · ·u(i) and u(0) · · ·u(i′) are identical
on any shared prefix. Thus, this same translation strategy ϑβ(N) can be used to drive
an infinite run of A on u that witnesses infinitely many priority 2 (at each i ∈ I) and
has value bounded by β(N).

Now we show that f 4α JAK. If JAK is bounded by N on some set U , then for any
u ∈ U , there is a run of A on u with value bounded by N and with infinitely many
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q r

(ic, p) : (i, p)
(r, p) : (r, p)
(ε, p) : (ε, p)

(ic, p) : (cr, p)
(r, p) : (cr, p)
(ε, p) : (cr, p)

(ic, p) : (ε, p̂)
(r, p) : (ε, p̂)
(ε, p) : (ε, p̂)

Figure 3.2. History deterministic S-[i + 1, j + 1] automaton recognizing cost{1},[i,j]B (see
Lemma 3.5).

priority 2 at positions indexed by some infinite set I. Thus, for all i ∈ I, there is a run
of Afin on u(0) · · ·u(i) that ends in an accepting state and has valued bounded by N .
Hence, inf {n : ∃ infinitely many prefixes v of u such that JAfinK(v) ≤ n} ≤ N , so we
have f(u) ≤ α(N).

The proof for f ′ is similar, so we omit it.

As discussed in Section 2.2.4, we often use history deterministic automata as
transducers that convert between different types of counter actions while preserving
the value. We begin with examples of cost-parity automata that approximate the
value of a sequence of counter actions (say, from a B-parity automaton) by using
different actions (say, from an S-parity automaton). We present these examples as
part of lemmas that will be used later in this thesis.

Lemma 3.5. For all i < j,3 there is a id-history-deterministic S-[i + 1, j + 1] au-
tomaton AcostΓ,[i,j]

B

(respectively, B-[i+ 1, j + 1] automaton AcostΓ,[i,j]
S

) such that

JAcostΓ,[i,j]
B

KS = costΓ,[i,j]
B and JAcostΓ,[i,j]

S

KB = costΓ,[i,j]
S .

Proof. We first define in Figure 3.2 an S-parity automaton Acost{1},[i,j]
B

recognizing
cost{1},[i,j]B . This automaton reads words over B × [i, j] (the alphabet of actions for
a B-parity automaton with one counter and priorities [i, j]). We label a transition
with (c, p) : (c′, p′) if on input (c, p), the counter action output is c′ and the priority
output is p′. We write p for p+ 1, and p̂ for some fixed even priority in [i+ 1, j + 1].

The history deterministic translation strategies (ϑn)n∈N are defined such that
ϑn(u, a) stays in state q if the counter value is less than n but moves to, and then
remains in, state r if the counter value is at least n.

By Remark 2.11, it is sufficient to prove JAcost{1},[i,j]
B

K 4 cost{1},[1,2]
B 4 JAcost{1},[i,j]

B

Kϑ.
In fact, we prove that JAcost{1},[i,j]

B

K ≤ cost{1},[1,2]
B ≤ JAcost{1},[i,j]

B

Kϑ.

3If i = j, then a similar result holds but the history deterministic cost automata may require
priorities [i+ 1, j + 2].
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It is easy to see that JAcost{1},[i,j]
B

K ≤ cost{1},[i,j]B since if cost{1},[i,j]B (u) = N ∈ N, then
the parity condition in u must be satisfied and the counter value must not exceed N .
This means that any accepting run of Acost{1},[i,j]

B

on u must move from state q to r.
While in q any ic is converted to i for the S-counter (and r and ε are preserved),
and on the transition from q to r this S-counter value is checked. This means that
the maximum value that the S-counter can achieve is N (when the transition to r is
taken after some maximal sequence of ic without r), so JAcost{1},[i,j]

B

K(u) ≤ cost{1},[i,j]B .
Now we seek to prove that cost{1},[i,j]B ≤ JAcost{1},[i,j]

B

Kϑ. Assume cost{1},[i,j]B (u) = N .
IfN <∞, then the parity condition is satisfied but the counter achieves valueN . This
means the run driven by ϑN will witness exactly value N , so JAcost{1},[i,j]

B

Kϑ(u) ≥ N .
If N =∞, then either (i) the counter values are unbounded or (ii) the counter values
are below M ∈ N, but the parity condition is not satisfied. In the case of (i), ϑN ′ will
drive an accepting run which witnesses value N ′ for all N ′. In the case of (ii), the run
driven by ϑN ′ for N ′ > M will stay forever in state q and witness value ∞ since the
counter is never checked and the priorities p satisfy the parity condition. In either
case, this means JAcost{1},[i,j]

B

Kϑ(u) ≥ N as desired.
In order to define AcostΓ,[i,j]

B

for |Γ| > 1, we take the product of |Γ|-many copies of
Acost{1},[i,j]

B

where each copy is responsible for processing counter actions from a par-
ticular counter γ ∈ Γ. That is, there is a transition from (s1, . . . , s|Γ|) to (s′1, . . . , s′|Γ|)
labelled (a, p) : (a′, p) if for all γ ∈ Γ, there is a transition from sγ to s′γ = q labelled
(prγ(a), p) : (prγ(a′), p). Likewise, there is a transition (a, p) : (a′, p̂) if for all γ there
is a transition from sγ to s′γ labelled (prγ(a), p) : (prγ(a′), p′), and there is some γ
such that s′γ = r. The idea is that the run should be accepting as soon as one copy is
able to prove (by moving to state r) that the counter has reached a large value. We
leave the proof of correctness and history determinism to the reader.

We now turn to the second part, defining a B-parity automaton reading S-parity
actions. Figure 3.3 shows the B-[i+ 1, j + 1] automaton Acost{1},[i,j]

S

.
This looks more complicated, but it actually uses a similar principle as Exam-

ple 2.14. The idea is that on input u ∈ (S × [i, j])ω, the B-automaton is trying to
prove that cost{1},[i,j]S (u) is low, either because the parity condition was not satisfied,
or because the counter was checked with a low value. The only nondeterminism
is when reading i in state r. The translation strategy ϑn moves to state q if the
B-counter would exceed value n and otherwise stays in state r.

By Remark 2.11, it suffices to show that JAcost{1},[i,j]
S

Kϑ ≤ cost{1},[i,j]S ≤ JAcost{1},[i,j]
S

K.
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q r s

(i, p) : (ε, p)
(ε, p) : (ε, p)

(r, p) : (r, p)
(cr, p) : (r, p)

(i, p) : (ic, p)
(r, p) : (r, p)
(ε, p) : (ε, p)

(cr, p) : (ε, p)

(i, p) : (ε, p)

(i, p) : (ε, p̂)
(r, p) : (ε, p̂)

(cr, p) : (ε, p̂)
(ε, p) : (ε, p̂)

Figure 3.3. History deterministic B-[i + 1, j + 1] automaton recognizing cost{1},[i,j]S (see
Lemma 3.5).

Assume JAcost{1},[i,j]
S

K(u) ≤ N ∈ N. We distinguish between two cases depending
on whether the run ρ of Acost{1},[i,j]

S

on u with value(ρ) ≤ N stays in states q and r or
moves to state s.

If ρ remains in state q and r, then it must be the case that the priority sequence
in u does not satisfy the parity condition (if not, the priorities p generated during the
run of Acost{1},[i,j]

S

would not satisfy the parity condition, contradicting the fact that
value(ρ) ≤ N). In this case, cost{1},[i,j]S (u) = 0 ≤ N as desired.

Otherwise, assume that during the course of ρ the automaton moves to state s.
In order to be able to take the transition to s, there must be some subword in u that
starts with r (or the beginning of the word) and has a sequence of i without r ending
in cr. Because value(ρ) ≤ N , this must mean there were at most N occurrences of i
in this subword. Hence, this subword witnesses the fact that the S-counter is checked
with value at most N , so cost{1},[i,j]S (u) ≤ N .

Now we must show JAcost{1},[i,j]
S

Kϑ ≤ cost{1},[i,j]S . Assume cost{1},[i,j]S (u) = N ∈ N.
This means that either (i) there is some point at which the counter is checked with
value N or (ii) the counter is always checked with value greater than 0 but the
priorities in u do not satisfy the parity condition so N = 0. It is clear that the
translation strategy ϑN yields a run of value at most N . If the counter is checked
with a value at most N in u, then the translation strategy ϑN will result in the same
value (since it remains in state r and mimics each of the original increments preceding
the cr before moving to state s when reading the cr). In the case of (ii), then ϑ0

will remain forever in state q and r, never incrementing the counter. The priorities
output by ϑ0 will satisfy the parity condition since the original sequence of priorities
in u did not satisfy the parity condition, so this run will have value 0. In either case,
JAcost{1},[i,j]

S

Kϑ(u) ≤ N as desired.
As in the previous case, in order to construct AcostΓ,[i,j]

S

for |Γ| > 1, we take |Γ|-
many copies of the automaton. The counter actions output on transition come from
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3.1 · Automata on infinite words

the individual copies. If the input priority is p, then output priority is p̂ if there is
some copy that has moved to state s, and p otherwise.

It is also possible to translate arbitrary actions into hierarchical actions.

Lemma 3.6. For all Γ and i < j, there is a deterministic hB-[i, j] automaton HΓ,[i,j]
B

and an id-history-deterministic hS-[i, j] automaton HΓ,[i,j]
S such that

JHΓ,[i,j]
B K ≈α costΓ,[i,j]

B and JHΓ,[i,j]
S K ≈α costΓ,[i,j]

S

for α(n) = k · (n+ 1)k where k = |Γ|.

Proof. We use the automata HΓ
B and HΓ

S from Lemma 2.17. First, note that correct-
ness of these automata over finite words from (BΓ)∗ or (SΓ)∗ implies correctness (of
the same automata, now viewed as Büchi automata) run over infinite words w from
(BΓ)ω or (SΓ)ω. This follows from Lemma 3.4 and the fact that

valueB(w) = inf {n : ∃ infinitely many prefixes v of w such that valueB(v) ≤ n} ,

valueS(w) = sup {n : ∃ infinitely many prefixes v of w such that valueS(v) ≥ n} .

We seek automata that read both counter actions and priorities. For this, HΓ,[i,j]
B

simulates HΓ
B to get the desired hierarchical actions but also outputs the priorities

unchanged so the parity condition is preserved.
Likewise, HΓ,[i,j]

S simulates HΓ
S and outputs the priorities unchanged, unless the

automaton enters state ⊥ (the rejecting sink state), in which case the output is set
to some odd priority in [i, j] to indicate that this is not a valid run for HΓ

S.

We can also show that restricted B actions ({ic, ε} or {ic, r}) over multiple coun-
ters can be converted to actions over a single counter. We omit the straightforward
proof which simply adapts the transducers in Lemmas 2.15 and 2.16 to the setting of
infinite words.

Lemma 3.7. For all Γ, i ≤ j, and restricted B-actions B′ ∈ {{ic, ε} , {ic, r}}, there
is a deterministic hB-[i, j] automaton DΓ,[i,j]

B′ using only one counter and actions B′

such that over the alphabet (B′)Γ,

JDΓ,[i,j]
B′ K ≈α costΓ,[i,j]

B

where α(n) = n · |Γ| if B′ = {ic, ε} and α(n) = 2n+ 1 if B′ = {ic, r}.
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3.2 Cost games
Before proceeding to cost automata over infinite trees, we introduce two player games
known as cost games. The semantics of cost automata over infinite trees will be defined
in terms of these games.

Unlike the classical game setting where a player either wins or loses, a cost game
is assigned a value in N∞ based on some objective O. The objective O describes the
aim of the first player, traditionally known as Eve. The dual objective O of some
O = 〈C, f, goal〉 is obtained by changing goal from min to max or max to min, and
represents the aim of the opponent, known as Adam.

Formally, a cost game G = 〈V, v0, O, δ〉 is played in an arena that is defined
by a (possibly infinite) set of positions V , an initial position v0 ∈ V , an objective
O = 〈C, f, goal〉 for Eve, and a control function δ : V B+(C×V ) where B+(C×V )
is the set of positive boolean combinations of elements from C× V . We assume each
δ(v) is written in disjunctive normal form (as a disjunction of conjunctive clauses).

The dual game is G = 〈V, v0, O, δ〉 where O is the dual objective of O (switching
min to max, or vice versa), and δ is the result of exchanging conjunctions and dis-
junctions in δ (and then rewriting each δ(v) in disjunctive normal form). This has
the effect of switching the roles of the two players in the game.

The set of moves in G is EG := {(v, c, w) ∈ V × C× V : (c, w) appears in δ(v)};
we write EG(v) for the set of moves starting from a particular v ∈ V . This notation is
chosen because G can be viewed as a graph where the nodes are the positions V and
the edges are EG. A play π is an infinite sequence of moves (vi, ci+1, vi+1)i∈N ∈ Eω

G

such that v0 is the initial position and the tuple (vi, ci+1, vi+1) ∈ EG(vi) for all i ∈ N.
The output out(π) of a play π is c1c2 · · · ∈ Cω.

Given a set σ of plays, let pref(σ) denote the set of prefixes of plays in σ. We
say (v0, c1, v1) · · · (vj, cj+1, vj+1) ∈ pref(σ) is a partial play ending in vj+1 (we say
ε ∈ pref(σ) ends in v0). At a position v ∈ V , the positive boolean combination
given by δ(v) can be viewed as a subgame in which Eve selects a disjunct in δ(v)
and Adam selects a conjunct within this disjunct. For instance, if there is some
partial play π ending in v ∈ V with δ(v) = (c, v) ∨ ((c′, v′) ∧ (c′′, v′′)), then EG(v) =
{(v, c, v), (v, c′, v′), (v, c′′, v′′)}. Eve can choose a disjunct, say, (c′, v′) ∧ (c′′, v′′), and
Adam can choose one of the conjuncts in this disjunct, say (c′′, v′′). The play is then
extended to π · (v, c′′, v′′) and c′′ describes the cost for making this move.

A strategy σ for Eve in G is a set of plays such that if a partial play π ∈ pref(σ)
ends in position v, there must be a single disjunct (c′1, v′1) ∧ · · · ∧ (c′j, v′j) in δ(v) such
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that for every conjunct (c′i, v′i) for i ∈ [1, j], π · (v, c′i, v′i) ∈ pref(σ). The idea is that
a strategy for Eve describes deterministically how she should play for every possible
history. Unless otherwise indicated, when we speak of a strategy σ in G, we mean a
strategy for Eve. A strategy σ for Adam in G is a set of plays such that σ is a strategy
for Eve in G. Note that fixing a strategy σ for Eve in G and a strategy σ for Adam
in G induces a single play π such that π ∈ σ and π ∈ σ. Strategies in cost games are
the subject of Chapter 4.

The objective O = 〈C, f, goal〉 describes how to assign values in the game. For a
play π = (vi, ci+1, vi+1)i∈N, the value is value(π) := f(out(π)). If goal is min, then the
value of a strategy σ for Eve is value(σ) := sup{value(π) : π ∈ σ} and the value of
the game is value(G) := inf{value(σ) : σ is a strategy for Eve in G}. In other words,
Eve seeks to minimize over all strategies the maximum value of all plays compatible
with the strategy. Dually, if goal is max, then value(σ) := inf{value(π) : π ∈ σ} and
value(G) := sup{value(σ) : σ is a strategy for Eve in G}.

Just like cost automata, we will refer to cost games by their objective (e.g. a
B-Büchi or B-[1, 2] game is a cost game with objective CostΓ,[1,2]

B ).

Remark 3.8. This form of two-player game differs slightly from the usual presentation
of games in, e.g. [GTW02].

First, the priorities (and counter actions) label edges in the game graph rather than
positions. It is straightforward to convert to a game where the positions are labelled
with priorities and counter actions instead of edges (at the price of increasing the size
of the game graph).

Second, the control function δ is given by a positive boolean combination of ele-
ments from C× V (written in disjunctive normal form) where Eve selects a disjunct
and Adam selects a conjunct, rather than partitioning V based on which player con-
trols the move from each position. This allows a more immediate link with the
alternating automata that will be described in the next section. Because we assume
that δ(v) is defined for all v ∈ V , it is also important to note that there are no finite
plays in these games. It is possible to adapt this definition to allow finite duration
cost games (see [CL10]) where every play is finite and the objective can utilize the
terminal symbol of the play in order to determine the value, but for the purposes of
this thesis, we will usually be working with infinite duration cost games.

We now provide two examples of cost games.
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v0 v1

(r, 1)

(ε, 1)

(ε, 2)(ic, 2)

(r, 1)

Figure 3.4. B-[1, 2] cost game GB with value(GB) = 1 (see Example 3.9).

Example 3.9. Consider the B-[1, 2] game GB := 〈{v0, v1} , v0,Cost{1},[1,2]
B , δ〉 where

δ(v0) :=
(
((r, 1), v0) ∧ ((ε, 1), v1)

)
∨ ((ic, 2), v0),

δ(v1) := ((r, 1), v0) ∧ ((ε, 2), v1).

We have given a (slightly unconventional) graphical representation of this game
in Figure 3.4. The play starts at v0. If the play has reached position v ∈ {v0, v1},
a subgame is played between Eve (circles) and Adam (boxes) where Eve selects a
disjunct (taking one of the light edges), and then Adam selects a conjunct (taking
one of the dark edges leading to position v′ and labelled with action c). The play
then moves to position v′ with cost c, and the players continue as before.

In this example, Eve only has one choice to make, namely the disjunct to select
when in position v0 (in v1, there is only one disjunct so she has no choice). We now
consider some strategies for Eve, and the cost associated with them.

Consider the strategy σ where Eve always selects the second conjunct when
in v0. There is only one play consistent with this strategy, so σ = {π} where
π = (v0, (ic, 2), v0)ω. The parity condition is satisfied on π, but value(π) = ∞
since there is no bound on the checked values of the counter. This means that
value(σ) =∞, so σ is not a good strategy for Eve, the minimizing player.

Next consider the strategy σ′ where Eve always selects the first conjunct. There
are infinitely many plays in σ′. However, π′ = (v0, (r, 1), v0)ω ∈ σ′ has value ∞
because the parity condition is not satisfied, so value(σ′) =∞.

However, there are strategies for Eve that witness value(GB) = 1. Let σ′′ be the
strategy for Eve that in v0 selects the first disjunct if the counter currently has value 1
and selects the second disjunct if the counter currently has value 0. Assume the play
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v0 v1

v2

(ε, 0)

(i, 0)

(ε, 1)(cr, 1) (ε, 1)

Figure 3.5. S-[0, 1] cost game GS with value(GS) =∞ (see Example 3.10).

is in position v0 with value 0. Then Eve will select the second conjunct, and the play
outputs (ic, 2) and stays in v0. Since the counter now has value 1, Eve will select
the first conjunct. If the play moves to v1 and stabilizes there, then the remaining
output is (ε, 2), so the parity condition is satisfied and the play has value 1. If the
play eventually returns to v0, (r, 1) is output so the reasoning can proceed as above
to show that the counter never exceeds value 1 and Eve can always guarantee to visit
priority 2. Hence, value(σ′′) = 1 and value(GB) ≤ 1. There is no strategy of value 0,
so value(GB) = 1.

We will often consider much simpler examples where it is not necessary to use the
full power of an alternating control function. In particular, if for all positions v, δ(v)
is purely disjunctive or purely conjunctive, then the positions can be partitioned into
nodes controlled by Adam (positions v where δ(v) is purely conjunctive and has at
least two conjuncts) and nodes controlled by Eve (positions v where δ(v) is purely
disjunctive). This is graphically represented as a game graph where Adam’s positions
are boxes and Eve’s positions are circles (and edges are labelled with the cost of the
move, as usual). This more traditional graphical presentation of games will be used
in the remaining examples of cost games in this thesis.

Example 3.10. Consider the S-[0, 1] game GS = 〈{v0, v1, v2} , v0,Cost{1},[0,1]
S , δ〉 in

Figure 3.5 where

δ(v0) := ((i, 0), v1) ∨ ((cr, 1), v2),

δ(v1) := ((ε, 1), v0) ∧ ((ε, 1), v2),

δ(v2) := ((ε, 0), v2).

Consider the strategy σn for Eve that at v0 selects the first disjunct (i.e. takes
the transition to v1) if the counter has value less than n, and otherwise, selects
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the second disjunct (i.e. takes the transition to v2). Let π ∈ σn. If Adam always
selects the transition back to v0, then Eve will be able to move to v2 and check-
reset the counter when it reaches value n, so value(π) = n. If not, then Adam
must select the transition from v1 to v2 during π. But this means π satisfies the
parity condition by stabilizing in priority 0 and the counter is never checked, so
value(π) = ∞. Hence value(σn) = n. Note that there is no single strategy that
witnesses value ∞. However, there is a strategy σn with value(σn) = n for each n, so
value(GS) = sup {value(σ) : σ is a strategy for Eve in GS} =∞.

Changing objectives

It is often helpful to convert between cost games with different objectives in a way
that preserves the value, at least up to some correction function. This is similar to
the notion of converting between different types of winning conditions known from
literature (e.g. converting a Muller game to an equivalent parity game).

One simple transformation of a game/objective that preserves the value is dualiza-
tion. As mentioned earlier, the dual of a game G is obtained by switching disjunctions
and conjunctions in the control function and using the dual objective (i.e. replacing
min with max, and vice versa). This switches the roles of Adam and Eve in the game.

Proposition 3.11. Let G be a cost-parity game. Then value(G) = value(G).

Proof. Although cost games are assigned a value, we can convert the game into a
more standard setting with a winner or loser, by parameterizing the game based on
the value. That is, given a cost game G with goal = min (respectively, goal = max),
we can consider a family of games Gn for each n ∈ N∞ such that Eve wins game Gn if
there is a strategy σ for Eve such that every π ∈ σ satisfies value(π) ≤ n (respectively,
value(π) > n), and Adam wins otherwise.

We fix now some cost game G with objective CostΓ,P
B (the argument is similar for

other cost-parity objectives). Let C be the output alphabet.
Proving that value(G) = value(G) comes down to the fact that these parametrized

cost-parity games are determined, that is, from every position, exactly one of the two
players has a winning strategy. We assume determinacy for now and describe why
this implies that value(G) = value(G).

Let value(G) = n. Then Eve can win Gn. Since dualizing reverses the roles of the
players, this means Adam wins Gn, so there is no winning strategy σ for Eve in Gn
such that every π ∈ σ satisfies value(π) > n. This implies that there is no strategy σ
in G with value(σ) > n, so value(G) ≤ n.
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However, Eve cannot win Gn−1 (if she could, it would contradict value(G) = n).
Hence, since we are assuming determinacy, there is a winning strategy for Adam in
Gn−1 and, equivalently, a winning strategy for Eve in Gn−1. This implies that there
is a strategy σ for Eve in Gn−1 such that every π ∈ σ satisfies value(π) > n − 1.
Hence, this strategy σ can also be viewed as a strategy in G with value(σ) > n − 1.
Since value(G) is the maximum value over all strategies for Eve, this means that
value(G) ≥ n. Putting this together, we get value(G) = n as desired.

It remains to show that CostΓ,P
B games are determined. For this, we rely on a

famous result due to Martin [Mar75] that says that games with Borel winning condi-
tions are determined. The Borel hierarchy is a topological classification of sets. We
need only basic definitions for our purpose here, but refer the reader to [Kec95] for
additional information. We view the space of output words Cω as a topological space
where open sets are of the form X ·Cω where X is any set of finite words. These open
sets are denoted Σ0

1. The complement of an open set is denoted Π0
1. Taking a count-

able union (respectively, countable intersection) of sets from Π0
β′ (respectively, Σ0

β′)
for β′ < β results in a set in Σ0

β (respectively, Π0
β).

The parity condition is in Σ0
3 ∩Π0

3. The idea is that we can define an open set
Pm
p = (C∗(BΓ×p))mCω for all m that consists of words with at least m occurrences of

some priority p. The set Pp of words where p occurs infinitely often is Pp = ⋂
m∈N P

m
p ,

so it is in Π0
2. The parity condition is then

⋂
odd p

⋃
even p′ > p

Pp ∪ Pp′

where p and p′ range over the finite set P of priorities. This is a finite boolean
combination of sets in Σ0

2 and Π0
2, and hence is in Σ0

3 ∩Π0
3.

We can analyse counter actions in a similar way. The set of words Cm
γ in Cω that

witness checked value greater thanm for counter γ is an open set (since all such words
can be described by a finite prefix that witnesses value greater than m). Hence the
counter condition for Gn is ⋃

γ∈Γ
Cn
γ

which is in Π0
1 (the complement of an open set).

This means the overall winning condition for Gn is also in Σ0
3∩Π0

3, so the winning
condition is Borel as required.

Another way to change objective is by composing a cost game with certain cost
automata over infinite words. Let G̃ = 〈V, v0, 〈A, f, goal〉, δ〉 be a cost game and
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consider a cost automaton over infinite words A = 〈Q,A, q0, 〈C, g, goal〉,∆〉 such that
f ≈ JAK.

Because A recognizes f , it is easy to see that the game G = 〈V, v0, 〈A, JAK, goal〉, δ〉
satisfies value(G) ≈α value(G̃), but we can do more. Notice that the value of a play
that outputs actions from an alphabet A can be computed by running the automa-
ton A which uses a different objective and outputs actions from an alphabet C. We
can make this explicit by considering the composition of A and G which is the game
A ◦ G := 〈Q× V, (q0, v0), 〈C, g, goal〉, δ′〉 where

δ′((q, v)) := δ(v)
[∨
{(c, (q′, v′)) : (q, a, c, q′) ∈ ∆}/(a, v′)

]
.

In this new game A ◦ G, the state of the valuation function described by A is made
explicit in the positions in the game, and the objective of this new game has changed
to the objective from A. We can view a play in A ◦ G as a play in G together with a
run of A used to compute its value.

If A is deterministic, then the output from this composition will clearly yield the
same value. If A is nondeterministic, however, then this is not necessarily the case: in
order to compute the value of two plays with some common prefix, A could disagree
about moves on the shared prefix, and therefore be unable to correctly assign values
to both plays.

It turns out that if A is history deterministic, this composition results in a game
with a different objective but the same value (up to≈). Thus, a nice way to summarize
history deterministic cost automata is that they compose well with games. This was
shown in [CL10, Lemma 7] for history deterministic cost automata on finite words
composed with finite duration cost games, and can be easily adapted to the infinite
setting in this thesis.

Lemma 3.12. Let A = 〈Q,A, q0, 〈C, g, goal〉,∆〉 be an αhd-history-deterministic cost
automaton over infinite words and G = 〈V, v0, 〈A, JAK, goal〉, δ〉 be a cost game. Then
value(G) ≈αhd value(A ◦ G).

Proof. Assume goal is min (and notice that goal is the same in A and G). Let
G ′ := A ◦ G.

We first show that value(G) ≤ value(G ′). Assume value(G ′) ∈ N, and let σ′

be a strategy in G ′ witnessing this bounded value. Then any play π′ ∈ σ′ can be
written in the form ((qi, vi), ci+1, (qi+1, vi+1))i∈N and can be transformed into a play
π := (vi, ai+1, vi+1)i∈N in G where (qi, ai+1, ci+1, qi+1) ∈ ∆ for all i ∈ N. Notice that
JAK(a1a2 · · · ) ≤ g(c1c2 · · · ) since g(c1c2 · · · ) is the value of a particular run of A on
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a1a2 · · · and the JAK(u) takes the minimum value over all runs since goal = min. This
means that value(π) = JAK(a1a2 · · · ) ≤ g(c1c2 · · · ) = value(π′).

Doing this transformation for all plays π′ ∈ σ′ results in a set of plays σ that is a
strategy in G satisfying value(σ) ≤ value(σ′) as desired.

In the other direction, we rely on the history determinism of A and show that
value(G ′) 4αhd value(G). Let (ϑn)n∈N be the translation strategies for A. Assume
that value(G) ≤ n ∈ N. Then there is a strategy σ in G such that value(σ) ≤ n. Any
play π ∈ σ is of the form (vi, ai+1, vi+1)i∈N with JAK(a1a2 · · · ) ≤ n. By the definition
of history determinism, this means that the unique run ρ = (qi, ai+1, ci+1, qi+1)i∈N
driven by ϑαhd(n) satisfies value(ρ) ≤ αhd(n). We use ρ and π to define the play
π′ := ((qi, vi), ci+1, (qi+1, vi+1)) in G ′ with value(π′) ≤ αhd(n).

Let σ′ be the set of all plays π′ obtained by doing this transformation starting
from some play π ∈ σ. Because the plays in σ′ agree on all shared prefixes (since
they were driven by the same translation strategy ϑαhd(n)), we see that σ′ is actually
a strategy in G ′, with value(σ′) ≤ αhd(n) as desired.

The proof when goal is max is similar.

3.3 Cost automata on infinite trees
The unlabelled infinite binary tree is T = {0, 1}∗. Hence, the positions or nodes in
a binary tree are words over {0, 1}. The root of T is denoted ε and a branch is an
infinite sequence x0x1 · · · of positions such such that x0 = ε and xi+1 ∈ xi · {0, 1}. A
frontier E is a set of positions such that for any branch π, E ∩ π is a singleton. For
x, y ∈ T , we write x ≤ y if x is a prefix of y, and x < y if x ≤ y and |x| < |y|. For
positions x < y, [x, y] := {x′ : x ≤ x′ ≤ y} (respectively, [x, y) := {x′ : x ≤ x′ < y})
is the set of positions from x up to and including y (respectively, x up to but not
including y).

Given a finite alphabet A, the set TA of complete A-labelled binary trees is com-
posed of mappings t : T A that map a position x ∈ T to its label t(x) ∈ A. A
branch π induces an infinite word over Aω that describes the sequence of labels on
that path; we often identify π with this infinite word. If t ∈ TA and x ∈ T , then tx
denotes the subtree of t with root at x, so tx(y) = t(x · y).

We could also define labelled trees over a ranked alphabet A, where each symbol
has some finite arity and the resulting trees in TA have finite branching determined by
the rank of the symbol at a particular position (this is done in [CL10]). Occasionally,
we will encounter graphs with a tree structure and finite branching like this (see,
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e.g. the definition of a strategy tree in Section 4.1). However, for notational simplicity,
we restrict the input for automata over infinite trees to complete labelled binary trees
(i.e. trees where every symbol has arity 2), knowing that the definitions and results
could be extended to trees over a finite ranked alphabet.

We are now ready to describe cost automata on infinite trees. An (alternating)
cost automaton A over infinite trees is a tuple

〈Q,A, q0, O, δ〉

with a finite set of states Q, an alphabet A, an initial state q0 ∈ Q, an objective
O = 〈C, f, goal〉, and a transition function δ : Q× A B+([0, 1]× C×Q).

Given t ∈ TA, we represent A acting on t in terms of the cost game

A× t := 〈Q× T , (q0, ε), O, δ′〉

where δ′((p, x)) = δ(p, t(x))[(c, (q, xk))/(k, c, q)]. That is, a position in the game cor-
responds to a state of the automaton and a location in the input tree; the control
function δ′ modifies the transition function δ of the automaton to map to the appro-
priate positions in the game. We set JAK(t) := value(A× t), so A defines a function
JAK : TA N∞. We say that A recognizes a cost function g if JAK ≈ g.

If δ(q, a) is a disjunction of clauses (0, c′, q′)∧ (1, c′′, q′′) for all (q, a) ∈ Q×A, then
we say the automaton is nondeterministic. In this case, we often use a transition
relation ∆ : Q×A× (C×Q)× (C×Q) in place of δ, where (q, a, (c′, q′), (c′′, q′′)) ∈ ∆
if and only if (0, c′, q′) ∧ (1, c′′, q′′) is a disjunct in δ(q, a). Since the only choices of
Adam are in the branching, a strategy σ in some game A × t can be viewed as a
labelling of the binary tree such that each branch in the tree corresponds to a play
in σ, with positions labelled by the state of the automaton and edges labelled with
the action. We call such a labelling R a run of A over t, and write R(x) for the
state of the automaton at position x in this run. For a nondeterministic B-parity
(respectively, S-parity) automaton, the value of a run is the supremum (respectively,
infimum) of the values across all branches in the run tree.

3.3.1 Examples

Let A := {a, b} and consider the following examples of cost automata over infinite
trees.
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a

b

b a

a

b b

(q0, ε)

(q0, 0)

(q0, 00)

(ε, 1)

(q0, 01)

(ε, 1)

(q>, 01)

(cr, 2)

(i, 1)

(q0, 1)

(q0, 10)

(i, 1)

(q0, 11)

(i, 1)

(i, 1)

(q>, 1)

(q>, 11)

(cr, 2)

(cr, 2)

... ...

Figure 3.6. Input tree t and game A× t (see Example 3.13).

Example 3.13. Let g(t) = sup {|π|a : π is a branch in t} be the function that maps
a tree t to the maximum over all branches of the number of a-labelled positions on
the branch. We describe a simple S-[1, 2] automaton A recognizing this function.

Let A := 〈{q0, q>} ,A, q0,Cost{1},[1,2]
S , δ〉 where

δ(q0, e) := (0, (c, 1), q0) ∨ (1, (c, 1), q0) ∨ (1, (cr, 2), q>)

where c is i if e = a and ε otherwise. The state q> represents an accepting sink
state, so δ(q>, e) := (1, (ε, 2), q>) for all e ∈ A. Eve controls every move and is the
maximizing player. The idea is that at each position, Eve chooses whether to check-
reset the counter (if she has already seen a lot of a’s), or select the direction in the tree
with the most a’s and continue counting. Figure 3.6 shows an initial finite subtree of
some input tree t, and the game A× t that would come out of it.

Example 3.14. Consider the function f(t) = |t|a that counts the number of a’s in
an A-labelled binary tree. There is no cost-parity automaton computing exactly this
function, but there is an automaton A such that JAK ≈α f for α(n) = 2n.

The nondeterministic B-[1, 2] automaton recognizing this cost function acts as
follows. Initially, all transitions have priority 2. Eve makes a guess about which
subtrees have an a. If the current position is labelled with an a, or she guesses
that more than one subtree from the current position has an a, then the counter is
incremented. Adam chooses the direction. If it is in a direction that Eve guessed had
no a’s, then for the remainder of the play the counter is left unchanged, and priority
2 is output unless Adam witnesses an a, in which case the play stabilizes in priority 1.
Otherwise, if it is in a direction that Eve guessed had an a, then priority 2 is output
and play continues as described above.

Assume there is a tree that has n ∈ N a’s. Then any play can increment the counter
at most n times (when these n a’s are on the same branch). Hence, JAK(t) ≤ |t|a for
all t.

59



Chapter 3 · Cost Automata and Games

In the other direction, we prove that if JAK(t) ≤ n ∈ N, then |t|a < 2n where 2 is
the maximum arity (rank) of any label in A. We proceed by induction on n. If n = 0,
then the result is obvious: if the counter is never incremented, then tmust have no a’s.
For n > 0, consider the optimal strategy σ for Eve in A × t that witnesses value n.
Let d be the minimum depth at which a play in σ witnesses an increment. Take a
play π ∈ σ that witnesses an increment at this minimal depth d and corresponds
to position x in t. The subtrees from x can have value at most n − 1 via A, so by
the inductive hypothesis each of the subtrees can have at most 2n−1 − 1 positions
labelled a. So the tree rooted at x can have at most 2(2n−1 − 1) + 1 < 2n positions
labelled a.

We claim that there can be no a’s outside of the subtree rooted at x. Assume by
contradiction that there were another subtree t′ of t that contained a’s but was not
a subtree of tx. Then there must be a position y < x which has both tx and t′ as
subtrees. There must be an increment at this position (otherwise, Eve would have
needed to guess at y that at most one subtree had an a, and Adam could prove
otherwise), which is a contradiction based on the choice of depth d and position x.
Hence, |t|a < 2n as desired.

3.3.2 Duality

A natural expressivity question for cost automata is whether cost automata with
different objectives define the same class of cost functions. For alternating cost au-
tomata over infinite trees, it is straightforward to show that the B-parity and S-parity
objectives (as well as their hierarchical counterparts) are equivalent.

Theorem 3.15. It is effectively equivalent for a cost function f over infinite trees to
be recognizable by cost automata with the following objectives: B-parity, hB-parity,
S-parity, hS-parity. Moreover, for i < j,

• every B-[i, j] automaton is effectively equivalent to an hB-[i, j], S-[i+ 1, j + 1],
and hS-[i+ 1, j + 1] automaton, and

• every S-[i, j] automaton is effectively equivalent to an hS-[i, j], B-[i+ 1, j + 1],
and hB-[i+ 1, j + 1] automaton.

Proof. Assume we are starting with an alternating B-parity automaton B with ob-
jective CostΓ,P

B . We want to construct an equivalent alternating S-parity automa-
ton S. Let AcostΓ,P

B
be the id-history-deterministic S-automaton (over infinite words)
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described in Lemma 3.5 which recognizes costΓ,P
B . It would suffice to show that

JBK ≈ JSK, but in fact, we can show that JBK = JSK.
Fix some tree t. Then the cost game B × t is like the game B × t but with the

roles of the players reversed (conjunctions and disjunctions in the control function
switched) and the goal of the objective changed to max. Notice that in this new
game, the value for Eve is now the maximum over all strategies σ of the minimum
value of all plays π ∈ σ. This is like an S-parity automaton except for the fact that the
values of the plays π are computed using costΓ,P

B . Composing with the S-automaton
AcostΓ,P

B
results in a cost game with S-actions and priorities P ′ as desired. Note that

if P = [i, j] for i < j, then P ′ = [i+ 1, j + 1] (if i = j, then P ′ = [i+ 1, j + 2]).
More formally, let S be an alternating S-parity automaton such that S × t is

isomorphic to AcostΓ,P
B
◦ B × t for all t. Then

JSK(t) = value(S × t) = value(AcostΓ,P
B
◦ B × t) = value(B × t)

by Lemma 3.5 and Lemma 3.12. Moreover, by Proposition 3.11, value(B × t) =
value(B × t) = JBK(t). Hence, JSK(t) = JBK(t) for all t as desired.

The other transformations are similar, using the other history deterministic au-
tomata in Lemmas 3.5 and 3.6. Going from B to hB or S to hS is even simpler
since dualization of the game is not necessary, but these conversions introduce the
correction function from Lemma 3.6.

3.4 Cost automata with both counter types
We usually work with cost automata with a single objective, and consequently only
one type of counter, B or S. For some technical constructions later in this thesis,
however, we must work with both counter types simultaneously in the form of a non-
deterministic BS-Büchi automaton, described in joint work with Kuperberg [KVB11].
We define this type of automaton in this chapter with the other automaton models,
but recommend omitting this section on the first reading and returning to it when
needed in Chapter 6. For notational clarity, we use the traditional description of the
Büchi condition via a set of accepting states, rather than a parity condition (to make
it easier to distinguish between B-accepting and S-accepting states).

A nondeterministic BS-Büchi automaton over infinite words is a tuple

A = 〈Q,A, q0,ΓB, FB,ΓS, FS,∆〉.
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The set ΓB (respectively, ΓS) is the set of B-counters (respectively, S-counters); we
assume ΓB and ΓS are disjoint. Likewise, FB (respectively, FS) is the set of B-
accepting states (respectively, S-accepting states); these sets are not required to be
disjoint. The transition function is ∆ ⊆ Q×A×C×Q where C = BΓB × SΓS is the
set of counter actions.

A run ρ of A over u = a1a2 · · · ∈ Aω is (qi, ai+1, ci+1, qi+1)i∈N ∈ ∆ω. We say ρ is B-
accepting if Inf(ρ)∩FB 6= ∅. The B-value is valueB(ρ) := sup

{⋃
γ∈ΓB C(prγ(out(ρ)))

}
,

the supremum over the checked counter values coming from B-counters. The corre-
sponding notions of S-accepting and S-value are defined as expected by replacing B
with S and sup with inf in the definitions above.

We can define functions JAKB and JAKS as expected (by restricting to the B-part
or S-part of the run):

JAKB(u) := inf {valueB(ρ) : ρ is a B-accepting run of A on u} ,

JAKS(u) := sup {valueS(ρ) : ρ is an S-accepting run of A on u} .

We can also define semantics that are related to both counter types. In particular,
the S-semantics relative to the B-value is a function JAKBS : N Aω N∞ that seeks
to maximize the value over S-accepting runs that also have some bounded B-value:

JAKBS (m)(u) := sup
{

valueS(ρ) : ρ is an S-accepting run of A on u
and valueB(ρ) ≤ m

}
.

There is a corresponding notion of B-semantics relative to the S-value, but this will
not be needed.

We say A is BS-hierarchical (and call A a nondeterministic hBS-Büchi automa-
ton) if the counters ΓB ∪ ΓS are globally numbered [1, k] (for k = |ΓB| + |ΓS|) and
for any action on BΓB × SΓS there is some i ∈ [1, k] such that ε is performed on all
counters j > i and r on all counters j < i.

Example 3.16. Let A and A′ be nondeterministic BS-automata on infinite words
over A := {a, b, c} pictured in Figure 3.7, each with one B- and one S-counter. We
write a : (d, d′) if on input a, the output is action d (respectively, d′) for the S-
counter (respectively, B-counter). We omit self-loops with c : (ε, ε). All states are
B-accepting, but only the states that are not initial are S-accepting.

These automata are very similar. For instance, JAKB = JA′KB = | · |b. The key
difference is A′ is BS-hierarchical, with the B-counter above the S-counter.

Notice that we have JAKS ≈ | · |a (if there are a finite number of a’s, then the
best run of A moves to the accepting state when reading the final a; otherwise, for
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a : (cr, ε)

a : (i, ε)

b : (ε, ic)

a : (r, ε)

b : (r, ic)

a : (cr, ε)

a : (i, ε)

b : (r, ic)

a : (r, ε)

b : (r, ic)

Figure 3.7. Nondeterministic BS-Büchi automata A and A′ with A u A′ (see Exam-
ple 3.16).

every n, there is an accepting run of A such that the S-counter has value n). In
A′, however, the B-counter is higher than the S-counter so A′ forces a reset of the
S-counter when a b is read in the initial state. Since there is no a priori bound on
the number of b’s in the input, this means JA′KS 6≈ JAKS. However, for any fixed m
and any u such that JAKB(u) ≤ m, the S-value of A on u is ≈βm-equivalent to A′ on
u with βm(n) = n(m+ 1). This means that JAKBS (m) ≈βm JAKBS (m).

In order to capture the fact that these BS-Büchi automata are very similar, we
introduce a new equivalence relation u which we call BS-equivalence. We write
A uβ

α A′ for a correction function α and a family of correction functions (βm)m∈N if

• JAKB ≈α JA′KB, and

• for all m ∈ N, JAKBS (m) 4βm JA′KBS (α(m)) and JA′KBS (m) 4βm JAKBS (α(m)).

We say that A and A′ are BS-equivalent, written A u A′, if there exists α and
(βm)m∈N such that A uβ

α A′. The idea is that the B-semantics are preserved between
A and A′ as usual, and the S-semantics relative to the B-value are also preserved
(after adjusting for any differences in the bound on the B-value). Although it is
technical, this definition captures the notion that two BS-Büchi automata behave in
a similar fashion (as in Example 3.16).

It turns out that given any nondeterministic BS-Büchi automaton like A, there
is a nondeterministic hBS-Büchi automaton A′ satisfying A u A′. There is a similar
result in [BC06] for automata with both B- and S-counters but in a setting where only
boolean properties about boundedness and unboundedness are considered, unlike the
quantitative setting here.

This translation can be done effectively by a nondeterministic BS-Büchi trans-
ducer that reads an infinite word of non-hierarchical counter actions and outputs
BS-hierarchical counter actions. It does this in a history deterministic way, satisfy-
ing both the property of a history deterministic S-automaton as well as the stronger
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property that every run, including the runs driven by the history deterministic trans-
lation strategies, preserve the B-value (up to some correction α).

Let I(ΓB,ΓS) denote the BS-Büchi automaton that reads words over BΓB × SΓS

and outputs these actions unchanged.

Theorem 3.17 ([KVB11]). For all sets ΓB,ΓS of counters, there exists effectively
an hBS-automaton H(ΓB,ΓS) such that H(ΓB,ΓS) uβ

α I(ΓB,ΓS). Moreover, there
is a family of translation strategies (ϑn)n∈N such that for all u ∈ BΓB × SΓS , if
valueB(u) ≤ m and valueS(u) ≥ βm(n) then

• for all runs ρ of H(ΓB,ΓS) over u, valueB(ρ) ≤ α(m);

• the run ρ of H(ΓB,ΓS) driven by ϑn over u is S-accepting with valueS(ρ) ≥ n.

The transducer H(ΓB,ΓS) has the same set of B counters, but extra copies of the
S-counters. The principle of the automaton is to split the input word into sequences
of S-actions from {i, ε}∗ that are between resets of the B-counters. It uses one copy
of the S-counter to count the number of S-increments within each sequence, and
another copy to count the sequences with at least one S-increment. If the S-value
is high compared to the B-value, then the transducer will also have a high S-value,
obtained from one of the copies. Every state is B-accepting and S-accepting except
a single sink state which is not S-accepting but is still B-accepting. We omit the
formal technical proof but refer the interested reader to [KVB11].

Note that all of these definitions for nondeterministic BS-Büchi automata can
be extended to infinite trees in the expected way. This means that we can use the
transducers to transform arbitrary nondeterministic BS-Büchi automata over words
or trees into hierarchical BS-Büchi automata which are easier to work with.

In particular, we can package a nondeterministic B-Büchi and S-Büchi automa-
ton into a single nondeterministic BS-Büchi automaton and then convert into an
u-equivalent hBS-Büchi automaton. Let U = 〈QU ,A, qU0 ,ΓUB, F UB ,∆U〉 (respectively,
U ′ = 〈QU ′ ,A, qU ′

0 ,ΓU
′

S , F
U ′
S ,∆U ′〉) be a nondeterministic B-Büchi (respectively, S-

Büchi) automaton over trees. Then the nondeterministic BS-Büchi automaton U×U ′

defined by 〈QU ×QU ′ ,A, (qU0 , qU
′

0 ),ΓUB, F UB ×QU ′ ,ΓU ′
S , QU × F U

′
S ,∆〉 has transitions ∆

which combine transitions from ∆U and ∆U ′ on the same input. Lemma 3.12 and
Theorem 3.17 imply the following result.

Lemma 3.18. H(ΓUB,ΓU
′

S ) ◦ (U × U ′) u U × U ′.
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3.5 Discussion
This chapter has established the framework for cost automata on infinite words and
infinite trees. In particular, we have defined the semantics of alternating cost au-
tomata on infinite trees in terms of a two-player infinite-duration cost game in which
one player seeks to minimize the value and the other player seeks to maximize the
value according to some objective that takes the place of a classical winning condition.

In addition to definitions and examples, the most important results in this chap-
ter are related to transforming objectives. We showed that history deterministic
automata on words compose well with cost games (Lemma 3.12). Moreover, certain
history deterministic automata can be used to convert cost games to use a different
objective without changing the value. This allowed us to prove a duality result for
alternating cost-parity automata in Theorem 3.15, showing that alternating B-parity
automata over infinite trees and alternating S-parity automata over infinite trees
recognize the same cost functions.

One of the advantages of using alternating automata in the classical setting is that
complementation is easy: one only needs to switch conjunctions and disjunctions in
the transition function, and dualize the acceptance condition in order to construct an
automaton that accepts the complement language. Although the duality result here
was more involved, it still required only a switch of conjunctions and disjunctions
in the transition function, and then a composition with a history deterministic cost
automaton which dualized the objective.

In the classical theory, it is more challenging to show that alternating parity
automata can be simulated by nondeterministic parity automata. In the next chapter,
we turn to a much finer analysis of the strategies required in these cost games, which
will help us show that certain alternating cost-parity automata over infinite trees can
be simulated by nondeterministic cost-parity automata.
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Strategies in Cost Games

Strategies in games played on finite or infinite graphs can be complicated, with the
move at a given position depending on the entire history of the play leading to it.
A well-known result in the theory, however, is that parity games are positionally
determined [EJ91, Mos91]. Determinacy means that from each position in the game
one of the two players has a winning strategy. Positional determinacy implies that if
Eve, say, has a winning strategy, then Eve has a simple winning strategy where each
move only depends on the current position and does not require any memory of the
play leading to that position. Likewise, Muller games have finite memory determinacy
[GH82], which implies that there is a strategy for the winning player where each move
only depends on the current position and a state (taken from a finite set of memory
states) that is a function of the history of the play.

Büchi had already realized a connection between determinacy and complementa-
tion [Büc77]. Later, Muller and Schupp [MS84, MS95] showed a connection between
positional determinacy of parity games and simulation of alternating automata with
nondeterministic automata. Positional determinacy of parity games also has algorith-
mic consequences when solving a parity game on a finite game graph (i.e. determining
which player has a winning strategy from a given position) and can be used to show
that this problem is in NP ∩ co-NP. Hence, the shape of strategies in games has
proven to be quite important.

We prove in Section 4.2 that some cost-parity games admit finite memory (or even
positional) strategies while others do not. Unlike the classical case, restricting to finite
memory strategies cannot guarantee the exact value obtained using arbitrary strate-
gies; instead, we guarantee an ≈α-equivalent value where α is a correction function
that depends on the number of counters. We use these results to prove in Section 4.3
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that certain alternating cost-Büchi automata can be simulated by nondeterministic
cost-Büchi automata.

We also show in Section 4.4 that f 4 g is decidable when f is given as a non-
deterministic S-parity automaton and g as a nondeterministic B-parity automaton,
and describe how this is related to the classical decision procedure testing language
inclusion for regular languages of infinite trees.

This chapter is an expanded presentation of results first mentioned in [VB11] and
is one of the main contributions of this thesis.

4.1 Preliminaries
Let G = 〈V, v0, O, δ〉 be a cost game with O = 〈C, f, goal〉, where δ(v) is written in
disjunctive normal form for all v ∈ V . Recall that a strategy σ for Eve in G is a set
of plays such that if a partial play π ∈ pref(σ) ends in position v, then there is a
single disjunct in δ(v), say (c′1, v′1)∧ · · · ∧ (c′j, v′j), such that for every conjunct (c′i, v′i)
for i ∈ [1, j], π · (v, c′i, v′i) ∈ pref(σ).

We use a memory structure in order to describe the amount of memory used by
a strategy. A memory structure for G is a tupleM = 〈M,m0, update〉 such that M
is a set of memory states, m0 is the initial state, and update : M × EG M is the
memory update function. The function update∗ : M×E∗G M is defined inductively
such that update∗(m, ε) = m and for some partial play π = π(0) · · · π(j) ∈ E+

G ,

update∗(m,π) = update∗(update(m,π(0)), π(1) · · · π(j)).

The size of the memory structure is the cardinality of M .
We say that a strategy σ for Eve is a strategy using finite memory l if there is

a memory structure M = 〈M,m0, update〉 of size l ∈ N and a next-move function
next : M × V B+(C× V ) that satisfies the following conditions:

• for all m ∈M and v ∈ V , next(m, v) is a single disjunct in δ(v);

• π = (v0, c1, v1) · · · (vi, ci+1, vi+1) ∈ pref(σ) if and only if (ci+1, vi+1) is a conjunct
in next(update∗(m0, (v0, c1, v1) · · · (vi−1, ci, vi)), vi).

That is, next describes how Eve should choose her next move (a disjunct in δ(v))
based on the current position v and the memory state m given by update∗, which is
a function of the history of the play.

In the special case that l = 1, we say σ is a positional or memoryless strategy, and
next can be written as a function next : V B+(C× V ).
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A nice way to picture a strategy σ is in the form of a tree where each branch
represents a play π ∈ σ. We will call this the strategy tree T corresponding to σ
(sometimes called a run tree or computation tree in the literature [MS84]). Formally,
we view this as a graph where the initial position s0 (the root) is labelled with v0,
and if there is a path π in T ending in a position s labelled with v ∈ V , then there
is an edge labelled with action c′ ∈ C from s to s′ labelled with v′ ∈ V (written
(s, c′, s′)) if and only if π · (v, c′, v′) ∈ pref(σ). We write S for the set of positions in
the strategy tree T and h : S V for the homomorphism that maps a position s ∈ S
in the strategy tree to its label v ∈ V which is the corresponding game position.

For an arbitrary strategy and corresponding strategy tree T , Eve’s choice at a
particular v ∈ V may depend on the history of the play leading to v. Thus, there
may be s, s′ ∈ h−1(v) such that the moves in T from s and s′ are different. In a
positional strategy, however, the moves must be identical for any s, s′ ∈ h−1(v). For
a finite memory strategy, the moves must be identical for any positions s, s′ ∈ h−1(v)
with histories π and π′ such that update∗(m0, π) = update∗(m0, π

′).
Later in the chapter, we will take a strategy tree T , and construct a positional

strategy from it by choosing for each v ∈ V a single element of h−1(v) for Eve to
play like, regardless of the history of the play. In those settings, we view a positional
strategy as a mapping from V to S.

4.1.1 Classical results

A natural question to ask is how much memory is needed to describe the winning
strategies in some family of games. A fundamental result in the theory of infinite
games is that parity games are positionally determined, and therefore represent a
class of games with particularly simple winning strategies.

Theorem 4.1 ([EJ91, Mos91]). Parity games are positionally determined.

As mentioned earlier, a game is determined if from each position in the game, one
of the two players has a winning strategy. The determinacy of parity games follows
from the fact that the games are Borel (see the proof of Proposition 3.11). Moreover,
the winning player always has a winning positional strategy. The fact that positional
strategies are sufficient has been proven in many different ways (see [GTW02] for a
survey). Later in this chapter, we will adapt the signature-based approach found in,
e.g. [Wal96, Jur00, GW06] (see Section 4.2).

Regardless of the proof method, the positional determinacy of parity games has
important algorithmic consequences. Given a positional strategy in a parity game on
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a finite graph, it can be checked in polynomial time whether this strategy is winning
for a certain player from a given initial vertex (it amounts to checking certain graph
properties related to loops). Hence, this leads to an NP algorithm for determining,
for each node, whether Eve has a winning strategy from that position. Since it
is symmetric in the players, this leads to an NP ∩ co-NP algorithm for solving a
parity game (determining the winning regions for each player). In fact, this has
been improved to a UP ∩ co-UP algorithm in [Jur98], where UP is the complexity
class of problems solvable using an unambiguous nondeterministic polynomial time,
i.e. a nondeterministic polynomial time Turing machine with at most one accepting
computation for each input.

Theorem 4.2 ([Jur98]). Solving a parity game on a finite game graph is in the com-
plexity class UP ∩ co-UP.

A major open question in this field is whether there is a polynomial time algorithm
for solving parity games on finite graphs.

As mentioned in Chapter 3, another common winning condition is the Muller
condition. The latest appearance record construction [GH82] allows a Muller game to
be converted to a parity game such that Eve has a winning strategy from the initial
position in the original Muller game if and only if she has a winning strategy from
the initial position in the new parity game. Moreover, this reduction is effective and
is obtained by composing the original Muller game with a deterministic finite state
automaton, so the positional strategy in the parity game can be converted to a finite
memory strategy in the original Muller game.

Theorem 4.3 ([GH82]). Finite memory determinacy holds for Muller games. Solving
Muller games on finite game graphs is decidable.

Indeed, there are many other problems that can also be reduced to solving parity
games. For instance, deciding the emptiness problem for tree automata with a parity
acceptance condition (i.e. whether L(A) = ∅ for a parity automaton A) is polynomial
time equivalent to solving a parity game. Likewise, in Section 4.4 we show how to
reduce the decidability of the domination preorder 4 for some cost functions over
infinite trees to solving a Muller game, and hence solving a parity game.

4.1.2 Limitations with cost games

In classical parity and Muller games, the previous results imply that finite memory
strategies are sufficient: when looking for a winning strategy, we can always restrict
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Figure 4.1. The B-game Gn with no finite memory strategy of size n achieving the optimal
value (see Proposition 4.4).

the search to finite memory strategies. However, by restricting Eve to finite memory
strategies in cost games, she may not be able to achieve the optimal value. This is the
case even in very simple games on acyclic finite game graphs (called finite duration
cost games in [CL10]). We write, e.g. CostΓ

B for the objective that is similar to the
B-parity objective defined in Chapter 3, but with a condition involving a terminal
symbol rather than priorities since the plays are finite.

Proposition 4.4. Let G be the family of acyclic cost games with finite game graphs
and objective CostΓ

B where |Γ| = 2. For all n ∈ N, there is a game Gn ∈ G such that
any finite memory strategy σ of size n satisfies value(σ) > value(G).

Proof. Fix some n and consider the game Gn shown in Figure 4.1 with counters
Γ = {γ1, γ2} and objective CostΓ

B which is based on an example due to Löding [Löd09].
We write (c1, c2) for action c1 on γ1 and c2 on γ2. The idea is that Adam (respectively,
Eve) controls which counter to increment and check in the first set of n positions
(respectively, second set of n positions).

Assume for the sake of contradiction that there is a finite memory strategy σ in
the game Gn using memory structureM = 〈M,m0, update〉 with |M | ≤ n such that
value(Gn) = value(σ) = n.

Consider a set of plays {π0, . . . , πn} such that πi is a partial play ending in the
first position controlled by Eve that assigns value i to γ1 (and hence value n − i

to γ2). By the pigeon-hole principle there must be i 6= j such that update∗(m0, πi) =
update∗(m0, πj).

There must be a unique partial play πk starting from the first position controlled
by Eve such that πiπk ∈ σ and πjπk ∈ σ (there can be only one such play because
update∗(m0, πi) = update∗(m0, πj)). Assume γ1 (respectively, γ2) is incremented k

(respectively, n− k) times on πk.
Then value(σ) = sup {value(π) : π ∈ σ} ≥ max {value(πiπk), value(πjπk)}.
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The least possible value for value(πiπk) is n (in the case that k = n− i). Indeed, if
k 6= n− i, then value(σ) ≥ value(πiπk) > n which contradicts the initial assumption.

So suppose that k = n− i. Then

value(πjπk) = max {j + k, (n− j) + (n− k)}

= max {n+ (j − i), n+ (i− j)} > n

since i 6= j implies that j − i > 0 or i − j > 0. Hence, value(σ) > n = value(Gn),
contradicting the initial assumption.

Note that these games Gn could be defined in terms of an alternating cost automa-
ton A acting on words of the form anbn, where A has one state (which is initial and
accepting) and two counters, and on input a (respectively, b), Adam (respectively,
Eve) selects which of the two counters to increment and check.

The previous result is not actually problematic for the desired applications in this
thesis. Indeed, the theme in the theory of regular cost functions is that exact values do
not matter, since we only care about functions up to the cost function equivalence.
Hence, for a family of cost games we seek a correction function α such that finite
memory strategies achieve values that are ≈α-equivalent to the values obtained using
any strategies.

Definition 4.5. We say a cost game G = 〈V, v0, 〈C, f, goal〉, δ〉 admits α-m strategies
for Eve if restricting Eve to finite memory strategies of size m results in an ≈α-
equivalent value:

value(G) ≈α op {value(σ) : σ is a strategy using finite memory of size m in G}

where op is inf (respectively, sup) if goal = min (respectively, max). If m = 1, then
we say G is α-positional for Eve.

Given a family G of cost games, if there exists α and m ∈ N such that all cost
games G ∈ G have α-m strategies for Eve, then we say that finite memory (α-m)
strategies suffice for Eve in G . If m = 1, then we say that α-positional strategies
suffice for Eve.

The first positive result like this is due to Colcombet and Löding [CL08a] for cost
games on acyclic finite game graphs using hB and hB objectives, written CostΓ

hB

and CostΓ
hB (as mentioned before, these objectives are similar to the hB-parity and

hB-parity objectives defined in Chapter 3, but with a condition involving a terminal
symbol rather than priorities since the plays are finite).
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Figure 4.2. The hS-game Gα with no α-positional strategy (see Proposition 4.7).

Proposition 4.6 ([CL08a, Lemma 7],[CL10, Theorem 8]). Let G be the family of acyclic
cost games with finite game graphs and objective CostΓ

hB or CostΓ
hB for hierarchical

counters Γ. Then α-positional strategies suffice for Eve in G for α(n) = n|Γ|.

We will usually phrase the results in terms of strategies for Eve like this. Because
the dual objective CostΓ

hB is equivalent to switching the roles of the two players, an-
other way to state this result is that both Adam and Eve admit α-positional strategies
in CostΓ

hB games.
On the other hand, S-games do not necessarily admit positional strategies, even

when played on a finite acyclic game graph.

Proposition 4.7. Let G be the family of acyclic cost games with finite game graphs
and objective CostΓ

hS or CostΓ
hS for hierarchical counters Γ. For all α, there is a game

Gα ∈ G that is not α-positional for Eve.

Proof. Fix some α. Consider the game Gα ∈ G shown in Figure 4.2.
The idea in Gα is that Adam chooses one of two counters to increment α(0) + 1

times, and then Eve chooses one of the two counters to check-reset. Since Eve is the
maximizing player in an hS-game, the optimal strategy for Eve is to always check-
reset the counter that Adam increments. Hence, value(Gα) = α(0) + 1.

However, a positional strategy σ for Eve must select a single counter to check-reset
regardless of how Adam plays. If Eve check-resets counter 1 (respectively, counter 2),
then the play π ∈ σ in which Adam increments counter 2 (respectively, counter 1),
has value 0. Hence, value(σ) = 0 for any positional strategy σ, contradicting the fact
that Gα is α-positional.

Likewise, consider the hS-game played on the same game graph, but where Eve
is now the minimizing player. The value of the game is 0 (since Eve can choose to
check-reset the counter that was not incremented by Adam) but the value of any
positional strategy is α(0) + 1. This shows that this hS-game is not α-positional.
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(r, 1)

(ic, 2)

(i, 1)

(cr, 0)

(ε, 0)

Figure 4.3. Cyclic hB-[1, 2] and hS-[0, 1] games with no α-positional strategies (see Propo-
sition 4.8).

Similar to Proposition 4.4, we point out that these games could be defined as
A×u for a suitable alternating hS-automaton or alternating hS-automaton on finite
words over the alphabet {a, b}.

The results are also negative when allowing cyclic game graphs.

Proposition 4.8. There is a cyclic hB-[1, 2] game G and cyclic hS-[0, 1] game with
one counter such that for all α, there is no α-positional strategy for Eve.

Proof. Consider the following games in Figure 4.8. We claim that neither admits
α-positional strategies for any α.

Consider the hB-[1, 2] game on the left that has value 1 (the optimal strategy
alternates between selecting the (r, 1) edge and the (ic, 2) edge which ensures that
the parity condition is satisfied and the counter achieves value at most 1). However,
a positional strategy must select only one of these edges. If it selects (r, 1) then
the parity condition is not satisfied; if it selects (ic, 2), then the parity condition
is satisfied but the counter value is unbounded. Hence, any positional strategy has
value ∞, and there is no correction function α such that α(1) =∞.

Next consider the hS-[0, 1] game on the right that has value ∞ (there is a family
of strategies σn for Eve that stay in the initial position until the counter achieves
value n; hence, the supremum over these strategies is ∞). However, a positional
strategy must select for the initial position only a single edge to be taken. If the
(i, 1) loop is selected, then the only play consistent with this strategy has value 0
because the parity condition is not satisfied; if the (cr, 0) edge is taken, then the only
play consistent with this strategy has value 0 since the counter is checked without it
ever being incremented. In either case, the value according to a positional strategy
is 0, and there is no correction function α such that α(0) =∞. In fact, it is not hard
to see that even finite memory strategies (of any size) do not suffice for Eve.
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Note that this is very different than the classical setting where parity games admit
finite memory (in fact, positional) strategies even on cyclic game graphs.

This is not a major setback, since we are primarily interested in the games A× t
where A is an alternating cost-parity automaton and t is a tree. These games are
finite branching (there are only finitely many outgoing edges from any position) and
acyclic (there are no cycles in the game graph). The finite branching condition is
often needed in order to apply König’s lemma which, in one common form, states
that a finitely branching tree with infinitely many nodes must contain an infinite
branch.

Some proofs in the next section also require a chronological game graph. We say
a game G = 〈V, v0, O, δ〉 is chronological if there is a mapping depth : V N from
positions in the game to N such that depth(v0) = 0 and if v′ appears in δ(v), then
depth(v′) = depth(v) + 1. Notice that if a game is chronological then it is acyclic.
For games A× t, depth((q, x)) is simply |x|, the depth of position x in the tree t.

4.2 Shape of strategies in cost-parity games
In this section, we describe the shape of strategies in certain cost-parity games. Theo-
rem 4.9, Corollary 4.11, and Corollary 4.12 summarize the results for cost games that
allow infinite plays (in contrast to the finite duration games mentioned in Proposi-
tion 4.6).

Theorem 4.9. Let G be a cost game 〈V, v0, O, δ〉. For all sets P of priorities, G admits
α-m strategies for Eve if

(a) O = 〈{ic, ε} × P, cost{1},PB ,min〉, α = id, m = 1;1 or

(b) O = 〈{ic, r} × P, cost{1},PB ,min〉, α(n) = 2n, m = 2, and G is chronological.

For all sets Γ = [1, k] of counters, G admits α-m strategies for Eve if G is chronological
and finite branching and

(c) O = CostΓ,[1,2]
hB , α(n) = (n+ 1)k, m = 2; or

(d) O = CostΓ,[0,1]
hB , α(n) = (n+ 1)k, m = 2.

1A similar result holds for O = 〈{ic, ε} × P, cost{1},PB ,max〉, α = id, m = 1 [CL12].
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Parts (a) and (b) are not new. Part (a) was previously known [CL12] but un-
published, and part (b) follows from the published work in [CKL10]. These cases
allow any set of priorities P but restrict to a subset of actions from B. The games
in part (a) are called distance-parity games since the allowed counter actions corre-
spond to the actions in the distance automata of Hashiguchi [Has82], and the games
in part (b) are called desert-parity games since they correspond to the actions in the
desert automata of Kirsten [Kir04]. We give proofs of these results in Sections 4.2.1
and 4.2.2 for completeness, and in order to introduce techniques that will be used in
the new parts (c) and (d).

The proofs of parts (c) and (d) given in Sections 4.2.3 and 4.2.4 are contributions
of this thesis. These proofs are an improved and expanded presentation of results
first stated in [VB11]2, and are fundamental for the results in later chapters.

A key technique in the proofs of parts (b)–(d) is to use composition with history
deterministic automata to convert between games with different objectives. We have
already seen in Lemma 3.12 that composition with history deterministic automata
preserves the value of the game. The memory required for strategies in the original
game is also related to the memory required for strategies in the composed game and
the number of states in the history deterministic automaton.

Lemma 4.10. Let A = 〈Q,A, q0, 〈C, g, goal〉,∆〉 be an α-history-deterministic cost
automaton over infinite words and G = 〈V, v0, 〈A, JAK, goal〉, δ〉 be a cost game. If A◦
G admits finite memory strategies of size N for Eve, then G admits finite memory
strategies of size |Q| ·N for Eve.

Proof. Assume that goal = min, value(G) ≤ n, and G ′ := A◦G admits β-N strategies.
By Lemma 3.12, value(G ′) ≤ α(n) and since we are assuming G ′ admits β-N strategies,
there is a finite memory strategy σ′ of size N in G ′ with value(σ′) ≤ β(α(n)). It
suffices to show that there is a finite memory strategy of size |Q| · N with value at
most β(α(n)) in G.

There is a memory structureM′ = 〈M,m0, update′〉 with |M | = N and next-move
function next′ : M × (Q×V ) B+(C× (Q×V )) describing Eve’s choices in σ′. We
construct a new memory structureM := 〈Q ×M, (q0,m0), update〉 for G. We need
to define next and update (which will then induce a finite memory strategy σ for G).

Fix some m ∈ M , q ∈ Q, and v ∈ V and assume that next′(m, (q, v)) =
(c1, (q1, v1)) ∧ · · · ∧ (cj, (qj, vj)) and let mi := update′(m, ((q, v), ci, (qi, vi)) for all

2In [VB11], the assumption about chronological game graphs was implied but not stated explicitly.
Part (d) was also not stated clearly in that paper.
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i ∈ [1, j]. Recall that there is an edge from (q, v) to (qi, vi) with action ci in G ′ if
and only if there is an edge from v to vi labelled by some ai in G and there is some
(q, ai, ci, qi) ∈ ∆. This means that there is some (q, ai, ci, qi) ∈ ∆ for all i ∈ [1, j] and
we can define next((q,m), v) := (a1, v1)∧· · ·∧(aj, vj) and update((q,m), (v, ai, vi)) :=
(qi,mi). By doing this for all m, q, and v, next and update induce a finite memory
strategy σ of size |Q| ·N in G.

For every π′ ∈ σ′, there is a corresponding play π ∈ σ. Consider out(π′) = u′ ∈ Cω

and out(π) = u ∈ Aω. By the definition of next and update above, the sequence u′ is
the output from a run of A on u. But value(π) in G is defined as the minimum value
across all runs of A on u. This means that value(π) ≤ value(π′) ≤ β(α(n)). Since
this is true for all π ∈ σ, σ is the desired finite memory strategy of size |Q| ·N with
value at most β(α(n)).

The proof is similar for goal = max.

For instance, using the deterministic transducers in Lemma 3.7, we can reduce
B-parity games with multiple counters but restricted actions {ic, ε} or {ic, r} to the
single counter distance-parity or desert-parity cases from part (a) or (b).

Corollary 4.11. Fix B′ ∈ {{ic, ε} , {ic, r}}. For all i ≤ j, finite memory strategies
suffice for Eve in B-[i, j] games on chronological game graphs where the actions for
each counter are restricted to B′.

Likewise, because there is a finite memory reduction from B-parity games to hB-
parity games (via the deterministic automaton in Lemma 3.6), we get the following
corollary of Theorem 4.9 parts (c) and (d).

Corollary 4.12. Finite memory strategies suffice for Eve in B-[1, 2] games and B-[0, 1]
games on chronological game graphs with finite branching.

In the remainder of this section, we prove each part of Theorem 4.9 in turn.

4.2.1 Positional strategies in distance-parity games

There have been a number of approaches for proving positional determinacy in parity
games. We use signature assignments in the style of [EJ91, Wal96] and [Jur00] (where
they are called small progress measures). As an introduction to this signature assign-
ment method, we prove that id-positional strategies suffice for Eve in distance-parity
games.3

3There are alternative approaches to proving this result, including a proof using an attractor
construction and induction on the number of priorities [CL12].

77



Chapter 4 · Strategies in Cost Games

We start with a strategy τ that witnesses a bounded cost n in some distance-parity
game G = 〈V, v0, O, δ〉. Without loss of generality, we assume that P = [i, j] for
i ∈ [0, 1] (this can be accomplished by shifting the range of indices by multiples of 2).
We consider the corresponding strategy tree T , and let V (respectively, S) denote the
set of positions in G (respectively, T ). Let h : S V denote the homomorphism that
maps a position in the strategy tree to the corresponding game position.

Using τ , Eve’s choice at a particular v ∈ V may depend on the history of the
play leading to v. Thus, there may be s, s′ ∈ h−1(v) such that the moves possible
from s and s′ are different. We will define a positional strategy σ by selecting a single
element of h−1(v) for Eve to play like (regardless of the history) when she reaches a
position v. As a result, we think of σ as a mapping from V to S.

The proof consists of the following steps.

1. Define a signature for each node in T that captures relevant information about
the game. Specify an ordering on signatures (in our case, this will always be a
lexicographic ordering on vectors of ordinals or natural numbers).

2. Construct a positional strategy σ by mapping v ∈ V to the element in h−1(v)
with the least signature.

3. Prove that value(σ) ≈α value(τ).

In this distance-parity case, the components of the signature need to include
information about both the counters and the priorities. Since we want to minimize
the number of increments and the number of high odd priorities, the components of
the signature should measure these things.

• Let β(s) ∈ [0, n] be the number of times a path from s in T can increment the
counter. The strategy should try to minimize β in order to minimize the cost.

• For p ∈ P , let ηp(s) be an ordinal that represents the maximum number of
times a path from s in T visits some priority p before visiting a higher priority.
Formally, let X0

p be the set of s ∈ S such that every path from s visits a priority
greater than p before visiting priority p, and for all ordinals β > 0, let Xβ

p be the
set of s ∈ S such that for any s′ ∈ S with a path from s to s′ visiting priority p,
every successor of s′ is in ⋃β′<βX

β′
p . Then ηp(s) := inf

{
β : s ∈ Xβ

p

}
. This is

well-defined when T is a strategy tree witnessing value n and is well-known
from the classical setting (see, e.g. [GW06] for more information). The strategy
should try to minimize ηp for odd p in order to satisfy the parity condition.
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〈3, ω〉

〈1, 0〉

〈0, 0〉

〈0, 0〉

(ε, 2)

(ic, 2)

(ic, 1)

〈2, ω〉

〈0, 1〉

〈0, 0〉

(ε, 1)

(ε, 1)

〈1, ω〉

〈0, 2〉

(ic, 1)

〈0, ω〉

(ε, 0)

(ic, 0)

(ic, 0)

...
Figure 4.4. A distance-parity strategy tree annotated with the signature.

Based on these components, we define the signature at s in T to be

sig(s) := 〈β(s), ηp′(s), ηp′−2(s), . . . , η3(s), η1(s)〉

where p′ is the maximum odd priority in P . We write sig(s) < sig(s′) if the vector
from sig(s) is less than sig(s′) under the standard lexicographical ordering.

We give an example in Figure 4.4 of a strategy tree that comes from a distance-
parity game using priorities [0, 2] and a bounded cost of 3 (at most 3 increments on
any play). Each node s is labelled with the signature 〈β(s), η1(s)〉. We assume there
are no increments outside of the portion of the strategy tree shown in Figure 4.4. The
spine 1ω uses only priority 0, but starting from each node 1i is a branch with i + 1
occurrences of priority 1 before the play stabilizes in priority 2. Note that β(s) ≤ 3
for all s ∈ S since the strategy tree has a bounded cost 3. However, despite the fact
that each branch only has finitely many positions with priority 1 before priority 2 is
visited, η1(s) = ω for s ∈ 1∗ because there is no natural number bound on the number
of priority 1 before priority 2 on the branches leading from the spine.

The following lemma describes the conditions under which the components of the
signature decrease.

Lemma 4.13. Let T be the strategy tree corresponding to a strategy τ witnessing some
bounded value n for a distance-parity game G. Then for any edge (s, (c, p), s′) in T ,

(a) β(s′) ≤ β(s) ≤ n, and β(s′) < β(s) if c = ic;

(b) for all odd q > p, ηq(s′) ≤ ηq(s);

(c) if p is odd, then ηp(s′) < ηp(s).
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The fact that T comes from a distance-parity game where the counter can only
be incremented or left unchanged (never reset) means that β is non-increasing (and
has a maximum value of n). The components related to the priorities can increase:
if p is the current priority, ηq for q < p can increase. However, ηq for q > p must
either decrease or stay the same since visiting priority p cannot increase the maximum
number of times a priority q > p is visited before a higher priority is seen. Also, if
p is an odd priority, than the ηp component of the signature must strictly decrease.
Note that this lemma would not hold if T did not represent a strategy where each
branch satisfied the parity condition and had counter value at most n.

We can now prove that distance-parity games are id-positional. As mentioned
earlier, this result was previously known but unpublished [CL12].

Proposition 4.14. If G is a distance-parity game, then G is id-positional for Eve.

Proof. Fix an optimal strategy τ witnessing value(G) = n. For each node s in the
corresponding strategy tree T , we define

sig(s) := 〈β(s), ηp′(s), ηp′−2(s), . . . , η3(s), η1(s)〉

as described above. We use this to construct a positional strategy σ : V S where
σ(v) selects the node s ∈ h−1(v) with the lexicographically-least signature. For v ∈ V ,
let sig(v) := sig(σ(v)).

It is clear that value(τ) ≤ value(σ) (otherwise τ would not be optimal).
We now show that σ satisfies value(σ) ≤ value(τ). Suppose for the sake of contra-

diction that value(σ) > value(τ). Then there exists π = (v0, c1, v1)(v1, c2, v2) · · · in σ
such that value(π) > n. By Lemma 4.13 and the definition of σ, β is non-increasing
on π, and if the counter is incremented then β must strictly decrease. Hence, the
counter is incremented at most n times, and there must be some position in π after
which β is constant.

This means that the only way for π to exceed value n is if the parity condition
is not satisfied on π. Let i be the position in π after which β is constant and any
priority that occurs is in Inf(π) (the set of infinitely occurring priorities in π). Let o
be the maximum priority occurring infinitely often in this suffix; we know o must be
odd since we are assuming that the parity condition is not satisfied.

Consider some v = vi′ for i′ ≥ i and the move (v, (c, p), w) from v = vi′ to
w = vi′+1 in G according to π. There is a corresponding move (r, (c, p), s) from
r = σ(v) to some position s in T with h(s) = w (but s is not necessarily σ(w)). Then
sig(v) = sig(r) ≥ sig(s) ≥ sig(w) by definition of σ and Lemma 4.13. Moreover, if
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G Gτ D ◦ Gτ
objective O
strategy τ

safety objective objective O

positional strategy σ′
with value(σ′) ≈α value(τ)

finite memory strategy σ of size |D|
with value(σ) ≈α value(τ)

Figure 4.5. Proof structure for Theorem 4.9 parts (b)–(d).

p = o (the maximum odd priority occurring infinitely many times) then sig(r) > sig(s)
by Lemma 4.13, which implies that sig(v) > sig(w). Hence, we can build an infinite
descending chain of signatures

sig(vi0) > sig(vi1) > · · ·

where i ≤ i0 < i1 < · · · index the infinitely many moves in π visiting priority o. This
contradicts the well-foundedness of vectors of ordinals.

4.2.2 Finite memory strategies in desert-parity games

Now let G be a chronological desert-parity game with priorities P = [i, j] for i ∈ [0, 1].
Recall that the allowed counter actions in G are {ic, r}. Minimizing the signature
from Proposition 4.14 does not work because β is no longer non-increasing: after a
reset, the number of increments from a given position may increase, which means the
value of β may also increase. Therefore, minimizing the signature from the previous
section would always keep the counter values bounded, but could result in a play
that does not satisfy the parity condition because minimizing β would always take
precedence over minimizing the number of visits to odd priorities.

Assume value(G) = n ∈ N. Then there is some strategy τ that witnesses value n.
We seek a finite memory strategy of size two that witnesses value at most 2n.

The idea is that we will convert the desert-parity game G into a more structured
desert-parity game D◦Gτ (via Gτ , which has a different objective). In the game D◦Gτ
it is possible to prove that there is a positional strategy using a similar technique as
Proposition 4.14. We then show that this positional strategy can be used to find a
finite memory strategy in the original game, where the memory depends on D (see
Figure 4.5).

The first step is to define a desert-safety game Gτ = 〈V, v0, O
′, δ′〉 based on G

and τ . This new game is identical to G except signals $ have been added to the
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output for counter actions leading to depths that are multiples of n+ 1.4 Formally,

δ′(v) =

δ(v)[(c$, w)/(c, w)] if depth(v) = j(n+ 1)− 1 for some j ≥ 1
δ(v) otherwise

For a particular j ∈ N, the game positions between depths j(n+1) and (j+1)(n+1)−1
(i.e. between occurrences of $) are called a slice. The new objective in Gτ is

O′ := 〈({ic, r} × P ) · {ε, $} , f ′,min〉

where f ′ assigns the usual cost to a play based on cost{1},PB but also ensures that there
is at least one reset between the signals in the word (and assigns value ∞ if not).
This new game can be viewed as a more structured version of the original game since
the signals $ provide information about depths. However, the value of the game is
the same.

Lemma 4.15. value(G) = value(Gτ ) = n.

Proof. The strategy τ from G can be played in Gτ simply by adding the $ output at
appropriate depths. It is not hard to see that τ still has value n in Gτ . Therefore,
value(Gτ ) ≤ value(G). Assume for the sake of contradiction that there were a strat-
egy τ ′ in Gτ with value strictly less than n. Then this strategy (with $ removed) could
be played in G to witness value less than n, contradicting the fact that value(G) = n.
Together, this means value(G) = value(Gτ ).

Now define D to be the deterministic desert-P automaton over infinite words that
recognizes the valuation f ′ in O′ (see Figure 4.6). It reads words over the alphabet
({ic, r} × P ) · {ε, $}, checking whether there is at least one reset between $, and
otherwise outputs counter actions and priorities according to the original operations
(notice that only priority 1 is output in state qrej, so this can be viewed as a rejecting
sink state that could be omitted without changing the value).

Let G ′ := D◦Gτ . Because D is deterministic, the composition game D◦Gτ has the
same value as Gτ (by Lemma 3.12) but now uses actions from a traditional desert-P
game. Despite the fact that it has the same objective as the original game, the new
game carries additional information: namely, a position in the game graph is now of
the form (q, v) and the state q of D stores whether or not a reset has been visited yet

4The notation Gn (rather than Gτ ) would probably be more indicative of the relationship with G
since this new desert-safety game depends on value(τ) = n, but does not require any other informa-
tion about τ . However, for consistency in notation with the later sections, we use the notation Gτ
here.

82



4.2 · Shape of strategies in cost-parity games

q1 q0 qrej

(ic, p) : (ic, p)
(r, p) : (r, p)

(ic, p)$ : (ic, p)
(r, p)$ : (r, p)

(ic, p) : (ic, p)
(r, p)$ : (r, p)

(ic, p)$ : (ic, p)

(r, p) : (r, p)

(ic, p) : (r, 1)
(r, p) : (r, 1)

(ic, p)$ : (r, 1)
(r, p)$ : (r, 1)

Figure 4.6. Deterministic desert-parity automaton D recognizing the valuation in a desert-
safety game.

in the current slice. The additional structure in this game makes it easier to define
a positional strategy with a low value. Indeed, it prevents the positional strategy
defined below from jumping between parts of the strategy tree in such a way that it
avoids doing a reset.

Based on this observation, we will use a signature that only captures information
relevant to the parity condition. The components of the signature are the ηp defined
on page 78. These components decrease as described previously when in a strategy
tree witnessing a bounded value n.

Lemma 4.16. Let T ′ be the strategy tree corresponding to a strategy τ ′ witnessing
some bounded value n in a desert-parity game G ′. Then for any edge (s, (c, p), s′) in T ′,

(a) for all odd q > p, ηq(s′) ≤ ηq(s);

(b) if p is odd, then ηp(s′) < ηp(s).

Lemma 4.17. There is a positional strategy σ′ in G ′ such that value(G ′) ≈α value(σ′)
for α(n) = 2n.

Proof. Assume value(G ′) = n ∈ N. Fix some strategy τ ′ in G ′ and let T ′ be the
corresponding strategy tree witnessing value n. We define

sig(s) := 〈ηp′(s), ηp′−2(s), . . . , η3(s), η1(s)〉

where ηp is defined on page 78 and p′ is the highest odd priority. Let σ′ : V S

be the positional strategy such that σ′(v) selects the node s ∈ h−1(v) with the
lexicographically-least signature.

It is clear that value(σ′) ≥ value(G ′) (since value(G ′) is defined as the minimum
value over all strategies, which includes σ′).

We now show that σ′ satisfies value(σ′) 4α value(G ′) for α(n) = 2n. Suppose for
contradiction that value(σ′) > 2n. Then there is some π = (v0, c1, v1)(v1, c2, v2) · · · in
σ′ such that value(π) > 2n.
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If π fails to satisfy the parity condition, then we can use an argument similar
to the end of the proof of Proposition 4.14 to build an infinite descending chain of
signatures, which is a contradiction.

Hence, in order for value(π) > 2n, there must be some segment of π witnessing
2n + 1 increments without a reset. Because of the length of this segment, there is a
subsegment (w0, (d1, p1), w1) · · · (wn, (dn+1, pn+1), wn+1) with dk = ic for k ∈ [1, n+ 1]
and w0 = vj(n+1) for some j ≥ 0. This means that this subsegment represents a
portion of π spanning an entire slice (from depth j(n+ 1) to (j + 1)(n+ 1)− 1) and
having n+ 1 increments. Let sk := σ′(wk) for k ∈ [0, n+ 1].

Because w0 is a position at the beginning of the slice, the game position must
store the fact that no reset has been seen yet in the current slice (this is the part
of the state coming from the memory of D). Now σ′ plays like s0, moving to some
game position w1 and outputting ic. Since no reset occurred, the position w1 must
also record the fact that no reset has yet occurred in this slice. Continuing like this,
we eventually reach position wn that for the same reasoning must also record that no
reset has yet been seen in the slice. But dn+1 = ic, which means that there is some
branch from a position in h−1(w0) to sn+1 in T ′ that witnesses no resets in this slice.
This contradicts the fact that T ′ is a strategy tree of value n, since a branch in T ′

without a reset in some slice should yield value ∞.
Another way to think about this is to consider the worst scenario for σ′. We have

just seen that any play consistent with σ′ must respect the condition that a reset
is visited in each slice. But the positional strategy σ′ could jump between branches
in T ′ in such a way that it builds a segment r(ic)n(ic)nr that spans two slices and
satisfies the condition that each slice has a reset, but yields value 2n.

We have shown that every play in σ′ must satisfy the parity condition and have
counter value at most 2n, which means that value(G ′) ≈α value(σ′) for α(n) = 2n.

We can use this lemma to show that the original desert-parity game G admits a
finite memory strategy.

Proposition 4.18. If G is a chronological desert-parity game, then there exists an α-2
finite memory strategy σ for Eve such that value(G) ≈α value(σ) for α(n) = 2n.

Proof. Assume G is a desert-parity game with value(G) = n ∈ N. Then there is some
optimal strategy τ witnessing value n. As described above, we construct Gτ based
on G and τ , and by Lemma 4.15, value(Gτ ) = value(G). Moreover, by Lemma 3.12,
value(D ◦ Gτ ) = value(Gτ ), since D is id-history-deterministic (indeed D is determin-
istic) and JDK = f ′, the valuation in the objective for Gτ . Hence, there is a strategy τ ′
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in G ′ := D ◦ Gτ with value(τ ′) = n. This means we can apply Lemma 4.17 to get a
positional strategy σ′ for Eve in G ′ with value at most 2n.

As described in the Lemma 4.10, this implies that there is a finite memory strat-
egy σGτ in Gτ of value at most 2n, and the size of the memory depends on the number
of states in D. Although the automaton in Figure 4.6 uses three states, we can actu-
ally omit the rejecting sink state qrej since any strategy of low value will never need
to use this state. Hence there is a finite memory strategy of size 2 in Gτ of value at
most 2n using some memory structureMGτ = 〈{q0, q1} , q0, updateGτ 〉 where updateGτ
mimics the transition function in D.

Finally, we can take this finite memory strategy σGτ and remove all $ from the
output to get a finite memory strategy σ of size 2 in G with value at most 2n.
The memory structure is based on MGτ but must account for the fact that $ no
longer appears explicitly in the output. This means thatM := 〈{q0, q1} , q0, update〉
where update(m, (v, (c, p), v′)) := updateGτ (m, (v, (c, p)b, v′)) and b is $ if depth(v) =
j(n+ 1)− 1 for some j ≥ 1, and ε otherwise.

Thus, we have shown that finite memory strategies of size 2 suffice for Eve in
desert-parity games.

This result also follows from [CKL10]. In that work, temporal cost functions are
studied over finite words. This subclass of regular cost functions admits various equiv-
alent presentations, including B-automata where the counter actions are restricted
to ic and r, as well as the one counter version that corresponds to desert automata.
Temporal cost functions also admit a “clock-based presentation” in which a regular
language over words is labelled with ticks of a clock (where the ticks of the clock do
not depend on the particular input). This approach can be extended to infinite trees
[CKL10, Col12b] and the slices in the proof here roughly correspond to the ticks of
the clock in the clock-based presentation.

4.2.3 Finite memory strategies in hB-[1,2] games

We now turn to Theorem 4.9, part (c). For notational convenience, we will use the
same names (such as G, Gτ , and D), even though these define different objects in this
case. In this way, the proof outline in Figure 4.5 still applies.

hB-safety games

We start by examining the properties of hB-safety games. Let C := H
[1,k]
B × [1, 2] be

the output alphabet for an hB-[1, 2] game (see Section 3.1), and let C′ := C · {ε, $}.
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The hB-safety objective over hierarchical counters Γ is

Safety-CostΓ,[1,2]
hB = 〈C′, safety-costΓ,[1,2]

hB ,min〉.

The valuation safety-costΓ,[1,2]
hB is a function that reads words over C′, the usual alpha-

bet for hB-[1, 2] games extended with signals $. For u ∈ (C′)ω, safety-costΓ,[1,2]
hB (u) is

defined as follows.

• If there are finitely many $ in u, then safety-costΓ,[1,2]
hB (u) :=∞.

• If there are infinitely many $ in u, then u = u0$u1$ · · · such that each ui ∈ C∗

contains no $. If there is some ui in u such that there is no priority 2, then
safety-costΓ,[1,2]

hB (u) := ∞. Otherwise, safety-costΓ,[1,2]
hB (u) := costΓ,[1,2]

hB (h$(u))
where h$ removes all $ from u.

The idea is that this valuation not only ensures that priority 2 is visited infinitely
often, but also that it is visited at least once in each slice between signals $.

It is not hard to see that there is a two state deterministic hB-[1, 2] automaton D
on words over the input alphabet C′ and with objective 〈C, costΓ,[1,2]

hB ,min〉 recognizing
safety-costΓ,[1,2]

hB . This automaton has two states which are used to remember whether
priority 2 has been seen in the current slice between signals $, and otherwise outputs
actions from C unchanged.

By Lemma 3.12, we can compose D with any hB-safety game G to get a game with
an hB-[1, 2] objective but the same value. This composition D ◦ G admits positional
strategies.

Lemma 4.19. For every chronological hB-safety game G with finite branching, there
is a positional strategy σ′ in G ′ := D ◦ G such that value(G ′) ≈α value(σ′) for α(n) =
(n+ 1)k where k is the number of hierarchical counters.

Proof. Fix a strategy τ ′ witnessing a bounded cost n in G ′ := D ◦ G. For each node
s in the corresponding strategy tree T ′, we define

sig(s) := 〈βk(s), βk−1(s), . . . , β1(s)〉

where βj(s) is the number of times a path from s can increment counter j before a
reset. Note that βj(s) ≤ n for all j ∈ [1, k] and all s ∈ S. Moreover, in a move (s, c, s′)
where counter j is the highest counter with action not equal to ε, βj′(s′) ≤ βj′(s) for
j′ ≥ j, and βj(s′) < βj(s) if the action on counter j is ic.
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We use this to construct a positional strategy σ′ : V S where σ′(v) selects the
node s ∈ h−1(v) with the lexicographically-least signature. We let sig(v) := sig(σ′(s)).

We must show that σ′ satisfies value(σ′) 4α value(τ ′) where α(n) := (n + 1)k.
Suppose for contradiction that value(σ′) > α(value(τ ′)). The first thing to notice
is that each play consistent with σ′ must satisfy the parity condition. Assume not.
Then there is some position after which no transitions of priority 2 occur, so there
is some i such that no transitions of priority 2 occur between di and di+1. Let v
be the position in the play at di. We proceed by induction on the length l of the
play between di and di+1 that does not witness transitions of priority 2. If l = 1
(i.e. di+1 − di = 1), then the fact that no transition of priority 2 occurred between
di and di+1 means that there is some node s ∈ h−1(v) at depth di in T ′ such that
there is a move from s that is not labelled with priority 2. This contradicts the fact
that T ′ is a strategy tree for τ ′ witnessing value n. Otherwise, if l > 1, let v be the
position at depth di and let v′ be the next position in the play using strategy σ′. We
can assume the transition between v and v′ is labelled with priority 1 (otherwise we
immediately have a contradiction). The important point is that the positions in G ′

record the state of D. This means that any s′ ∈ h−1(v′) with parent s in T ′ (note
that h(s) is not necessarily v) must also have an edge that is labelled with priority 1
and must be at depth di + 1 because the game graph is chronological. This means we
can apply the inductive hypothesis from v′ to get the desired contradiction.

The only other way value(σ′) > α(value(τ ′)) is if there is some counter j (for
1 ≤ j ≤ k) that is incremented more than (n+ 1)k times on (v0, c0, v1)(v1, c1, v2) · · · .
Consider a segment of the play starting at some position vi0 that witnesses more
than (n + 1)k increments for some counter j at positions I = {i0, i1, . . . , i(n+1)k , . . .}
without any intermediate resets for counter j or any increments or resets for counters
j′ > j. The maximum signature at vi0 is 〈n, . . . , n〉. If i ∈ I then sig(vi+1) < sig(vi)
and one of the first k− j + 1 coordinates witnesses this strict decrease; otherwise the
first k − j + 1 coordinates must remain the same or decrease between vi and vi+1.
A counting argument (or an induction on j) shows that after at most (n + 1)k−j+1

increments, the first k− j+ 1 components of the signature have decreased to 0, so no
further increments from counter j are possible. This means there must be at most
(n + 1)k−j+1 increments on this segment, contradicting the fact that this segment
starting at vi0 has more than (n+ 1)k increments.

By Lemma 4.10, this implies that any hB-safety game admits finite memory strate-
gies for Eve.
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Corollary 4.20. For all chronological hB-safety games G with finite branching, there
exists an α-2 finite memory strategy σ for Eve in G such that value(G) ≈α value(σ)
for α(n) = (n+ 1)k where k is the number of hierarchical counters.

hB-[1,2] games

Fix a game G = 〈V, v0, O, δ〉 which is an hB-[1, 2] game with k hierarchical counters
Γ = [1, k] (so O = Cost[1,k],[1,2]

hB ). We assume that G has a chronological and finite
branching game graph.

Assume value(G) = n ∈ N. Fix τ in G with value(τ) = n, and let T be the
corresponding strategy tree.

We say a hB-safety game G ′ is based on a hB-[1, 2] game G if the arenas are
identical except for the fact that signals $ have been added to some edges in the
game graph. We now define a particular hB-safety game Gτ based on G.

We begin by defining inductively a strictly increasing sequence of depths (di)i∈N
where d0 := 0 and

di+1 := inf {d : ∀ branches π in T . priority 2 occurs on π between depth di and d } .

In other words, di+1 is chosen such that all paths in T have at least one transition
labelled with priority 2 between depths di and di+1. This is well-defined since T is
finite branching: if there were no bound on the depth at which a priority 2 transition
is reached, then König’s lemma would imply that there is an infinite branch in T with
only finitely many priority 2, a contradiction. For each i ∈ N, the game positions
between depths di and di+1 − 1 are said to be in slice i.5

These depths are used to transform G into a hB-safety game Gτ based on G.
Formally Gτ := 〈V, v0, Safety-CostΓ,[1,2]

hB , δ′〉 so the game positions are unchanged and
if v ∈ V is not at a depth di for any i ∈ N, then δ′(v) := δ(v). However, for v
at depth di for some i ∈ N, we update the output so it produces a signal: δ′(v) :=
δ(v)[(c$, v′)/(c, v′)].

This new game has the same value as the original.
5For readers familiar with the breakpoint construction due to Miyano and Hayashi [MH84], these

depths (di)i∈N correspond to the breakpoints used in the proof that alternating Büchi automata can
be simulated by nondeterministic Büchi automata. It is not surprising that a similar idea is used
here, since this proof that finite memory strategies suffice in B-[1, 2] games will be a key ingredient
in the proof that alternating B-[1, 2] can be simulated by nondeterministic B-[1, 2] automata (see
Section 4.3).
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Lemma 4.21. If G is a hB-[1, 2] game with a chronological and finite branching game
graph, then

value(G) = value(Gτ ) = inf {value(G ′) : G ′ is a hB-safety game based on G} .

Proof. Let G ′ be a hB-safety game based on G. Given a strategy σ′ in G ′, h$(σ′) is a
strategy in G where h$ removes $ from the plays in σ′. Moreover, the value of h$(σ′) in
G is at most the value of σ′ in G ′ since the safety-cost objective in G ′ is more restrictive
than the hB-[1, 2] objective in G (not only requiring infinitely many priority 2, but
requiring priority 2 at specific moments in the play based on $). This shows the prop-
erty that value(G) ≤ inf {value(G ′) : G ′ is a hB-safety game based on G} and, since
Gτ is a particular hB-safety game based on G, value(G) ≤ value(Gτ ).

Recall that the strategy τ for G witnesses value(G) = value(τ). Playing according
to τ in Gτ (adding $ at appropriate depths) shows that value(Gτ ) ≤ value(τ) =
value(G). Since Gτ is a hB-safety game based on G, this means that we also have
inf {value(G ′) : G ′ is a hB-safety game based on G} ≤ value(G).

We can put these results together to get a finite memory strategy in G.

Proposition 4.22. If G is a hB-[1, 2] game with k hierarchical counters and a chrono-
logical and finite branching game graph, then α-2 finite memory strategies suffice for
Eve for α(n) = (n+ 1)k.

Proof. We proceed in a similar fashion as in the proof of Proposition 4.18, first con-
structing a finite memory strategy σGτ in Gτ using Corollary 4.20. The desired strat-
egy is obtained from σGτ by removing all occurrences of $. As explained in the
proof of Lemma 4.21, this is a strategy in G that has the same value as in Gτ .
The memory structure is M := 〈{q0, q1} , q0, update〉 where update(m, (v, c, v′)) =
updateGτ (m, (v, cb, v′)) where b is $ if depth(v) = di for some i ∈ N and is ε other-
wise.

No positional strategy in hB-[1,2] games

The strategy result for hB-[1, 2] games is optimal in the sense that there is, in general,
no strategy using less memory.

Proposition 4.23. There is a chronological hB-[1, 2] game G with one counter and
finite branching such that for all α, there is no α-positional strategy σ in G such that
value(G) ≈α value(σ).
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Figure 4.7. The hB-[1, 2] game G with no α-positional strategy (see Proposition 4.23).

Proof. Consider the game shown in Figure 4.7. The game graph is an infinite grid,
and is chronological with finite branching. This game has value 1, witnessed by the
following optimal strategy for Eve: as soon as the play increments the counter and
enters a position controlled by Eve, Eve moves right one position which resets the
counter, and then moves down one position which passes the control back to Adam.
Notice that neither player has an incentive to keep control of the play indefinitely by
moving always right.

Assume there is some α-positional strategy σ witnessing value at most α(1) <∞
in G. Consider the first row of positions controlled by Eve. If there are finitely
many positions where σ moves down, then Adam need only pass control to Eve at a
position which is to the right of this position, and the play will stabilize in priority 1
and yield value ∞. Otherwise, if there are infinitely many positions where σ moves
down, regardless of Adam’s starting position there must be some node he can reach
which is controlled by Eve and for which σ then moves down immediately. Similar
reasoning for the other rows means that Adam can either reach a position where Eve
will move indefinitely right (and stabilize in priority 1) or he can forever pass control
to Eve at positions where she moves immediately down (so the counter is incremented
infinitely many times and never reset). In either case, Adam can witness a play of
value ∞, contradicting the fact that σ is a positional strategy of finite value.
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4.2 · Shape of strategies in cost-parity games

4.2.4 Finite memory strategies in the dual of hB-[0,1] games

We now turn to Theorem 4.9 (d), which is more technical, but uses many of the same
techniques as in the previous sections.

hB-safety games

Recall that in a hB-[0, 1] game, Eve is seeking to maximize the hB-[0, 1] valuation.
Under this valuation, a play is assigned value∞ if the counter values are unbounded,
or there are infinitely many priority 1 (since this means the play is rejecting for the
parity condition). As a result, it is helpful to know where these priority 1 transitions
occur (just as it was helpful to know where priority 2 transitions occurred in the
previous section on hB-[1, 2] games). In analogy to the previous section, we define
a variant of a hB-[0, 1] game which we call a hB-safety game. A hB-safety game
has additional signals $ added in the output related to the occurrence of priority 1
transitions.

Formally, a hB-safety game has objective

Safety-CostΓ,[0,1]
hB

:= 〈C′, safety-costΓ,[0,1]
hB

,max〉

with C := H
[1,k]
B × [0, 1], C′ := C · {ε, $}, and safety-costΓ,[0,1]

hB
(u) for u ∈ (C′)ω defined

as follows.

• If there are finitely many $ in u, then safety-costΓ,[0,1]
hB

(u) := 0.

• If there are infinitely many $ in u, then u = u0$u1$ · · · such that each ui ∈ C∗

contains no $. If there is some ui in u such that there is no priority 1 in
ui (but there is priority 1 in each ui′ for i′ < i), then safety-costΓ,[0,1]

hB
(u) :=

valueB(h(u0u1 · · ·ui)), where h removes the priorities, keeping only counter ac-
tions. In that case, the value is the normal B-value on the prefix u0u1 · · ·ui.
Otherwise, if there is priority 1 in every ui, then safety-costΓ,[0,1]

hB
(u) :=∞.

The idea is that it is more difficult to obtain a high value in a hB-safety game
compared to a hB-[0, 1] game because of the additional requirements enforced by $
(e.g. a play with infinitely many priority 1 has value∞ in a hB-[0, 1] game, but a play
with infinitely many priority 1 in a hB-safety game might not be assigned value ∞
due to the requirements placed by $).

Note that there is a deterministic hB-[0, 1] automaton D over the alphabet C′

that recognizes safety-costΓ,[0,1]
hB

(it uses the state to remember whether priority 1 has
been seen between signals $, and whether the output is still being analysed). We now
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consider the composition D◦G, which is a hB-[0, 1] game since D translates the game
Gτ into an hB-[0, 1] objective.

Lemma 4.24. Let G be a chronological hB-safety game with finite branching. Then
α-positional strategies suffice for Eve in G ′ := D ◦ G for α(n) = (n + 1)k where k is
the number of hierarchical counters.

Proof. Fix a strategy τ ′ witnessing at least cost (n+ 1)k in G ′ := D ◦ G and let T ′ be
the corresponding strategy tree. Let h : S V be the homomorphism between the
set of positions S in T ′ and the set of positions V in G ′.

We define a signature for nodes s ∈ S as follows: let sig(s) := pval(πs) where πs is
the path from the root to s in T ′ and pval is defined inductively as pval(ε) := 〈0, . . . , 0〉
(a vector of k components initialized to 0), and pval(π · (s′, (c′, p′), s′′)) := pval(π)⊕ c′

for

〈nk, . . . , n1〉 ⊕ c =



〈nk, . . . , nj+1, 0, . . . , 0〉 if c is r for counter j
ω if c is ic for counter j and nj′ = n

for all j′ ≥ j

〈nk, . . . , nj′ + 1, 0, . . . , 0〉 if c is ic for counter j and j′ ≥ j

is the least such that nj′ < n

and ω ⊕ c = ω.
The idea is that Eve is choosing her move based on the worst history leading to

that position, and pval provides a summary of the value of the play (the idea for this
valuation is taken from [CL08a]).

Let σ′ : V S where σ′(v) selects s ∈ h−1(v) with the lexicographically-least
signature. We extend sig to v ∈ V by setting sig(v) := sig(σ′(v)). It is clear that σ′

is a positional strategy. It remains to show that minimizing this signature results in
a positional strategy that can guarantee value at least n.

Suppose for contradiction that value(σ′) < n < ∞, so there is some play π ∈ σ′

with value(π) = m < n. Then π must not visit priority 1 infinitely often (otherwise
the value of the play would be immediately∞). Thus, there is some least i such that
no transitions of priority 1 occur between di and di+1. Let v be the game position
at depth di+1 in π. For all s ∈ h−1(v), there must be no priority 1 between di and
di+1 (since this is true at v and the state of D is recorded in the game position).
Hence, for all s ∈ h−1(v), the path from the root of T ′ to s must have value at least
(n+1)k. Moreover, this means that on this path there is a sequence of at least (n+1)k

increment checks for some counter j (with no higher counter operations) which by a
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4.2 · Shape of strategies in cost-parity games

straightforward counting argument means that pval reaches ω at some point on the
path. Hence sig(s) = ω, for all s ∈ h−1(v), which implies that sig(v) = ω.

We prove by induction on the depth of v′ in π that sig(v′) ≤ 〈nk, nk−1, . . . , n1〉
where nj is the current value of counter j in π on the partial play ending in v′. Since
the maximum counter values are m < n at all points along the play leading to v, this
contradicts the fact that sig(v) = ω.

The base case for depth 0 is trivial since the initial game position v′0 is 〈0, 0, . . . , 0〉
and the counters are initialized to value 0.

Assume the result holds up to v′ with sig(v′) ≤ 〈nk, . . . , n1〉 at depth d. If the
next move according to π is (v′, c′, v′′), then there is some edge (s′, (c′, p′), s′′) in T ′

with σ′(v′) = s′, sig(s′) = sig(v′), and s′′ ∈ h−1(v′′).

• If c′ resets counter j (or performs ε, which can be thought of as a reset of counter
j = 0), then sig(s′′) ≤ 〈nk, nk−1, . . . , nj+1, 0, . . . , 0〉. Since counters j′ ≤ j were
reset and no other counters were touched, sig(v′′) ≤ sig(s′′) satisfies the desired
condition.

• If c′ increments and checks counter j, then the signature at s′′ satisfies sig(s′′) ≤
〈nk, nk−1, . . . nj+1, nj + 1, 0, . . . , 0〉 since it must be the case that counter j has
value less than m (otherwise it would contradict value(π) = m < n). But an
increment for counter j resets all lower counters, so sig(v′′) ≤ sig(s′′) still sat-
isfies the condition that the signature components are bounded by the counter
values on π up to v′′.

But this implies that sig(v′) ≤ 〈m, . . . ,m〉 at all depths up to and including di+1,
which is a contradiction.

By applying Lemma 4.10, we get the following result.

Corollary 4.25. For all chronological finite branching hB-safety games G, α-2 finite
memory strategies suffice for Eve in G for α(n) = (n+ 1)k where k is the number of
hierarchical counters.

hB-[0,1] games

Let G = 〈V, v0, O, δ〉 be a hB-[0, 1] game with k hierarchical counters Γ = [1, k] and
a chronological and finite branching game graph.

Assume that value(G) ≥ (n+ 1)k, and fix a strategy τ that witnesses at least cost
(n+ 1)k for the hB-[0, 1] game G. Let T be the strategy tree corresponding to τ .
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We define inductively a strictly increasing sequence of depths (di)i∈N where d0 := 0
and di+1 is the least d such that all paths in T satisfy one of the following conditions:

• the counters witness value (n+ 1)k before depth d, or

• at least one transition is labelled with priority 1 between depths di and d.

This is well-defined: assume by contradiction that there is some position s ∈ T from
which there is no bound on the depth at which either of the conditions is satisfied.
Because of the finite branching inherent in these games, König’s lemma would imply
that there is an infinite path from s on which neither of the conditions are satisfied,
i.e. a path in T through s with only finitely many priority 1 transitions (and no
priority 1 transitions after s) and counter values less than n, so this path has value
less n. But this means value(τ) < n, a contradiction.

We say a hB-safety game G ′ is based on a hB-[0, 1] game G with an chronological
game graph if the arenas are identical except for the fact that signals $ have been
added to some edges in the game graph. We transform G into a hB-safety game
Gτ = 〈V, v0, Safety-CostΓ,[0,1]

hB
, δ′〉. If v is not at a depth di for any i ∈ N, then

δ′(v) := δ(v). Otherwise, for v at depth di for some i ∈ N, we update the output so
δ′(v) := δ(v)[(c$, v′)/(c, v′)].

This new game must have value at least (n+ 1)k since by adding $ at appropriate
depths, τ can be transformed into a strategy in Gτ that witnesses value at least
(n+ 1)k. There is also a nice relationship between hB-[0, 1] games and the hB-safety
games based on it.

Lemma 4.26. value(G) = sup
{

value(G ′) : G ′ is a hB-safety game based on G
}

and
value(Gτ ) ≥ value(τ).

Proof. Playing according to τ in Gτ (and adding $ at the depths (di)i∈N) witnesses
the fact that sup

{
value(G ′) : G ′ is a hB-safety game based on G

}
≥ value(G) and

value(Gτ ) ≥ value(τ).
Now assume by contradiction that there is a strategy σ in a hB-safety game G ′

based on G such that value(σ) > value(G). This means that on each play π ∈ σ,
either there are infinitely many priority 1 in π (with at least one such transition be-
tween each signal $) or the counters witness a value exceeding n. In either case,
costΓ,[0,1]

B (h$(π)) > n where h$ removes the signal output. But this means that
value(G) > n, contradicting the initial assumption.

We can now conclude that the original hB-[0, 1] game G admits finite memory
strategies.
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Proposition 4.27. If G is a hB-[0, 1] game with k hierarchical counters and a chrono-
logical finite branching game graph, then α-2 strategies suffice for Eve for α(n) =
(n+ 1)k.

Proof. By Corollary 4.25, for any strategy τ of value at least (n + 1)k in G, there
is a finite memory strategy of size 2 of value at least n in Gτ . This same strategy
(with $ removed) can be played in G and witnesses value at least n. Therefore, if
value(G) ≥ (n + 1)k, then restricting to finite memory strategies of size 2 in G still
ensures a value of at least n, which is enough to conclude that finite memory strategies
suffice in G.

4.3 Simulation using nondeterministic cost-Büchi au-
tomata

The alternating automata on trees introduced by Muller and Schupp [MS84] and
described in the cost setting in Section 3.3 are a powerful and useful automaton model.
The structure of the transition function makes it straightforward to complement a
classical alternating parity automaton and to convert between B- and S- versions of
alternating cost-parity automata as shown in Theorem 3.15.

The increased power, however, comes at a price: the notion of a run is more
complicated than in a nondeterministic automaton since an alternating automaton
can launch several independent copies of itself, and these copies cannot communicate
with one another. This is problematic in certain constructions (see, for example,
the decidability result in Section 4.4). In these situations, it is useful to be able to
simulate an alternating automaton with a nondeterministic automaton.

We can use the results about finite memory strategies from Theorem 4.9 in order
to prove that alternating cost-Büchi automata can be simulated by nondeterministic
cost-Büchi automata. This theorem generalizes the classical result that alternating
Büchi automata are equivalent to nondeterministic Büchi automata ([MH84, MS95]).
It incorporates ideas from the complementation of parity automata known from the
literature (see, for instance, [Tho97]) and the simulation result for alternating cost
automata over finite trees ([CL10]).

Theorem 4.28. Let A be an alternating B-[1, 2] (respectively, S-[1, 2]) automaton.
Then there exists effectively a nondeterministic hB-[1, 2] (respectively, hS-[1, 2]) au-
tomaton And such that JAK ≈ JAndK.
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The proof of this simulation theorem uses the idea of a tree annotated with a
strategy. Given a cost automaton A = 〈Q,A, q0, 〈C, f, goal〉, δ〉, input tree t, and
finite memory strategy σ for Eve using memory structure M = 〈M,m0, update〉 in
a game A × t, we consider the tree tσ that is annotated with this strategy. This
annotated tree uses an extended alphabet

A′ := A× P((Q×M)× C× (Q×M)× [0, 1]).

The tree tσ is defined such that tσ(x) := (t(x), Eσ(x)) where Eσ(x) describes the set
of moves possible from position x according to σ:{

((q,m), c, (q′,m′), d) : ((q, x), c, (q′, xd)) is a possible move from (q, x) via σ
and update(m, ((q, x), c, (q′, xd))) = m′

}
.

Let τ = d1d2 · · · ∈ [0, 1]ω be a branch in t. We write σ|τ for σ restricted to plays
that stay on τ . Given tσ and τ , let wτσ := (a0, d1)(a1, d2) · · · such that a0 = tσ(ε) and
aj = tσ(d1 · · · dj) for all j > 0, so wτσ is the word that describes the plays in σ|τ .

We sketch now a first attempt at simulating an alternating B-[1, 2] automaton
with a nondeterministic hB-[1, 2] automaton. We can assume (using Theorem 3.15)
that A is an alternating hB-[1, 2] automaton.

On input t, the nondeterministic version guesses an annotation of t over the ex-
tended alphabet A′ with a finite memory strategy σ. The output from each branch τ
of a run is set to be the word wτσ, and the value of this output is the maximum value
over all plays described by wτσ that stay on τ . Because finite memory strategies suffice
in hB-[1, 2] games by Theorem 4.9 and the value of a strategy is the maximum value
over all plays in the strategy, this automaton computes an ≈-equivalent value.

This automaton uses a special objective that can correctly assign the value to
output words wτσ. Recall that we can use Theorem 3.12 to translate between objec-
tives, as long as the valuation is recognized by a history deterministic cost automaton.
There is a B-[1, 2] automaton that reads the output from a single play described in wτσ
that stays on τ , so by Theorem 3.3 there is an S-[1, 2] automaton that recognizes the
same function. From this, we can construct an S-[1, 2] automaton that guesses a play
described by wτσ and then computes its value, so there is an S-[1, 2] automaton that
computes the maximum value of the plays that stay on τ described in the word wτσ.
By Theorem 3.3, we can conclude that there is a history deterministic hB-parity
automaton (but not necessarily an hB-Büchi automaton) recognizing this valuation,
which is enough to conclude that there is a nondeterministic hB-parity automaton
simulating A.
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We seek a more refined result, showing that alternating B-[1, 2] and alternating
S-[1, 2] automata can be simulated by nondeterministic hB-[1, 2] and hS-[1, 2] au-
tomata, respectively. To obtain this more refined result, the nondeterministic version
will guess a safety game based on A× t (as described in Section 4.2.3), guess a strat-
egy in this safety game, check that it is a valid strategy, and then compute its value.
The structure of the safety game makes it possible to show that there is a history-
deterministic hB-[1, 2] or hS-[1, 2] automaton computing the value of words wτσ.

4.3.1 Alternating B-[1,2] to nondeterministic hB-[1,2]

For the first part of Theorem 4.28, we aim to simulate an alternating B-[1, 2] automa-
ton with a nondeterministic hB-[1, 2] automaton. By Theorem 3.15, we can assume
that we are starting with a hB-[1, 2] automaton A = 〈Q,A, q0,CostΓ,[1,2]

hB , δ〉 with k

hierarchical counters. Fix some input tree t.
We first design a cost game Gtnd using A and t, which will serve as an intermediate

object on the way to a nondeterministic hB-[1, 2] automaton. This game is played
on the input tree t. The idea is that Eve guesses an hB-safety game based on A× t
as well as a finite memory strategy σ within this hB-safety game. Adam guesses a
path τ through the tree and the output is a word wτσ that describes the set of plays
in σ that stay on τ . Formally, we define Gtnd := 〈V, v0, O, δ

′〉 as follows.

• The set of positions is V := T with initial position v0 := ε.

• At position v ∈ V , Eve chooses some separator c ∈ {ε, $} and for each q ∈ Q
andm ∈M , Eve selects a single disjunct (d1, c1, q1)∧· · ·∧(dj, cj, qj) of δ(q, t(v)).
This induces a label a′ := (t(v), E(v)) ∈ A′ in the extended alphabet such that

E(v) = {((q,m), ci · c, (qi,mi), di) : i ∈ [1, j],m ∈ [0, 1]}

where mi is updated to reflect the new memory state (so mi is 0 if c = $, 1 if
c 6= $ but the priority output in ci is 2, and m otherwise).

• Adam selects a direction d ∈ [0, 1].

• The play moves to position v · d and the output is (a′, d). This means that
a play induces a word of the form wτσ and the value is assigned according to
O := 〈A′ × [0, 1],max-play,min〉 where

max-play(wτσ) = sup
{

safety-costΓ,[1,2]
hB (π) : π ∈ σ|τ

}
.
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This game is designed such that value(Gtnd) is equivalent to value(A× t).

Lemma 4.29. value(Gtnd) ≈α value(A× t) where αk(n) = (n+ 1)k.

Proof. Assume value(Gtnd) is bounded by n. A strategy σ in Gtnd induces an hB-safety
game based on A× t and a finite memory strategy σ in this hB-safety game such that
safety-costΓ,[1,2]

hB (π) ≤ n for all π ∈ σ. By Lemma 4.21, value(A× t) ≤ value(σ) = n.
Now assume that value(A × t) is bounded by n. By Lemma 4.21, there is some

hB-safety game based on A × t with the same value. Moreover, by Corollary 4.20,
there is a finite memory strategy σ in this hB-safety game guaranteeing value at most
(n+ 1)k. Since the goal in an hB-safety game is min, this means that

value(σ) = sup
{

safety-costΓ,[1,2]
hB (π) : π ∈ σ

}
≤ (n+ 1)k.

Hence, if Eve plays this strategy in Gtnd, then any output word is of the form wτσ and
has value at most (n+ 1)k via max-play, witnessing value(Gtnd) ≤ αk(n).

Unfortunately, this game does not use the desired hB-[1, 2] objective. We can
show, however, that the valuation max-play in the objective O for Gtnd is recognizable
by a history deterministic B-[1, 2] automaton.

Lemma 4.30. There is a history-deterministic hB-[1, 2] automaton Dmax such that

JDmaxKϑ(wτσ) ≈α max-play(wτσ) = sup
{

safety-costΓ,[1,2]
hB (π) : π ∈ σ|τ

}
.

Proof. Let safety-costΓ
hB map a finite word u ∈ (C′)∗ to ∞ if it does not end in $

or if u = u0$u1$ · · · $uj$ for ui ∈ C∗ and there is some subword ui of u that does
not contain priority 2; otherwise safety-costΓ

hB maps u to its usual B-value (ignoring
priorities). This is similar to the safety-cost valuation defined earlier, but adapted to
finite words.

Given w := wτσ, the function max-play can be rewritten as

max-play(w) = inf{n : ∃ infinitely many prefixes v of w s.t. g(v) ≤ n}

where g maps a finite prefix of w to the maximum safety-costΓ
hB values over the

partial plays described in this prefix. In particular, if I describes an infinite number
of positions where $ occurs in w, then

max-play(w) = inf {n : ∀i ∈ I.g(w(0) · · ·w(i)) ≤ n} .
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By Lemma 3.4, it suffices to show that g is a regular cost function over finite words in
order to conclude that max-play is recognizable by a history deterministic hB-[1, 2]
automaton.

Given a partial play π ∈ σ|τ , there is a B-automaton recognizing safety-costΓ
hB(π)

(it outputs the actions as described in π, unless the word does not end in $ or priority 2
is not visited at least once between each pair of signals, in which case it rejects and
assigns value ∞). By Theorem 2.8, there is a history deterministic S-automaton
recognizing this same function.

We can then construct a new S-automaton that when reading a prefix of w,
nondeterministically selects a partial play π described in this word, checks that it
is a valid partial play in the game, and then computes safety-costΓ

hB(π). Because
nondeterminism in an S-automaton resolves into taking a maximum, this automaton
recognizes the maximum of safety-costΓ

hB over the partial plays described in v, which
is exactly g.

Because max-play is recognizable by a history-deterministic hB-[1, 2] automa-
ton, Lemma 3.12 implies that Dmax ◦ Gtnd uses an hB-[1, 2] objective and satisfies
value(Gtnd) ≈α value(Dmax ◦ Gtnd). Notice that, similar to a nondeterministic automa-
ton, in the game Dmax◦Gtnd, Adam only chooses the direction while Eve controls every
other choice. Hence, it is straightforward to construct a nondeterministic hB-[1, 2]
automaton And such that And × t is isomorphic to Dmax ◦ Gtnd for all t. Moreover,
since the correction function α from Lemma 4.30 did not depend on the particular
input t, we have JAK ≈β JAndK where β(n) = α((n+ 1)k).

4.3.2 Alternating S-[1,2] to nondeterministic hS-[1,2]

We use a similar method as in the previous case to construct a nondeterministic
hS-[1, 2] automaton when starting with an alternating S-[1, 2] automaton.

Here we start by converting the alternating S-[1, 2] automaton to an alternating
hB-[0, 1] automaton A using Theorem 3.15, and consider trees annotated by a strat-
egy σ in a hB-safety game based on the hB-[0, 1] game A× t (let A′ be the extended
alphabet). By converting to a game in this form, we can apply the strategy results
from Theorem 4.9.

We define a game Gtnd that is played on the input tree t. The idea is that Eve
guesses an hB-safety game based on the hB-[0, 1] game A× t as well as a finite
memory strategy σ within this hB-safety game. Adam guesses a path τ through
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the tree and the output is a word wτσ that describes the set of plays in the hB-
safety game that stay on τ . This time, the value is assigned according to objective
O := 〈A′ × [0, 1],min-play,max〉 where

min-play(wτσ) = inf
{

safety-costΓ,[1,2]
hB (π) : π ∈ σ|τ

}
because in this dual case, we need to be able to calculate the minimum over all plays
described by this word (since the objective in a hB-[0, 1] game is max).

This valuation can be recognized by a history deterministic hS-[1, 2] automaton.

Lemma 4.31. There is a history deterministic hS-Büchi automaton Dmin such that
JDminKϑ(wτσ) ≈α min-play(wτσ) = inf{safety-costΓ,[1,2]

hB
(π) : π ∈ σ|τ}.

Proof. Let safety-costΓ
hB denote the hB-safety valuation on finite words u that assigns

value 0 if u does not end in $, valueB(u0u1 · · ·ui) if u = u0$u1$ · · · $uj$ where each
ui′ for i′ ≤ j contains no $ and ui for i ≤ j is the first subword that does not contain
priority 1, and value ∞ otherwise.

Let w := wτσ. Then the function min-play can be rewritten as min-play(w) =
sup{n : ∃ infinitely many prefixes v of w such that g′(v) ≥ n} where g′ maps a finite
prefix of w to the minimum safety-cost over the partial plays described in this prefix
(in particular, if I describes an infinite number of positions where $ occurs in w, then
min-play(w) = sup {n : ∀i ∈ I.g′(w(0) · · ·w(i)) ≥ n}). By Lemma 3.4, it suffices to
show that g′ is a regular cost function.

Given a partial play π, it is straightforward to construct a B-automaton C ′ that
recognizes safety-costΓ

hB(π) (just copy the output actions from the input word that
describes a play, and use the state to track whether priority 1 has been visited between
signals in order to determine acceptance). The desired B-automaton recognizing g′

nondeterministically selects a partial play in a prefix of w, checks that it is a valid
partial play in the hB-safety game, and simulates C ′ on it; this computes the minimum
of safety-costΓ

hB over the partial plays described in a prefix of w.

As before, the desired hS-[1, 2] automaton And is constructed such that it is iso-
morphic to Dmin ◦ Gtnd, and satisfies JAndK ≈ JAK. We omit the formal proof of
correctness since it is similar to the previous case.

4.4 Decidability of the domination preorder
The main decidability question for regular cost functions f1 and f2 is the domination
preorder (f1 4 f2?) and boundedness relation (f1 ≈ f2?). In the classical setting
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4.4 · Decidability of the domination preorder

(for regular languages L1 and L2 instead of regular cost functions f1 and f2), this
corresponds to deciding language inclusion (L2 ⊆ L1) and language equality (L1 = L2)
(see Remark 2.2).

We now summarize the usual approach to deciding the language inclusion prob-
lem, which will parallel the method used to prove the decidability of 4. Let A′1 =
〈Q′1,A, q′10 , O′1,∆′1〉 and A2 = 〈Q2,A, q2

0, O2,∆2〉 be nondeterministic parity automata
(without counters) that recognize L1 and L2, respectively.

Note that regular languages L1 and L2 satisfy L2 ⊆ L1 iff

∀t. ∀run ρ2 of A2 on t. ∃run ρ′1 of A′1 on t. ρ2 satisfies O2 ⇒ ρ′1 satisfies O′1.

We first make some transformations of the problem based on quantifier considerations.
We can immediately simplify the statement by considering L2 6⊆ L1 instead:

∃t. ∃run ρ2 of A2 on t. ∀run ρ′1 of A′1 on t. ρ2 satisfies O2 ∧ ρ′1 does not satisfy O′1.

This is easier to work with since it starts with a block of existential quantifiers. The
universal quantification over the runs of A′1 can also be eliminated by using the non-
deterministic parity automaton A1 = 〈Q1,A, q1

0, O1,∆1〉 accepting the complement of
L1 instead of A′1. Thus, L2 6⊆ L1 iff

∃t. ∃run ρ2 of A2 on t. ∃run ρ1 of A1 on t. ρ2 satisfies O2 ∧ ρ1 satisfies O1.

This means that in order to witness L2 6⊆ L1, we need to exhibit a single tree
t and accepting runs of A2 and A1 on t (rather than some infinite set of trees and
runs). Since we can effectively find A1 from A′1 (see, e.g. [Löd09]), this means we
have reduced the decidability of the language inclusion problem L(A2) 6⊆ L(A′1) to
the problem of deciding L(A1) ∩ L(A2) 6= ∅.

We now capture this intersection emptiness problem L(A1) ∩ L(A2) 6= ∅ in terms
of an intersection game GA1∩A2 := 〈V, v0, O, δ〉.

• The set of positions is V := Q1 ×Q2 and the initial position is v0 := (q1
0, q

2
0).

• The objective O ensures that the play from A1 must satisfy the parity condition
from O1 and the play from A2 must satisfy the parity condition from O2 (for-
mally, O := 〈P1×P2, u max(costP1

parity(pr1(u)), costP2
parity(pr2(u))),min〉 where

pri projects (p1, p2) ∈ P1 × P2 to pi).
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• The control function is defined by

δ((q1, q2)) :=
∨
a∈A

∨
(q1, a, (p0

1, r
0
1), (p1

1, r
1
1)) ∈ ∆1

(q2, a, (p0
2, r

0
2), (p1

2, r
1
2)) ∈ ∆2

∧
i∈[0,1]

((pi1, pi2), (ri1, ri2)).

Note that we are using the notation of a cost game even though there are no counters.
The idea is that at each turn, Eve chooses a label for the current position in the

tree and transitions from ∆1 and ∆2 consistent with the current state and the label
just chosen. Then Adam selects a direction, and the next game position corresponds
to the destination states in the transitions selected by Eve in the direction chosen by
Adam. Eve’s goal is to show that there is a nonempty intersection (and therefore the
parity condition is satisfied on any branch in the chosen runs) while Adam is trying to
show otherwise by witnessing a branch in the runs selected that is not accepting for
both automata. In order for a winning strategy for Eve in this game to correspond
to nonempty intersection of L(A2) and L(A1), it is crucial that the automata are
nondeterministic. This correspondence between a winning strategy for Eve in the
game and a nonempty intersection is no longer true if the automata are alternating,
since there would be no way to ensure that Eve selected the same labelled tree for
each part of the alternating automaton.

By Theorem 4.2, solving parity games on a finite game graph like Q1 × Q2 is
decidable. Hence, the language inclusion problem is decidable for regular languages
of infinite trees.

We now turn to the main result in this section, the decidability of 4 for certain
cost functions over infinite trees. As before, we consider f1 64 f2 due to quantifier
considerations. We have f1 64 f2 iff

∃U ⊆ TA. A2 is bounded on U ∧ A1 is unbounded on U.

This points to the desired form for A1 and A2. B-automata are good at expressing
boundedness (because a single run of a B-automaton can witnesses a low value for
the automaton) whereas S-automata are good at expressing unboundedness (because
a single run of an S-automaton can witness a high value). Hence, we require that
A1 (respectively, A2) is given by a nondeterministic S-parity (respectively, nondeter-
ministic B-parity) automaton. The fact that these two different forms are used is not
surprising when the classical proof is recalled: this is in analogy to the classical case
where A1 (the complement of A′1) was used instead of A′1.

We aim to prove the following proposition.
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4.4 · Decidability of the domination preorder

Theorem 4.32. The relation f1 4 f2 is decidable for cost functions f1 and f2 over
infinite trees if f1 is given by a nondeterministic S-parity automaton and f2 is given
by a nondeterministic B-parity automaton.

We adapt the proof from [CL10, Theorem 13] for the decidability of 4 for regular
cost functions over finite trees, which also incorporates ideas from the language inclu-
sion problem described above. We proceed in three stages, reducing the decidability
of f1 64 f2 to the existence of strategies in games G, G̃ and G̃ ′.

Let A1 = 〈Q1,A, q1
0, O1,∆1〉 be a nondeterministic S-parity automaton (so O1 =

CostΓ1,P1
S ) and let A2 = 〈Q2,A, q2

0, O2,∆2〉 be a nondeterministic B-parity automaton
(so O2 = CostΓ2,P2

B ). We describe how to decide JA1K 64 JA2K.

Stage 1: G

Let G be the game 〈Q1×Q2, (q1
0, q

2
0), O1, O2, δ〉 where δ is defined as in the intersection

game described earlier (see page 101). Notice that we have included two separate
objectives (taken from A1 and A2), so this is different than the original definition
of cost game. However, it is straightforward to adapt the definition of a cost game
appropriately such that it now has two objectives, and a strategy σ (for Eve) yields
two values based on the valuation from each objective.

Recall that at each turn in the game, Eve selects a label for the tree and transitions
in ∆1 and ∆2, and then Adam chooses a direction. Eve is the player trying to show
that JA1K 64 JA2K and Adam is trying to show that JA1K 4 JA2K.

Stage 2: G̃

We now use composition and dualization (as described in Section 3.2) to transform
the objectives in G to a form that is easier to work with (namely a form that is easier
to translate into an ω-regular winning condition, see Stage 3).

Let G̃ be the game (AcostΓ1,P1
S

, id) ◦ G where AcostΓ1,P1
S

converts the action from the
run of A1 to B-parity actions (see Lemma 3.5), and id leaves the second component
coming from the run of A2 unchanged.

First, notice the B-parity O2 objective is unchanged: in G it becomes the B-parity
objective O2, it is unchanged in the composition, and then taking the dual again to
get G̃ yields O2. We write value2 for the value using O2.

The original O1 objective is dualized to become an S-parity objective, then con-
verted to a B-parity objective by composition with AcostΓ1,P1

S

, and with the final dual-
ization becomes a B-parity objective. We will call this new B-parity objective O′1 and
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denote by P ′1 the set of priorities used in O′1. We write value1 for the value obtained
using O′1.

In other words, at each turn in the game G̃, Eve selects a label for the tree and
transitions in ∆1 and ∆2 as before. Adam chooses a direction and a transition in
AcostΓ1,P1

S
consistent with output from the transition from ∆1 selected by Eve in the

direction selected by Adam. This means that both components of the output are now
B-parity actions, but Eve is trying to maximize the value of the first component and
minimize the value of the second component.

By Proposition 3.11 and Lemma 3.12, the values of G and G̃ are equivalent. More-
over, we have the following characterization of the decidability of 4.

Lemma 4.33. JA1K 64 JA2K if and only if there exists n ∈ N and a family (τj)j∈N of
strategies for Eve in G̃ with value1(τj) ≥ j and value2(τj) ≤ n for all j.

Proof. Assume JA1K 64 JA2K. Then there is some set U and some n ∈ N such that
JA2K(U) is bounded by n but JA1K(U) is unbounded on this set of input trees. Let
tj ∈ U satisfy JA1K(tj) ≥ j, so there is some run ρ1

j of A1 on tj witnessing value at
least j and some run ρ2

j of A2 on tj witnessing value at most n. Let σj be the strategy
for Eve in G that selects labels according to tj and runs according to ρ1

j and ρ2
j . Note

that Eve’s role in G and G̃ is the same since Adam controls the operation of AcostΓ1,P1
S

in G̃. This means we can let τj be the strategy in G̃ corresponding to σj (i.e. each play
in σj becomes a set of plays in τj that correspond to the possible runs of AcostΓ1,P1

S

on the original play from σj). Since the actions taken from ρ2
j are not changed at

all when converting from G to G̃, we have value2(τj) ≤ n. The actions from ρ1
j are

modified by AcostΓ1,P1
S

, but since JAcostΓ1,P1
S

K = costΓ1,P1
S by Lemma 3.5, any run of

AcostΓ1,P1
S

that Adam can play in G̃ cannot force a value lower than j for τj. This
means that value1(τj) ≥ j and value2(τj) ≤ n.

Now assume there is a family (τj)j∈N of strategies for Eve in G̃ with value1(τj) ≥ j

and value2(τj) ≤ n for all j. Because AcostΓ1,P1
S

is id-history-deterministic, there is
a family of translation strategies (ϑn)n∈N which Adam can use to direct AcostΓ1,P1

S
.

Given τj, let τ ′j be the set of plays in τj where Adam plays like ϑj when controlling
AcostΓ1,P1

S
. We have value1(τ ′j) ≥ j by the definition of history determinism. Since

Adam’s remaining choices in G̃ only concern the direction, this strategy τ ′j induces a
tree tj and runs of A1 and A2 on tj witnessing JA2K(tj) ≤ n and JA1K(tj) ≥ j. This
means that A2 is bounded on {tj : j ∈ N} but A1 is unbounded, so JA1K 64 JA2K.
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4.4 · Decidability of the domination preorder

Stage 3: G̃ ′

Finally, we construct a Muller game G̃ ′ based on G̃. In order to do this, we define
two ω-regular winning conditions F and F ′ and then describe how G̃ ′ is constructed
from G̃ based on these conditions. The idea is that we capture some properties of
the counters in terms of an ω-regular winning condition that can then be used to
synthesize the strategies τj.

Let F be the winning condition defined by

the parity condition from O2 is satisfied, and every counter in Γ2 is incremented
finitely often or reset infinitely often.

Likewise, let F ′ be the winning condition

(a) the parity condition from O′1 is not satisfied and condition F is satisfied; or

(b) at least one counter in Γ1 is incremented infinitely often and reset finitely often,
and every counter in Γ2 is incremented finitely often or reset infinitely often.

We briefly explain why F and F ′ can be expressed as Muller conditions. We refer
the reader to the acceptance types in Table 3.1 as well as [Tho97, GTW02].

The condition “at least one counter in Γ1 is incremented infinitely often and reset
finitely often” can be translated into a Rabin condition (the structure of this statement
fits exactly the structure of a Rabin condition). Likewise, the condition “every counter
in Γ2 is incremented finitely often or rest infinitely often” can be translated into a
Streett condition (the negation of a Rabin condition). Moreover, Rabin, Streett,
and parity conditions are special cases of Muller conditions, and the conjunction or
disjunction of Muller conditions can be written as a Muller condition. Thus, F and F ′

can be represented as Muller conditions.
Note that none of these transformations between types of winning conditions

required any change to the underlying game graph.
The new game G̃ ′ uses the winning condition F ′, but is played on a restriction of

the game graph from G̃ to the winning region for Eve based on condition F , i.e. the
positions from which Eve has a strategy satisfying condition F . Theorem 4.3 implies
that the winning region for Eve can be computed and there is a finite memory strategy
for Eve from each position v in this winning region which we denote by σF(v).

A winning strategy in this Muller game G̃ ′ is related to the existence of the desired
family of strategies in the cost game G̃.
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Lemma 4.34. There exists n ∈ N and a family (τj)j∈N of strategies for Eve in G̃ with
value1(τj) ≥ j and value2(τj) ≤ n for all j if and only if Eve has a winning strategy
in the Muller game G̃ ′ with winning condition F ′.

Proof. Assume that Eve has a winning strategy in the Muller game G̃ ′ with winning
condition F ′. Let σF ′ be a finite memory winning strategy for Eve in G̃ ′, which exists
by Theorem 4.3.

We first observe a property of any looping segment (a segment that begins and
ends at the same game position and in the same memory state) in the finite memory
strategies σF ′ and σF(v).

Property 4.35. Let π be a play in the finite memory strategies σF ′ or σF(v) for any
position v in G̃ ′. Then every looping segment ` in π satisfies the property

if there is a counter from Γ2 that is incremented in `, then it is reset in `.

Proof. Notice that any play that satisfies F or F ′ must satisfy the property that
every counter in Γ2 is incremented finitely often or reset infinitely often. If there
were a looping segment in a play from σF ′ or some σF(v) that witnesses an increment
for a counter from Γ2 but no reset, then we could pump a play which is consistent
with the strategy and has infinitely many increments for some counter in Γ2 but
only finitely many resets, which is no longer winning, and therefore contradicts the
assumption.

Property 4.35 implies there is some bound n′ for the maximum number of incre-
ments without a reset for a counter from Γ2 on any play in σF ′ or σF(v), where the
bound depends on size of the arena in G̃ and the size of the finite memory strat-
egy σF ′ and the size of the (finitely many) finite memory strategies σF(v), but does
not depend on the particular play.

Let n := 2n′. Fix j ∈ N. We describe the construction of a strategy τj in G̃ with
value1(τj) ≥ j and value2(τj) ≤ n. The strategy τj starts by playing like σF ′ . If there
is some counter from Γ1 that reaches value j at some position v, then we switch to
the strategy σF(v) (which exists because of the restriction on the game graph in G̃ ′).

Consider some play π ∈ τj.
If π always plays like σF ′ (i.e. no counter from Γ1 ever reaches value j), then

π ∈ σF ′ and π′ satisfies F ′. Since no counter from Γ1 ever reaches value j, condi-
tion (b) is not satisfied, so it must be the case that (a) is satisfied. In particular, this
means that the parity condition from O′1 is not satisfied on π, so value1(π) =∞ > j.
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It also means that the parity condition from O2 is satisfied. Combined with the fact
that any counter from Γ2 can achieve value at most n′ on a play from σF ′ as observed
above, value2(π) ≤ n′ ≤ n.

If there is some v where π switches to playing like σF(v), then value1(π) ≥ j from
some counter in Γ1 regardless of whether the parity condition from O′1 is satisfied or
not. The strategy σF(v) ensures that the parity condition from O2 is satisfied. As
observed above, any counter from Γ2 can achieve value at most n′ on a play from
σF ′ or σF(v). Since π consists of a partial play from σF ′ and a play from σF(v), this
means that value2(π) ≤ 2n′ = n.

Now assume for contradiction that there is an n ∈ N and a family (τj)j∈N of
strategies for Eve in G̃ such that value1(τj) ≥ j and value2(τj) ≤ n for all j, but Eve
does not have a winning strategy in G̃ ′ with winning condition F ′. Finite memory
determinacy of Muller games (Theorem 4.3) implies that Adam must consequently
have a finite memory winning strategy σ′ in G̃ ′.

Fix j � n ·m where m is the product of the size of memory for σ′ and the size of
the arena G̃ ′. Let πj be the play induced by Eve’s strategy τj and Adam’s strategy σ′.
Because σ′ is winning for Adam, the following conditions hold for πj:

(a′) the parity condition from O′1 is satisfied, or the parity condition from O2 is not
satisfied, or at least one counter in Γ2 is incremented infinitely often and reset
finitely often; and

(b′) every counter in Γ1 is incremented finitely often or reset infinitely often, or at
least one counter in Γ2 is incremented infinitely often and reset finitely often.

Because value2(τj) ≤ n, the parity condition from O2 is satisfied and it is not possible
for some counter in Γ2 to be incremented infinitely often and reset finitely often.
Since (a′) must be satisfied, this means the parity condition from O′1 is satisfied. But
value1(τj) ≥ j, so there must be some segment β of πj with at least j increments and
no resets of some counter γ from Γ1.

We have the following property for any looping segment (based on the game
position and memory state from σ′) on πj.

Property 4.36. For all looping segments on πj,

• every counter from Γ1 is reset or not incremented, or

• there is a counter from Γ2 that is incremented and not reset.
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Proof. Assume there were a looping segment that does not satisfy this property. Then
pumping this segment results in a play consistent with σ′ in which there is a counter
from Γ1 that is incremented infinitely often and reset finitely often, and every counter
in Γ2 is incremented finitely often or reset infinitely often. But this pumped play does
not satisfy (b′), contradicting the fact that σ′ is winning for Adam.

As described in [CL10, Lemma 19], we can derive a contradiction using Prop-
erty 4.36 as follows. Since we are assuming j very large, there is a looping segment
β′ in β on which counter γ ∈ Γ1 is incremented j′ = j

m
times but not reset (recall m

is the product of the size of the memory for σ′ and the size of the arena for G̃ ′). By
Property 4.36, this implies that there is some counter ζ ∈ Γ2 that is incremented and
not reset. But ζ cannot have been incremented more than n times (by the property
of τj), hence there is a subsegment β′′ that has j′′ = j

nm
increments of γ but no

increments of ζ. Now we repeat this process, starting with β′′, and find a subsegment
that has at least j

(nm)2 increments of γ but no increments of two counters from Γ2.
If we continue this process |Γ2| times we will have found a looping segment that has

j
(nm)|Γ2| increments of γ but no increment of any counter from Γ2. This contradicts
Property 4.36.

Proof of Theorem 4.32

Putting these lemmas together, we have f1 4 f2 if and only if Adam has a winning
strategy in the Muller game G̃ ′. Since the game graphs are finite, Theorem 4.3 implies
that the game G̃ ′ can be constructed effectively from the original nondeterministic
cost-parity automata for f1 and f2 and that it is decidable whether Adam has a
winning strategy from the initial position in G̃ ′. Hence, the relation f1 4 f2 is
decidable when f1 is given by a nondeterministic S-parity automaton and f2 is given
by a nondeterministic B-parity automaton.

4.5 Discussion
This chapter forms the technical core of this thesis. We have proven that certain
cost-parity games admit finite memory strategies and shown how this can be ex-
ploited to simulate alternating cost-Büchi automata with nondeterministic cost-Büchi
automata. Finally, we have shown that the relation f1 4 f2 is decidable when the
cost functions over infinite trees f1 and f2 are given in a certain form (namely, when
f1 is given as a nondeterministic S-parity automaton and f2 as a nondeterministic
B-parity automaton).
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This last result points to the fact that, given some alternating cost-parity au-
tomaton, we want to be able to convert it to both a nondeterministic B-parity and
a nondeterministic S-parity form. In the next two chapters, we will see classes of
cost-parity automata for which we are able to do this.

What is missing is a stronger result showing that all alternating cost-parity au-
tomata can be simulated by both nondeterministic B-parity and nondeterministic
S-parity automata. This comes down to proving that finite memory strategies suffice
in other types of cost-parity games (besides those mentioned in Theorem 4.9).

Unfortunately, it appears that the slicing technique utilized in parts (c) and (d) of
Theorem 4.9 has reached its limit. For instance, even in an hB-[0, 1] game (another
simple type of cost-parity game with only two priorities), slicing no longer ensures the
parity condition is satisfied (it can only guarantee that 0 occurs infinitely often, but
cannot guarantee that the play stabilizes in priority 0). Indeed, it appears that the
interaction between the parity condition and the requirements on the counters makes
proving finite memory determinacy much more difficult in the cost setting, since
there is no fixed rule for when to give the cost or parity condition precedence over
the other. Thus, proving that finite memory strategies suffice in arbitrary cost-parity
games remains an interesting and challenging open problem.
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Chapter 5

Weak Cost Automata

A fundamental result in the theory of regular languages is the equivalence between
monadic second-order logic (MSO) and finite state automata, which Büchi and Rabin
exploited in order to provide a decision procedure for the logic over infinite words and
infinite trees [Büc60, Rab69]. Rabin [Rab70] also studied weak monadic second-order
logic (WMSO), a variant of MSO in which second-order quantification is interpreted
only over finite sets. Muller, Saoudi, and Schupp [MSS86] later showed that this weak
form of the logic is equivalent to an alternating automaton with a special restriction
on the structure of the transition function.

We extend these classical results about WMSO and weak automata to the cost
setting. In particular, we show the equivalence of a weak automaton with counters
and cost weak monadic second-order logic (cost WMSO), and then apply the results
from previous chapters in order to derive a decidability result for cost WMSO over
infinite trees. This work was first published in [VB11].

5.1 Weak cost automata
Let A = 〈Q,A, q0, O, δ〉 be a cost-[i, i + 1] automaton. Following [Par87], an alter-
nating chain in A is a sequence of states q0 · · · qm from Q such that there is some
p ∈ [i, i+1] with q1 reachable from q0 using a sequence of transitions of priority p, and
for all j ∈ [1,m− 1], qj+1 reachable from qj using a sequence of transitions of priority
p (respectively, p) if j is even (respectively, odd) (where i = i+ 1 and i+ 1 = i). The
length of the alternating chain q0q1 · · · qm is m.

We say A is a weak cost automaton if there is a bound m on the length of al-
ternating chains in A or (equivalently) if there is no cycle in the transition function
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using both priorities. We say a cost-[i, i + 1] game G is weak if G = A × t for some
weak cost automaton A.

This definition corresponds to the standard conditions for a weak automaton as
introduced by Muller, Saoudi, and Schupp [MSS86] but adapted to the case when
priorities label transitions rather than states.

Remark 5.1. We can always convert to more traditional automata where each state
is labelled by a priority (although this may increase the number of states). When
the priorities label states, there is a priority mapping Ω : Q [i, i + 1], and this
weak condition is often stated in terms of a partition of the state set into Q1, . . . , Qm

satisfying:

• for all j ∈ [1,m] and for all q, q′ ∈ Qj, Ω(q) = Ω(q′);

• for all q ∈ Q and a ∈ A, if some (d, c, q′) appears in δ(q, a) with q ∈ Qj and
q′ ∈ Qj′ , then j ≥ j′.

In other words, the states in a given partition share the same priority, and there is
a partial order on the partitions such that the transitions are non-increasing with
respect to this ordering.

We now describe some weak cost automata over infinite trees.

Example 5.2. Let A = {a, b, c}. Consider the function that, for trees with infinitely
many a’s, outputs the maximum number of b’s along a single branch (and other-
wise assigns value ∞). We describe informally a one-counter B-weak automaton
A = 〈{q0, qa, qb, q>} ,A, q0,Cost{1},[1,2]

B , δ〉 recognizing this function.
The idea is that Adam can either count the number of b’s on some branch (incre-

menting and checking the counter while in state qb), or prove there are only finitely
many a’s in the tree. If there are infinitely many a’s then there is some branch τ such
that an a-labelled node is reachable from each position on τ (but this a-labelled node
does not need to be on τ itself). Eve picks out such a branch (marking it with q0).
At any point on this branch, Adam can move to state qa and force Eve to witness a
reachable a-labelled node. If she can, then the play stabilizes in q>.

The transitions while in state qa have priority 1; otherwise, the transitions have
priority 2. The automaton can reach qa only from q0; once in qa it can only stay in
qa or move to q>. Thus, there is no cycle in the transition function that visits both
priorities, so A is weak. The maximum length of alternating chain is 2 (witnessed by
q0qaq>).
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Example 5.3. Consider the B-[1, 2] automaton recognizing f(t) = |t|a described in
Example 3.14. There is no cycle that visits both priorities, so this automaton is weak.

5.1.1 Simulation and decidability

Because of the requirement that there is no cycle with both priorities, any play in
A × t must stabilize in a single priority. This means that if a weak cost automaton
uses priorities [i, i+1] it can be transformed into an automaton using priorities [i−1, i]
simply by replacing priority i + 1 with priority i− 1. We will often refer to the odd
priority in [i, i + 1] as the rejecting priority and the even priority as the accepting
priority. We get the following duality result.

Lemma 5.4. It is effectively equivalent for a cost function f over infinite trees to
be recognizable by a weak cost automaton with the following objectives: B-[i, i + 1],
S-[i, i+ 1], hB-[i, i+ 1], hS-[i, i+ 1] for all i ∈ N.

Proof. We can apply Theorem 3.15 to switch between the objectives. Recall that the
original automaton is composed with an automaton from Lemma 3.5 or Lemma 3.6.
Notice that composition with these automata does not introduce any cycles that visit
both priorities, so the weakness of the automaton is preserved during the transforma-
tion. Because of the weakness condition, the automaton can be adjusted to use any
two priorities (as long as the parity of each priority is preserved in the transforma-
tion).

As a result, we say a cost function f is a weak cost function if it is recognizable by
a weak cost automaton with any of the objectives described above. We will normally
think of these automata as using priorities [1, 2] or [0, 1], however. We will say that
an automaton is B-weak or S-weak if we want to emphasize the objective being used.

This immediately implies simulation and decidability results using Theorem 4.28
and Theorem 4.32.

Corollary 5.5. Let A be a weak cost automaton. Then there exists effectively a non-
deterministic B-[1, 2] automaton B and a nondeterministic S-[1, 2] automaton S such
that JAK ≈ JBK ≈ JSK.

Corollary 5.6. The relation f1 4 f2 is decidable for weak cost functions f1 and f2

over infinite trees.
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5.1.2 Closure properties

In addition to the simulation and decidability results, weak cost automata also have
good closure properties. As mentioned in Chapter 2, the natural closure properties for
cost-parity automata are different than classical parity automata since the automata
define functions instead of languages. We prove these closure properties (and state
their classical correspondences) now. Note that all of these closure properties are
effective.

In place of closure under complementation, weak cost automata are closed under
dualization (switching between B and S forms) as shown in Lemma 5.4.

Instead of closure under union and intersection, weak cost automata are closed
under min and max.

Lemma 5.7. Weak cost functions are closed under min and max.

Proof. By Lemma 5.4, we can assume that we are starting with B-weak automata A
and B, and want to construct B-weak automata for min(JAK, JBK) and max(JAK, JBK).

For op ∈ {∨,∧}, let Aop = 〈QA ∪QB ∪ {q0} ,A, q0,CostΓ1∪Γ2,[1,2]
B , δ〉 where

δ(q0, a) = δA(qA0 , a) op δB(qB0 , a)

and δ(q, a) is δA(q, a) if q ∈ QA and δB(q, a) if q ∈ QB.
It is straightforward to see that A∨ recognizes min(JAK, JBK) and A∧ recognizes

max(JAK, JBK).

Corresponding to closure of regular languages under inverse morphism, is closure
of weak cost functions under composition with morphism. Let h : A′ A be a map
between alphabets A′ and A. We write h(t′) = t for the natural extension to trees
that relabels each A′-labelled vertex of t′ according to h. If f is a cost function over
infinite A-labelled trees, then the composition of f under the morphism h is the cost
function f ◦ h over infinite A′-labelled trees.

Lemma 5.8. Weak cost functions are closed under composition with morphism.

Proof. Again, assume we start with a B-weak automaton A recognizing f and some
morphism h. Then the B-weak automaton A′ recognizing f ◦ h simply simulates A
on the tree that results from replacing each label a′ with h(a′) (that is, δ′(q, a′) :=
δ(q, h(a′))).
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More interesting is closure under weak inf-projection and weak sup-projection.
These operations correspond to finite projection in the classical setting, and are re-
lated to the inf-projection and sup-projection described in Section 2.2.2.

Let h : A′ A be a map between alphabets A′ and A such that A′ ⊇ A and
h(a) = a for all a ∈ A. If t′ contains only finitely many vertices with labels from
A′ \ A, then we write hfin(t′) = t. The weak op-projection of some cost function
g : TA′ N∞ over h : A′ A is the function gop,hfin : TA N∞ such that

gop,hfin(t) := op {g(t′) : hfin(t′) = t}

where op is inf or sup. On input t, the weak op-projection of g over h combines (using
the operation op) all of the values of g on trees t′ that could be finitely projected to
t via h.

The proof is a generalization of [MSS86, Lemma 1]. The idea is that given a weak
cost automaton for g and a tree t, we simulate it in nondeterministic mode on an initial
finite subtree of t, and then switch to alternating mode and run the original weak cost
automaton on the remainder of t. While in nondeterministic mode, nodes labelled
a ∈ A can be relabelled with some a′ ∈ h−1(a). It is essential that the automaton is
in nondeterministic mode for this part, otherwise there would be no way to guarantee
that the guesses about the relabelling coincide in the different copies of the alternating
automaton A. We use B-weak (respectively, S-weak) automata in order to take the
infimum (respectively, supremum) of the values of g(t′) for t′ satisfying hfin(t′) = t.

We first state a lemma that will allow us to simulate an alternating automaton
by running an equivalent nondeterministic automaton on some initial finite subtree
of an infinite tree (the restriction of t to a prefix up to some frontier E) and then
switch seamlessly back to the original alternating automaton. Given a infinite tree
t, a frontier E, and a strategy σ in A × t, we write t|E for the finite tree up to and
including the frontier E and σ|E for the restriction of σ to the positions in t|E (i.e.
finite prefixes of the plays in σ up to positions in E). The value(σ|E) is defined as
usual, but ignores the priorities since the plays are finite.

Lemma 5.9. Let A be a hB-weak automaton with state set Q. Then we can effectively
construct a nondeterministic hB-automaton And over finite trees with state set Qnd

such that JAK ≈ JAndK over the domain of finite trees. Moreover, there is a correction
function αnd and mapping η : Qnd P(Q) such that for all t and for all frontiers E,

• for every finite memory strategy σ of size two in A × t, if value(σ) ≤ n, then
there is an accepting run R of And on t|E such that value(R) ≤ αnd(n) and
there is a play π ∈ σ|E ending in position (r, x) if and only if r ∈ η(R(x));
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• for every accepting run R of And on t|E, if value(R) ≤ n, then there is a partial
finite memory strategy σ|E of size two in A× t such that value(σ|E) ≤ αnd(n)
and there is a play π ∈ σ|E ending in position (r, x) if and only if r ∈ η(R(x)).

Proof. The proof idea is much like the simulation theorems in Section 4.3: the nonde-
terministic version guesses a finite memory strategy, and then a history deterministic
B-automaton (on finite words) is run on every branch in order to compute the supre-
mum over the values of the plays on that branch described by the strategy. This is
also similar to the simulation theorem for cost automata over finite trees [CL10, Theo-
rem 12], but here we allow a finite memory strategy of size 2 (rather than a positional
strategy) and make explicit the states of the copies of the alternating automaton in
the state of the nondeterministic version in order to define the mapping η.

Lemma 5.10. Weak cost functions are closed under weak inf-projection and weak
sup-projection.

Proof. Fix some hB-weak automaton A = 〈QA,A′, q0
A,CostΓ,P

hB , δA〉 with k hierar-
chical counters in Γ and some mapping h : A′ A where A ⊆ A′. Our goal is to
construct a B-weak automaton B recognizing JAKinf,hfin .

We first use Lemma 5.9 to construct And = 〈Qnd,A′, qnd
0 ,Γnd, Fnd,∆nd〉 and a

mapping η : Qnd P(QA) for A. The new automaton B for the weak inf-projection
uses states from Qnd ∪QA ∪ {q>} and counters from Γnd ∪ ΓA (we assume these are
disjoint unions). The computation proceeds as follows, using ideas from [MSS86,
Lemma 1].

Given an infinite tree t over the alphabet A, B begins in nondeterministic mode.
In this mode, it only outputs priority 1, but it can nondeterministically replace a
label a ∈ A with an element of h−1(a) ⊆ A′ and simulate the nondeterministic hB-
automaton And on this A′-labelled part. If the simulated automaton And is in an
accepting state, then B can switch to alternating mode and use the original hB-weak
automaton A from that point onward.

Formally, this means that the initial state is q0
B := q0

nd and for q ∈ Qnd, δB(q, a) is
a disjunction of statements of the form∧

d∈[0,1]
(d, (cd, 1), qd) if q /∈ Fnd, or

∧
d∈[0,1]

(d, (cd, 1), qd) ∨
∧

d∈[0,1]

∧
r∈(η(qd)∪q>)

(d, (cd, 2), r) if q ∈ Fnd

for each transition (q, a′, (c0, q0), (c1, q1)) ∈ ∆nd and each a′ ∈ h−1(a). Note that if
η(qd) = ∅ (no copies of the automaton were sent in direction d), then the automaton
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enters state q> and δB(q>, a) := ∧
d∈[0,1](d, (ε, 2), q>). Otherwise, for q ∈ QA, we have

δB(q, a) := δA(q, a).
Assume there is some U such that JBK(U) is bounded by some n ∈ N. Let

t ∈ U . Then there is a strategy τ in B × t such that value(τ) ≤ n. This implies
that every play in τ satisfies the parity condition, so every play must have moved
from nondeterministic mode to alternating mode. By König’s lemma, there is a
frontier E such that all plays have moved to alternating mode before reaching E.
Hence, τ induces a tree t′ such that hfin(t′) = t (with t′ identical to t at positions
beyond E) and an accepting run R of And on t′|E with value at most n. Moreover,
there are partial plays π(r,x) starting from (r, x) in A×t′ for all x ∈ E and r ∈ η(R(x))
such that value(π(r,x)) ≤ n. By Lemma 5.9, there is a strategy σ|E in A × t′ with
value(σ|E) ≤ αnd(n). This can be extended to a strategy σ in A × t′ by using the
extensions π(r,x) described above. Because B used a different set of counters for
computing the value of the plays up to E and after E, each play in σ can have value
most αnd(n) + n, so JAK(t′) ≤ αnd(n) + n. This implies that JAKinf,hfin is bounded
on U .

Assume that JAKinf,hfin is bounded by n ∈ N on some U . Then for any t ∈ U , there
is a tree t′ such that hfin(t′) = t and JAK(t′) ≤ n. By Theorem 4.9 there is a finite
memory strategy σ in A× t′ with value(σ) ≤ (n+1)k. Let E be a frontier such that t′

and t are identical at positions outside E. Then by Lemma 5.9, there is an accepting
run R of And on t′|E such that value(R) ≤ αnd((n+ 1)k). The frontier E, tree t′, and
the run R can be used to construct a strategy in B× t|E. This can be extended into a
full strategy in B × t by using the suffixes of plays in σ starting from positions (r, x)
for x ∈ E and r ∈ η(R(x)). Overall, this means that JBK(t) ≤ αnd((n + 1)k), so JBK
is bounded on U as desired.

Closure under weak sup-projection is similar, but more technical. This time we
construct a S-weak automaton, which is more suitable for the maximizing that is
required in weak sup-projection. Here we want to allow Eve to guess a finite mem-
ory strategy in A× t. This strategy on an initial finite subtree of t could have an
artificially low value from plays that do not witness a high value inside this subtree.
Hence, we need to allow the automaton to guess that some plays have a high value on
the extensions, and ignore the value on the initial finite subtree. We do this by adding
additional markings $ to some plays on the frontier of this initial finite subtree; the
idea is that plays with this mark have already witnessed a high value in this initial
finite subtree.
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Using a slight modification of the simulation proof for cost automata over finite
trees [CL10, Theorem 12], we can show that there is an S-automaton V that reads a
finite tree annotated with a partial finite memory strategy σ for Eve in some game
A× t with the addition of the markings $ added at the frontier such that V recognizes
inf {value(π) : π ∈ σ ends in $} up to some correction function αnd.

We now design an S-weak automaton S recognizing JAKsup,hfin . The idea is that
Eve guesses a frontier E of t, and an annotation of t|E with a finite memory strategy
for Eve in A× t′ where hfin(t′) = t and there are no labels from A′ \ A outside
of E. Eve also guesses which plays should be marked with $ at the frontier E. The
automaton V is controlled by Eve and run on t|E in order to compute the value
(up to αnd) of the plays on initial finite subtree that end in $, and the priority
output is 1 (rejecting priority to ensure that Eve eventually switches to alternating
mode). For plays marked by $ at the frontier, S sends a copy to q> (an accepting
sink state). Otherwise, S runs the dual of A (obtained from switching conjunctions
and disjunctions in the transition function) starting from states that are not marked
with $ at E, and runs the history deterministic S-[1, 2] automaton from Lemma 3.5
computing the exact value of these plays starting from the frontier E.

Assume JSK(t) > αnd(n) with strategy σ such that value(σ) > αnd(n). This
implies that there is a tree t′ such that hfin(t′) = t. Moreover, a play in σ induces a
(potentially partial) play in A× t′ with value greater than n. Let π ∈ σ be a play
that stabilizes in q>. Then π restricted to the portion in t|E must already witness
value greater than n. Any strategy for Eve for extensions of this play yields a set
of plays in A× t′ that also have high values (indeed, in such a game, any extension
can only increase the value). If π does not stabilize in q>, then π is already a play in
A× t′ with value over n. Using these plays, we can construct a strategy σ in A× t′

with value(σ) > n, so JAK(t′) > n and hence JAKsup,hfin(t) > n.
For the other direction, assume there is a tree t′ such that hfin(t′) = t and

JAK(t′) > 2 · αnd(n). By Theorem 4.9, there is a finite memory strategy σ for Eve
in A× t′ such that value(σ) > 2 · αnd(n). This means that every play π ∈ σ either
stabilizes in priority 1 or witnesses counter value at least 2 · αnd(n). Let E be the
frontier such that there are no labels from A′ \A outside of E. A partial play up to E
may not have reached a high value, since the high value is witnessed on the infinite
extensions of the play. Likewise, there may be plays that witness a high counter value
before E, but do not witness a high value afterward. This is where $ are used. The
strategy for Eve in S × t should select the frontier E, marking those plays that have
already witnessed value αnd(n) by E with $. Hence, on these plays the value from S
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will be n, assigned based only on the portion up to E. Any play not marked with $
must have value at least αnd(n) after E, so these plays are assigned value at least n
by S. Hence, the corresponding plays in S × t will have at least value n overall.

5.2 Cost weak monadic second-order logic
Cost monadic second-order logic, or cost MSO, is a quantitative extension of MSO
introduced by Colcombet [Col09b, Col09a] (see, e.g. [Tho97] for an introduction to
classical monadic second-order logic). As usual, the logic can be defined over any
relational structure, but we describe here the logic over A-labelled binary trees.

In addition to first-order variables which range over nodes (and which we de-
note by x, y, . . .) and second-order monadic variables which range over sets of nodes
(denoted by X, Y, . . .), cost MSO uses a single additional variable N called the bound-
edness variable which ranges over N. The atomic formulas in cost MSO are the usual
atomic formulas from MSO (namely, the membership relation x ∈ X and relations
a(x, x0, x1) that assert a ∈ A is the label at position x with left successor x0 and right
successor x1), as well as new predicates |X| ≤ N where X is any second-order variable
and N is the boundedness variable. Arbitrary cost MSO formulas can be built in the
usual way by applying boolean connectives or by quantifying (existentially or univer-
sally) over first- or second-order variables. We additionally require that predicates
of the form |X| ≤ N appear positively, which means they are within the scope of an
even number of negations.

If we fix a value n for N , then the meaning of |X| ≤ N is what one would expect:
the predicate is satisfied if and only if the valuation of X has cardinality at most n.
We write t, n |= ϕ if t satisfies ϕ when all occurrences of N take value n. Because of
the positivity requirement, if t, n |= ϕ then t, n′ |= ϕ for all n′ ≥ n.

If this value forN is not specified, then a sentence ϕ in cost MSO defines a function
JϕK : TA N∞ such that

JϕK(t) := inf {n : t, n |= ϕ} .

We say that ϕ recognizes the cost function JϕK. Recall that inf ∅ = ∞, so in case ϕ
is a pure MSO sentence (with no instances of the predicates |X| ≤ N), JϕK(t) is 0 if
t satisfies the sentence ϕ and ∞ otherwise.

Cost weak monadic second-order logic (written cost WMSO) has the same syntax
as cost MSO but the semantics are changed to restrict the second-order quantifica-
tion to finite sets, as usual. WMSO (and consequently cost WMSO) is still a very
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expressive logic (e.g. the well known temporal logic CTL embeds into it). We pause
to give an example of a function definable in cost WMSO.

Example 5.11. Let A = {a, b, c}. We seek to define the function from Example 5.2
that, for trees with infinitely many a’s, computes the maximum number of b’s along a
single branch (and otherwise assigns value ∞). A suitable cost WMSO sentence ϕ is

∀X.∃x.
(
¬(x ∈ X) ∧ a(x)

)
∧ ∀Z.

(
(∀z.(z ∈ Z b(z)) ∧ chain(Z)) |Z| ≤ N

)
.

where chain(Z) is a WMSO formula asserting Z is totally ordered (and hence the
nodes are on the same branch). We write a(x) for ∃x0.∃x1.a(x, x0, x1).

The first conjunct is a typical WMSO formula: “infinitely many a’s” is expressed
as “for all finite sets of nodes, there is an a-labelled node outside”. The least n that
can be substituted for N to satisfy the second conjunct is exactly the bound on the
number of b’s along a single branch (∞ if there is no bound).

To simplify some proofs in this section, we switch to an equivalent variant of
the logic in which only monadic second-order variables are allowed (called MSO0 in
[Tho97]). This means that the inclusion relation X ⊆ Y is used instead of the mem-
bership relation, and each relation a(x, x0, x1) over first-order variables is raised to
the relation a(X,X0, X1) over monadic variables that holds if X,X0,X1 are singleton
sets, the letter at the position given by the singleton set X is a, and its children are
the positions represented by the singleton sets X0 and X1. Pushing negations to the
leaves, it means that a cost WMSO formula is generated by the grammar

R(X1, . . . , Xk) | ¬R(X1, . . . , Xk) | |X| ≤ N | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃X.ϕ | ∀X.ϕ

where X,X1,. . . ,Xk are monadic second-order variables, N is the boundedness vari-
able, and R is some relation of arity k (the inclusion relation ⊆ of arity 2, or the
relation a(X,X0, X1) of arity 3).

If ϕ(X1, . . . , Xk) is a formula with free variables X1, . . . , Xk (excluding the bound-
edness variable), then a valuation ν for ϕ is a mapping from each free variable Xi to a
set Vi ⊆ T of positions. If ν is a valuation, then ν[X V ] denotes the new valuation
that maps X to V and all other variables Y 6= X to ν(Y ). We write t, ν, n |= ϕ if t
satisfies ϕ when free variables are evaluated according to ν and when n takes value N ,
and Jϕ(X1, . . . , Xk)K(t, ν) := inf{n : t, ν, n |= ϕ}. Examining this definition for the
particular constructs in the logic we have the following straightforward results.
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Lemma 5.12. For all infinite trees t and valuations ν,

JR(X1, . . . , Xk)K(t, ν) =

0 if t |= R(ν(X1), . . . , ν(Xk))
∞ otherwise

(5.1)

J¬R(X1, . . . , Xk)K(t, ν) =

∞ if t |= R(ν(X1), . . . , ν(Xk))
0 otherwise

(5.2)

J|X| ≤ NK(t, ν) = |ν(X)| (5.3)

Jϕ ∨ ψK(t, ν) = min(JϕK(t, ν), JψK(t, ν)) (5.4)

Jϕ ∧ ψK(t, ν) = max(JϕK(t, ν), JψK(t, ν)) (5.5)

J∃X.ϕK(t, ν) = inf{JϕK(t, ν[X V ]) : V ⊆ T is finite} (5.6)

J∀X.ϕK(t, ν) = sup{JϕK(t, ν[X V ]) : V ⊆ T is finite} (5.7)

We now seek to prove that cost WMSO recognizes exactly the class of weak cost
functions. We prove the two directions of this theorem in Sections 5.2.1 and 5.2.2.

Theorem 5.13. It is effectively equivalent for a cost function to be recognized by a
weak cost automaton and a cost WMSO sentence.

5.2.1 Logic to automata

The strategy for the translation between logic and automata is standard, so we
only summarize the proof here. We identify an A-labelled infinite tree t and val-
uation ν with domain X1, . . . , Xk with the A × [0, 1]k labelled tree tν such that
tν(x) = (t(x), b1(x), . . . , bk(x)) with bi(x) = 1 if and only if x ∈ ν(Xi). We must
show that for any formula ϕ(X1, . . . , Xk) with free variables X1, . . . , Xk, there is a
weak cost automaton Aϕ(X1,...,Xk) and a correction function α such that for all t and
all valuations ν with domain X1, . . . , Xk, JAϕ(X1,...,Xk)K(tν) ≈α Jϕ(X1, . . . , Xk)K(t, ν).

This comes down to showing that the functions corresponding to the atomic for-
mulas are recognizable using a weak cost automaton, and proving that weak cost
automata are closed under operations corresponding to the other logical constructs
as listed in Lemma 5.12.

• It is straightforward to construct weak automata without counters recognizing
the languages corresponding to standard predicates of WMSO over infinite trees
(a(X,X0, X1) and X ⊆ Y ) and their negations. Hence, the functions in (5.1)
and (5.2) are recognizable by weak cost automata.
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• The new predicate |X| ≤ N corresponds to the function that computes the
cardinality of the valuation of some set X of nodes (5.3). Up to a change of
alphabet, which is possible due to closure under morphism from Lemma 5.8,
this automaton is equivalent to the weak cost automaton given in Example 5.3.

• Disjunction (5.4) and conjunction (5.5) in the logic correspond to min and
max, respectively. Weak cost automata are closed under these operations by
Lemma 5.7.

• Existential and universal second-order quantification (5.6, 5.7) correspond to
weak inf-projection and weak sup-projection, respectively. Lemma 5.4 shows
that weak cost automata are closed under these operations.

5.2.2 Automata to logic

For the next part, we seek to write a cost WMSO sentence that describes the operation
of the weak cost automaton, and consequently recognizes the same cost function. If
we were using cost MSO, then we could write a formula that describes exactly the
value of a run of the nondeterministic B-[1, 2] automaton equivalent to the weak cost
automaton. Here we need to find another way to describe the value using information
only about finite partial runs of the nondeterministic B-automaton from Lemma 5.9.

We fix a weak cost automaton A = 〈Q,A, q0, O, δ〉 with counters Γ. We assume
that all transitions leading from a given state q ∈ Q are labelled with the same priority
so there is some mapping Ω : Q [1, 2] (see Remark 5.1). We also assume that A
has objective O = CostΓ,[1,2]

hB (using Lemma 5.4 if necessary).
For the purposes of an inductive argument, we actually write a formula with

one free variable that represents the starting position in the tree. For notational
simplicity, we write this as ϕ(x), knowing that we could switch to the variant of the
logic described above that only uses second-order variables. Given ϕ(x) and some
valuation ν : {x} T , we write Jϕ(ν(x))K(t) as shorthand for Jϕq(x)K(t, ν).

We first consider a trivial acceptance condition so Ω : Q {1} or Ω : Q {2}
and the underlying weak automaton either rejects all trees or accepts all trees.

Lemma 5.14. Let A be a hB-weak automaton with k hierarchical counters and a
trivial acceptance condition. Then for all q ∈ Q, there is a formula ϕq(x) of cost
WMSO such that JAqK(tν(x)) ≈β0 Jϕq(x)K(t, ν) for all trees t and for all valuations
ν : {x} T where β0(n) := αk(αnd(n)) + αnd(αk(n)) and αk(n) = (n + 1)k and αnd

is the correction function from Lemma 5.9.
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Proof. If Ω(q) = 1 for all q ∈ Q, then ϕq(x) is set to some false statement. This
means that JAqK(tν(x)) = Jϕq(x)K(t, ν) =∞ for all trees t and valuations ν. Otherwise,
Ω(q) = 2 for all q ∈ Q, and all runs must satisfy the weak acceptance condition, so we
can focus strictly on the counters when defining ϕq. We utilize the nondeterministic
cost automaton on finite treesAnd given by Lemma 5.9 (which satisfies JAndK ≈ JAqK).

Formula ϕq(x) asserts that

∀ frontier E. ∃ accepting run R of And on tx|E.

∀ branches π in R from x to y ∈ E. value(π) ≤ N

whereN is the boundedness variable. This means that we are approximating the value
of JAqK(tx) by taking the supremum of JAndK(tx|E) over all frontiers E. Formally,
ϕq(x) would take the form

∀X.∃Y .∃Z.∀Z ′.
(

RunB(x,X, Y , Z) ∧ (CheckB(Z ′, Z) |Z ′| ≤ N)
)

where Y is a tuple of |Qnd| sets where each set represents the nodes in a particular
state, Z is a tuple of sets where each set represents nodes where a particular counter
operation was performed, and RunB(x,X, Y , Z) expresses the fact that X is a frontier
of tx, Y and Z describe a finite accepting run of And (starting in state q) on tx|X .
Finally, CheckB(Z ′, Z) ensures that Z ′ is a series of positions along a single branch
in the run where a particular counter is incremented and checked, and there are no
intermediate positions where the counter is reset. It is straightforward to see that
RunB and CheckB are expressible in WMSO.

Fix some tree t and ν(x) = v ∈ T .
Assume that JAqK(tv) ≤ n ∈ N. Then there is a finite memory strategy σ with

value(σ) ≤ αk(n). This means that for every frontier E of tv, value(σ|E) ≤ αk(n).
Hence, by Lemma 5.9, there is a run R of And on t|E such that value(R) ≤ αnd(αk(n)).
This is enough to conclude that Jϕq(v)K ≤ β0(n).

The other direction is more interesting. The fear is that there are runs of And

of a low value on any initial finite subtree of t, but no infinite run of Aq on t with
a low value. Assume for the sake of contradiction that there is some t such that
Jϕq(v)K(t) < n but JAqK(tv) ≥ β0(n). The underlying weak automaton without
counters accepts all trees, so value β0(n) must be witnessed by the counters. By
Proposition 3.11, this means there is a strategy σ for Eve in Aq × tv such that every
play witnesses counter values at least β0(n). A high B-value coming from the counters
can always be witnessed by a finite prefix of the play, so there is a frontier E of tv
such that all plays in σ witness value at least β0(n) by E (if not, König’s lemma
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would imply that there is an infinite play in σ that never witnesses value at least
β0(n)). Then the finite duration game Aq × tv|E satisfies value(Aq × tv|E) ≥ β0(n),
so value(Aq × tv|E) ≥ β0(n) ≥ αk(αnd(n)) by Proposition 3.11. But this means there
is no finite memory strategy in Aq× tv|E with value less than αnd(n). By Lemma 5.9,
this implies that JAndK(tv|E) ≥ n and contradicts Jϕq(v)K(t) < n since the formula
requires value less than n for all frontiers, including this particular E.

We now need to define a formula when the acceptance condition is not trivial. The
proof will proceed by induction on the maximum length of alternating chain in A.

Lemma 5.15. Let A be a hB-weak automaton with alternating chains of length at
most m. Then there is a cost WMSO sentence ϕ such that JAK ≈ JϕK.

Proof. We prove a stronger result for the purposes of induction:

for any state q ∈ Q, there is a formula ϕq(x) such that for all trees t and all
positions v ∈ T , Jϕq(v)K(t) ≈βm JAqK(tv) whereAq denotes the automaton
A starting from state q andm is the maximum length of alternating chains
in Aq.

The correction functions βm are chosen to help the induction go through. We already
defined the correction function β0(n) := αk(αnd(n)) + αnd(αk(n)). We now define
recursively βj(n) := βm−1(αk(n)) + βm−1(αnd(n)). Notice that βj′(n) ≥ βj(n) for
all j′ ≥ j.

The desired sentence is then ϕ := ϕq0(ε). The proof of the stronger result is by
induction on the maximum length of alternating chains of Aq. As before, we assume
that we are starting with an hB-weak automaton Aq. We write alt(q) = m if Aq has
alternating chains of length at most m.

If alt(q) = 0, then Aq satisfies the conditions for Lemma 5.14 and we are done.
Otherwise, assume alt(q) = m > 0 and the induction hypothesis holds for Ar with

alt(r) < m. Let And be the automaton from Lemma 5.9 based on Aq.
If Ω(q) = 1, then ϕq(x) expresses

∃ frontier E of tx. ∃ accepting run R of And on tx|E.

∀ branches π in R from x to y ∈ E.

value(π) ≤ N and ∀ states r ∈ η(R(y)). alt(r) < m ∧ ϕr(y)

where N is the boundedness variable. It is straightforward to see that this is ex-
pressible in cost WMSO. Notice the formulas ϕr(y) are well-defined by the inductive
hypothesis because alt(r) < m.
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Fix some tree t and position v. We first prove that Jϕq(v)K(t) 4βm JAqK(tv).
Assume JAqK(tv) ≤ n ∈ N. There must be a finite memory strategy σ in Aq × tv

such that every play satisfies the weak acceptance condition and has checked counter
value at most αk(n). Moreover, there must be a frontier E of tv such that every
play in σ has passed through a transition of priority 2 before reaching E (if not,
then König’s lemma would imply the existence of an infinite play in σ that never
stabilizes to priority 2, a contradiction). Thus by Lemma 5.9 there is a partial run R
of And on t|E such that for all branches π in R from v to w ∈ E and for all states
r ∈ η(R(w)), alt(r) < m. The checked counter values on R must be bounded by
αnd(αk(n)) by Lemma 5.9. Moreover, on the extensions of this run from positions w
in E, the inductive hypothesis implies Jϕr(w)K(t) ≤ βm−1(αk(n)). Therefore, overall,
Jϕq(v)K(t) ≤ max {αnd(αk(n)), βm−1(αk(n))}, so Jϕq(v)K(t) 4βm JAqK(tv).

Next we must show JAqK(tv) 4βm Jϕq(v)K(t). Assume Jϕq(v)K(t) ≤ n. Then there
is a frontier E and a run R of And on tv|E satisfying the conditions described by
the formula. By Lemma 5.9, there is a finite memory strategy σ|E in Aq × tv|E such
that value(σ|E) ≤ αnd(n). Moreover, the inductive hypothesis implies that there
is a strategy σ(r,w) in Ar × tw such that value(σ(r,w)) ≤ βm−1(n) for all positions
w ∈ E and r ∈ η(R(w)). From all such σ(r,w) and σ|E we can construct a strat-
egy σ in Aq × tv. The overall value of the strategy is at most the sum of αnd(n)
(the value of a play in σ|E) and βm−1(n) (the value of a play in some σ(r,w)), so
value(σ) ≤ αnd(n) + βm−1(n) ≤ βm(n) as desired.

In the classical case, if Ω(q) = 2, then we could dualize the automaton to get
a weak automaton accepting the complement language and starting in a state with
priority 1, use the previous case to write a formula for the complement, and then
negate this formula. Here, dualization would result in an S-weak automaton that is
difficult to describe directly using a cost WMSO sentence, so we continue working
with an hB-weak automaton Aq but utilize the dual game Aq × tv in the proof.

If Ω(q) = 2 then ϕq(x) expresses

∀ frontier E of tx. ∃ accepting run R of And on tx|E.

∀ branches π in R from x to y ∈ E.

value(π) ≤ N and ∀r ∈ η(R(y)). alt(r) < m ϕr(y)

where N is the boundedness variable.
First assume that JAqK(tv) ≤ n ∈ N. Then there is a finite memory strategy σ

for Eve in Aq × tv such that value(σ) ≤ αk(n). By Lemma 5.9, for all frontier E,
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JAndK(tv|E) ≤ αnd(αk(n)) and for all w ∈ E and r ∈ η(R(w)) with alt(r) < m,
JArK(tw) ≤ αk(n) so the inductive hypothesis implies that Jϕr(w)K(t) ≤ βm−1(αk(n)).
Hence, Jϕq(v)K(t) ≤ max {αnd(αk(n)), βm−1(αk(n))} ≤ βm(n).

Next, assume that Jϕq(v)K(t) ≤ n but JAqK(tv) > βm(n). Then Eve has a strat-
egy σ in Aq × tv such that every play in σ either stabilizes in priority 1 or has counter
value exceeding βm(n). In fact, because Ω(q) = 2, there is a frontier E such that all
plays in σ either witness counter value exceeding βm(n) or visit priority 1 at least
once by E (if not, then König’s lemma would imply that there is an infinite play in σ
which never witnesses counter values exceeding βm(n) and is always in priority 2,
contradicting value(σ) > βm(n)).

Since Jϕq(v)K(t) ≤ n, there is an accepting run of R of And on tv|E with value at
most n, and every extension from positions w ∈ E and r ∈ η(R(w)) with alt(r) < m

have value at most n. By Lemma 5.9, the run R induces a strategy σ in Aq×tv|E with
value(σ|E) ≤ αnd(n). Consider the partial play (up to some position w ∈ E) resulting
from Eve playing from σ and Adam playing from σ. This partial play has counter
value at most αnd(n), so by the choice of E, it must be the case that this play visits
priority 1 by E. Hence, we can apply the inductive hypothesis from all r ∈ η(R(w))
to ensure that JArK(tw) ≤ βm−1(n). Hence there is a play in Aq × tv consistent with σ
that has value at most αnd(n) + βm−1(n) ≤ βm(n). But this contradicts the fact that
value(σ) > βm(n).

5.2.3 Expressivity and decidability

Rabin [Rab70] showed there is a language of infinite trees definable in MSO that is
not definable in WMSO. The separating language L consists of infinite trees over the
alphabet {a, b} on which every branch has finitely many b’s. A similar result holds
in the cost setting (and the separating function is the characteristic function for L).

Proposition 5.16. There is a cost function over infinite trees definable in MSO (and
hence cost MSO) that is not definable in cost WMSO.

Proof. Consider the language L defined above that separates MSO and WMSO. As-
sume for the sake of contradiction that χL were recognized by a cost WMSO sen-
tence ϕ. Then JϕK ≈α χL, so t ∈ L if and only if JϕK(t) ≤ n, for n = α(0).

But this means that we can replace any predicate |X| ≤ N in ϕ with the WMSO
formula

∃x1, . . . , xn.(x ∈ X
∨

i∈[1,n]
x = xi)
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to yield an equivalent classical WMSO formula ϕ′ with Jϕ′K = χL. This implies that
the language defined by the WMSO formula ϕ′ is L, contradicting the separation of
traditional WMSO and MSO from Rabin [Rab70].

In fact, cost WMSO is incomparable with MSO, since there are also cost functions
definable in cost WMSO not definable in MSO.

Proposition 5.17. There is a cost function over infinite trees definable in cost WMSO
that is not definable in MSO.

Proof. Take any cost function that counts some behaviour in the input, say, the
function f(t) = |t|a. Assume there were some MSO sentence recognizing f . Then
f(t) ≈α χL for some regular language L of infinite trees, and some correction func-
tion α. Take a tree t such that α(0) < f(t) < ∞. Since f(t) > α(0), t cannot be
in L. But since f(t) < ∞ and t /∈ L, f(t) is bounded but χL(t) is unbounded, a
contradiction.

Most importantly, cost WMSO represents a fragment of cost MSO for which the
domination preorder is known to be decidable.

Theorem 5.18. Given cost WMSO sentences ϕ and ψ over infinite trees, it is decid-
able whether or not JϕK 4 JψK.

Proof. We simply convert to equivalent weak cost automata Aϕ and Aψ as described
in Section 5.2.1 and then apply Corollary 5.6.

5.3 Discussion
We have seen in this chapter that cost WMSO has strong closure properties and
decidability like classical WMSO. In particular, we have shown that cost WMSO
is equivalent to weak cost automata in terms of recognizing cost functions (Theo-
rem 5.13), and therefore 4 is decidable for the weak cost functions definable using
cost WMSO (Theorem 5.18).

Another variant of WMSO that has received attention is WMSO+U, where U
is the unbounding quantifier described in Section 2.4. Although the satisfiability
problem for full MSO+U remains open (even over infinite words), Bojańczyk and
Toruńczyk have shown that the satisfiability problem for WMSO+U is decidable
over infinite words [Boj09] and infinite trees [BT12]. The decidability proof goes via
automata (deterministic max automata in the case of infinite words, and nested lim
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sup automata in the case of infinite trees) which is similar to the classical approach by
Büchi and Rabin, as well as the approach taken in this chapter. However, it appears
that the decidability results for WMSO+U and cost WMSO are incomparable (that
is, it appears that there is no way to derive the decidability of cost WMSO from
the decidability of WMSO+U, and vice versa). The connections between these logics
remain to be explored in future work.

In [Lan11b], another cost logic called first-order logic with resource relations
(FO+RR) is introduced. The syntax is similar to traditional first-order logic over
some relational structure, except negation is not allowed. Like the cost logic in this
chapter, however, formulas evaluated in a structure are assigned a value, and the
values come from N∞ because the relations, called resource relations, are evaluated
as functions with range N∞.

The decidability of this logic is studied over pushdown systems that are enriched
with a finite set of counters that can be incremented, reset, or left unchanged (similar
to the B-automata in this thesis). These pushdown systems can be viewed as a
model of recursive programs with resource consumption, where the resource could be
memory, time, energy, etc. The logic FO+RR can then be used to express desired
properties of the system, e.g. that the resource usage is bounded across all runs of
the program.

Lang shows that the configuration graphs of resource pushdown systems are first-
order-interpretable in the binary tree (so there is a formula of first-order logic that
can describe the domain and edges of the configuration graph within the binary
tree). When restricted to systems with one counter and without resets, a formula
ψ in FO+RR can be converted to a formula ϕ in cost WMSO such that the value
of ψ over the configuration graph of the resource pushdown system is equivalent to the
value of ϕ in the interpretation of the configuration graph in the binary tree [Lan11b].
By the decidability of cost WMSO over infinite trees in Theorem 7.4, this implies that
FO+RR is decidable over the configuration graphs of resource pushdown systems with
one counter without reset. An alternative proof for systems with multiple counters
and with reset is given in [Lan11b], but it is now conjectured that the approach using
cost WMSO should work in this extended case as well [Lan11a].

This is a nice application of the decidability of cost WMSO, and may point to
further applications of the results in this thesis for verification of systems with some
quantitative features.
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Chapter 6

Quasi-Weak Cost Automata

In this chapter, we explore quasi-weak cost automata, a new variant of weak automata
introduced by Kuperberg and the author [KVB11]. Roughly speaking, quasi-weak
cost automata are an extension of weak cost automata that share the property that
“good” plays must stabilize in accepting priorities.

In Section 6.1, we show that quasi-weak cost automata are strictly more expres-
sive than weak cost automata over infinite trees, but can still be simulated by both
nondeterministic B-[1, 2] and nondeterministic S-[1, 2] automata. This implies de-
cidability of the domination preorder for quasi-weak cost functions. In Section 6.2,
we show a form of converse: given a nondeterministic B-[1, 2] and nondeterministic
S-[1, 2] automaton defining the same cost function, we construct a quasi-weak cost
automaton recognizing it. The proof of this result is technical, so we give both an
informal description of the construction as well as a formal proof.

These results can be viewed as a generalization of Rabin’s famous characterization
of weakly definable languages which stated that a language is weakly definable if and
only if the language and its complement are recognizable by nondeterministic Büchi
automata [Rab70]. The fact that quasi-weak cost automata, rather than the more
traditional weak cost automata, admit this Rabin-style characterization represents
an interesting divergence from the classical theory.

This chapter is based on joint work with Kuperberg that was first presented
in [KVB11].

6.1 Expressivity
Quasi-weak cost automata are an extension of B-weak automata that share the prop-
erty that “good” plays (plays with a low value) must stabilize in accepting priorities.
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Recall that in a weak automaton, there is a hard coded bound on the number of
alternations between accepting and rejecting priorities because of the restriction that
no cycle contains both an accepting and rejecting priority. Here we have another tool
available to bound the number of such alternations: the counters. We know that in a
B-automaton, an accepting play of finite value n does at most n increments between
resets, but this number is not known a priori by the automaton. If we guarantee that
there is correction function α such that in any play π of value n, α(n) is greater than
the number of alternations between accepting and rejecting priorities in π, then we
know that any play of finite value must stabilize in an accepting priority. Otherwise,
infinitely many alternations would give value ∞ to the cost function computed by
the automaton. This is what we mean by quasi-weak.

Definition 6.1. A B-[1, 2] or B-[0, 1] automaton is quasi-weak if there is a correction
function α such that for all t, in any play of A × t of value n < ∞, the number of
alternations between accepting priorities and rejecting priorities is at most α(n). We
say a cost function is quasi-weak if it is recognized by some B-quasi-weak automaton.
A cost game G is quasi-weak if it is of the form A× t for a quasi-weak automaton A.

Remark 6.2. In particular, any weak automaton A is quasi-weak since we can take
α(n) = l for all n, where l is the maximum length of alternating chains in A. Also,
if A has no counters, quasi-weakness implies A is weak with alternating chains of
length at most α(0) since JAK(t) ∈ {0,∞} for all t.

We can also give a structural characterization of quasi-weakness which we will call
the quasi-weak cycle condition: in any reachable cycle containing both accepting and
rejecting priorities, there is some counter that is incremented but not reset.

Proposition 6.3. A B-[1, 2] or B-[0, 1] automaton A is quasi-weak if and only if
it satisfies the quasi-weak cycle condition: in any reachable cycle containing both
accepting and rejecting priorities, some counter is incremented but not reset.

Proof. Let A = 〈Q,A, q0, O, δ〉 be a B-[1, 2] automaton, and let k = |Γ|.
We first assume A does not satisfy the quasi-weak cycle condition, i.e. A contains

a reachable cycle c in the transition function with both priorities and such that for
all γ ∈ Γ, if there is ic for γ in c, then there is r for γ in c.

Since c is reachable, there exists an input tree t and a play π of A on t that
reaches c after a finite partial play u, and then repeats c forever: π = u(c)ω. The
play π is accepting, but has infinitely many alternations between priorities. Moreover,
its value is bounded by valueB(uc), since c performs a reset for any counter that is
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incremented. This means that there can be no α bounding the number of alternations
between priorities as a function of the value of the play, so we can conclude that A
cannot be quasi-weak. By contraposition, any quasi-weak automaton satisfies the
quasi-weak cycle condition.

Now assume A satisfies the quasi-weak cycle condition. Let π be an accepting
play of A of finite value n. Let m be the number of alternations between accepting
and rejecting priorities in π. We want to show that if m is sufficiently high, then
value(π) > n, which would be a contradiction.

We will use Ramsey’s theorem in order to define a large number, depending only
on A (in particular, on the number of counters k used by A) and n. Let αk(n) be
the bound given by Ramsey’s theorem, ensuring that if a graph G has size αk(n) and
has edges coloured with 2k − 1 colours, it contains a one-colour clique of size n + 2.
Notice that αk(n) only depends on (k, n). It means that if k is fixed, we can view αk

as a correction function that maps n to the value αk(n) given by Ramsey’s theorem.
Assume m is strictly greater than 2|Q|αk(n). We can find states (qi)1≤i≤m such

that π visits q1 to qm in this order, and the priority output when leaving qi is accepting
if i is even and rejecting if i is odd. Let u be the finite infix of π, from q1 to qm. For
all i, let xi be the position of qi in u.

Then there exists a set I ⊂ [1,m] and a state q ∈ Q such that |I| ≥ αk(n), and
for all i ∈ I, qi = q. Thus, u contains |I|−1 consecutive cycles from q to q, with both
accepting and rejecting priorities in each cycle. By the quasi-weak cycle condition,
each of these cycles (and any concatenation of several of them) must increment a
counter without resetting it.

Consider the complete graph G with vertices {xi : i ∈ I}, of size at least αk(n).
We define the set of colours K = {A ⊆ Γ : A 6= ∅}. We colour edges of G in the
following way: for any i < j in I, the colour of the edge between xi and xj is A,
where A is the set of counters that are incremented but not reset in the path from xi

to xj in u. The quasi-weak cycle condition ensures that A 6= ∅.
By choice of αk(n), and since |K| = 2k − 1, there is a clique C of size n+ 2 in G,

entirely coloured by some A ∈ K. Let γ ∈ A. We can write C =
{
xi1 , . . . , xin+2

}
,

with i1 < · · · < in+2. For all j ∈ [1, n+ 1], there is an increment of γ and no reset of
γ in u, between xij and xij+1 . It means that between xi1 and xin+2 , γ is incremented
at least n+ 1 times and never reset. This implies value(π) ≥ n+ 1, which is absurd.

Since assuming the number of alternationsm > 2|Q|αk(n) leads to a contradiction,
we must havem < 2|Q|αk(n). We can conclude that any accepting play ofA of value n
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B-weak automaton B-quasi-weak automaton

alternating B-[1, 2] or B-[0, 1] alternating B-[1, 2] or B-[0, 1]

∃M.∀t.∀σ for Eve in A× t.
any play in σ has at most M
alternations between priorities

∀N.∃M.∀t.∀σ for Eve in A× t.
value(σ) ≤ N any play in σ
has at most M alternations
between priorities

there is no cycle with both
priorities

if there is a cycle with both
priorities, then there is some
ic without r

Table 6.1. Comparison of weak and quasi-weak cost automata.

does at most 2|Q|αk(n) alternations between accepting and rejecting states, so A is
a B-quasi-weak automaton.

This quasi-weak cycle condition means that one can think of a quasi-weak cost
automaton as an automaton that has an extra counter that is incremented and checked
each time the priority changes (and never reset). Indeed, a counter behaving like
this could always be added to a B-quasi-weak automaton without changing the cost
function recognized by it. Table 6.1 shows how this compares with the characteristics
of weak cost automata.

Over infinite trees, the class of cost functions definable by quasi-weak cost au-
tomata is strictly more expressive than the class of cost functions definable using
weak cost automata.

Proposition 6.4. There exists a cost function over infinite trees that is recognized by a
nondeterministic B-quasi-weak automaton, but not by any B-weak automaton. Con-
sequently, B-quasi-weak automata are strictly more expressive than B-weak automata
over infinite trees.

Proof. We will give an explicit cost function f and for each n ∈ N an infinite tree tn.
These trees include labels that dictate which player controls each position in the
game (inspired by [AN07]) and are designed such that any alternating B-automaton
recognizing f is forced to do αalt(n) alternations between accepting and rejecting
priorities on tn for some correction function αalt. This shows f cannot be computed
by a B-weak automaton. On the other hand, we give an explicit nondeterministic
B-quasi-weak automaton for f .
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The function f acts on trees over A = {∨,∧}×{e, a, b}. We write pr1 : A {∨,∧}
and pr2 : A {e, a, b} for the projections of A onto its components.

If t is an A-labelled tree, we will say a subset Ct of T is a choice tree for t if ε ∈ Ct
and for all x ∈ Ct,

• if pr1(t(x)) = ∨ then Ct contains either the left or right child of x;

• if pr1(t(x)) = ∧ then Ct contains both children of x;

• if pr2(t(x)) = a, then all paths of Ct starting in x contain a b-labelled position.

Moreover, if Ct is a choice tree of t, we define value(Ct) as the maximum number
of a’s on some path in Ct according to the labelling of t.

We now define the desired cost function

f(t) = inf {value(Ct) : Ct is a choice tree of t} .

In particular, if there is no choice tree of t, then f(t) =∞.
It is easy to show that f is recognized by a nondeterministic B-quasi-weak au-

tomaton: it has two states, and guesses a choice tree while counting the number of a’s.
If an a is seen, then the automaton outputs a rejecting priority until b is seen; other-
wise, it outputs accepting priorities. This means the number of alternations for Ct is
bounded by 2 value(Ct). Since value(Ct) is the value of the run corresponding to the
choice of Ct, this describes a nondeterministic B-quasi-weak automaton.

Now assume for the sake of contradiction that f is recognized by a B-weak au-
tomaton A with N states, up to some correction function α. Because A is weak,
there is some bound m on the maximum length of alternating chains in A.

We inductively build a family of A-labelled trees (tn)n∈N (positions are labelled
by [0, 1]∗). The tree t0 is entirely labelled by (∧, e). If tn−1 is built, we build tn in the
following way (see Figure 6.2):

• tn(0∗) = (∧, e);

• tn(0∗1) = (∨, a);

• tn(0∗11+) = (∨, e);

• tn(0∗1N1+0) = (∧, b);

• Subtrees rooted in nodes of 0∗1N1+00+ are tn−1;

• Other subtrees (to complete the binary tree) are t0.
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(∧, e)

(∨, a)

(∨, e)

(∨, e)

(∧, e) t0

t0

(∧, b)

tn−1 t0

N + 1 edges

Figure 6.2. The tree tn forcing alternations between accepting and rejecting priorities (see
Proposition 6.4).

We have f(tn) = n for all n ∈ N. We prove by induction on n that a B-[1, 2]
automaton computing f must do 2n alternations while processing input tn. This is
trivial for n = 0.

Fix n ∈ N, and consider a strategy for Eve witnessing value α(n) on tn. Every play
consistent with this strategy must stabilize in an accepting priority. In particular, on
the branch 0ω, the play must stabilize starting at some node 0d. Since the label is ∧,
the subtree rooted in 0d1 needs to be accepting. Eve is forced to reach node 0d1N+1

in order to witness an accepting choice tree for tn. By choice of N , there must be a
cycle between 0d and 0d1N+1.

Assume Adam can enforce an increment without reset during this cycle. Then
consider the infinite sequence of trees generated by repeating the cycle a finite (but
increasing) number of times. On this sequence, the value of f is unchanged, but
Adam has a family of strategies witnessing unbounded value for A. This is absurd
so we can consider that the strategy of Eve enforces a reset for any increment in the
cycle.

Now if this cycle is accepting, repeating it infinitely many times would create a
tree accepted by A with a bounded cost, but with value ∞ for f , since the a at
position 0d1 will never be followed by a b on any path. Since A recognizes f , we get a
contradiction, so this cycle has to include a rejecting priority. Then Eve can read a b
by choosing any node 0d1N1+0, and this eventually returns to an accepting priority
on some node of 0d1N1+00d′ (otherwise a partial version of tn would not be accepted
by A, but would have value 1 by f). We then need to accept tn−1 at node 0d1N1+00d′ ,
which by the inductive hypothesis requires at least 2(n− 1) alternations.

134



6.2 · Rabin-style characterization

Overall we can conclude that a B-weak automaton computing f needs to alternate
between accepting and rejecting priorities at least 2n times when reading tn, for any
n ∈ N. This is absurd since A has a fixed number of alternations m across all inputs,
so f cannot be computed by a B-weak automaton.

The constructions in Section 6.2 and Section 7.2 also provide examples where
quasi-weak, rather than weak, cost automata are required because we are unable to
bound the number of alternations between accepting and rejecting priorities upfront.

6.2 Rabin-style characterization
Rabin [Rab70] showed an interesting characterization of WMSO in terms of nonde-
terministic automata. Recast in terms of weak automata rather than WMSO (based
on [MSS86]), the characterization can be stated as follows.

Theorem 6.5 ([Rab70, MSS86]). A regular language L of infinite trees is recognizable
by a weak automaton W (equivalently, definable in WMSO) if and only if there are
nondeterministic Büchi automata U and U ′ such that

L = L(U) = L(U ′).

Moreover, the conversion between W and U/U ′ (and vice versa) is effective.

Recall that in the cost setting, complementation corresponds to switching between
the B and S semantics (see Example 2.3). With this in mind, a natural conjecture for
the cost setting would be “a cost function is definable using a weak cost automaton if
and only if it is definable by both a nondeterministic B-Büchi and S-Büchi automa-
ton”. As we saw in the last chapter, one direction is true: weak cost automata can be
simulated by both nondeterministic B-Büchi and S-Büchi automata. However, the
other direction turns out to be false. Instead, it is the larger class of quasi-weak cost
automata that admits this Rabin-style characterization.

Theorem 6.6. A cost function f over infinite trees is recognizable by a B-quasi-weak
automaton B if and only if there is a nondeterministic B-Büchi automaton U and a
nondeterministic S-Büchi automaton U ′ such that

f ≈ JUKB ≈ JU ′KS.

Moreover, the conversion between B and U/U ′ (and vice versa) is effective.

135



Chapter 6 · Quasi-Weak Cost Automata

Remark 6.7. When restricted to languages, Theorem 6.6 implies Theorem 6.5 since

• if there are nondeterministic Büchi automata U and U ′ (without counters) rec-
ognizing a language and its complement, respectively, then JUKB = JU ′KS (see
Example 2.3), and

• quasi-weak and weak automata coincide when the automata have no counters
(see Remark 6.2).

6.2.1 Simulation and decidability

Because plays in a weak automaton stabilize in a single priority, weak automata
can be viewed as parity automata using either priorities [1, 2] or [0, 1]. It is this
property that allowed us to apply the results from Chapter 4 to show that weak cost
automata can be simulated by both nondeterministic B-[1, 2] and nondeterministic
S-[1, 2] automata (Corollary 5.5), thereby proving that the domination preorder is
decidable for weak cost functions over infinite trees. As discussed in the previous
section, quasi-weak cost automata share this property, so we immediately get the
following result as a corollary to Theorem 4.28.

Corollary 6.8. Let B be a B-quasi-weak automaton. Then B can be simulated by a
nondeterministic B-[1, 2] and a nondeterministic S-[1, 2] automaton.

Notice that this is one direction of the Rabin-style characterization in Theorem 6.6.
Combined with Theorem 4.32, we get the following decidability result for quasi-weak
cost functions.

Corollary 6.9. The relation f1 4 f2 is decidable for quasi-weak cost functions f1

and f2 over infinite trees.

Based on the expressivity result in Proposition 6.4, this means that quasi-weak
cost functions are the largest class of cost functions over infinite trees for which 4 is
known to be decidable.

We remark that for both weak and quasi-weak cost automata it is possible to
improve slightly the complexity (in terms of number of states) required for simulation
with a nondeterministic B-[1, 2] automaton. Recall that the nondeterministic version
guesses a finite memory strategy in the corresponding cost game, so the number of
states depends on the size of the memory required. Theorem 4.9 and Proposition 4.23
showed that in general B-[1, 2] games require memory of size two. This can be
improved to a positional strategy for the special case of B-weak and B-quasi-weak
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games. The proof was presented in [VB11] for B-weak cost games, but can be easily
extended to B-quasi-weak games. The price one pays is that the correction function
increases from α(n) = (n + 1)k in the case of the finite memory strategy to α(n) =
2 · αalt(n) · (n + 1)k in the case of the positional strategy, where k is the number of
counters and αalt(n) is the maximum number of alternations between accepting and
rejecting priorities for a play of value n.

6.2.2 Quasi-weak construction

We now turn to the more difficult direction of Theorem 6.6, moving from nonde-
terministic cost-Büchi automata for some cost function to a quasi-weak automaton
defining the same cost function. We start by describing the classical proof (mainly
following Kupferman and Vardi [KV99]) constructing a weak automaton from nonde-
terministic Büchi automata for the language and its complement. We then proceed
to the more technical construction required in the cost setting which results in a
quasi-weak cost automaton.

To improve readability, we switch to a more classical notation for Büchi automata,
using a set of accepting states that must be visited infinitely often (instead of a parity
condition with priorities [1, 2] or [0, 1]); see Section 3.4 for more information.

Classical construction

Let U = 〈QU ,A, qU0 , FU ,∆U〉 and U ′ = 〈QU ′ ,A, qU ′
0 , FU ′ ,∆U ′〉. The classical result

states that starting from nondeterministic Büchi automata U and U ′ such that L(U)
is the complement of L(U ′), a weak automaton W can be constructed such that
L(W) = L(U).

The proofs in [Rab70, KV99] begin with an analysis of composed runs of U and
U ′. Let m := |QU | · |QU ′ |. Recall that a frontier E is a set of nodes of t such that for
any branch π of t, E ∩ π is a singleton. Kupferman and Vardi [KV99] define a trap
for U and U ′ to be a strictly increasing sequence of frontiers E0 = {ε} , E1 . . . , Em

such that there exists a tree t, a run R of U on t, and a run R′ of U ′ on t satisfying
the following properties: for all 0 ≤ i < m and for all branches π in t, there exists
x, x′ ∈ [eπi , eπi+1) such that R(x) ∈ FU and R′(x′) ∈ FU ′ where eπ0 < · · · < eπm is the set
of nodes from E0, . . . , Em induced by π. The set of positions [eπi , eπi+1) can be viewed
as an accepting block that witnesses an accepting state from both U and U ′.

This is called a trap because L(U ′) is the complement of L(U), but a trap implies
L(U) ∩ L(U ′) 6= ∅ using a pumping argument on blocks.
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The weak automatonW built in [KV99] has Eve (respectively, Adam) select a run
of U (respectively, U ′). The acceptance condition requires that any time an accepting
state from U ′ is seen, an accepting state from U is eventually seen. Because of the
trap condition, these accepting blocks only need to be counted up to m times before
the automaton is allowed to enter an accepting sink state, so W is weak. The idea
is that if t ∈ L(U), then Eve has a strategy to play in the game W × t (i.e. play the
accepting run of U). On the other hand, if t ∈ L(U ′) and we assume by contradiction
that Eve has a winning strategy in W × t, then this strategy and the accepting run
of U ′ can be used to build a trap, which is impossible.

Cost trap

We want to extend these ideas to the cost setting where U = 〈QU ,A, qU0 ,ΓUB, F UB ,∆U〉
(respectively, U ′ = 〈QU ′ ,A, qU ′

0 ,ΓU
′

S , F
U ′
S ,∆U ′〉) is a nondeterministic B-Büchi (respec-

tively, S-Büchi) automaton and JUKB ≈ JU ′KS. Our goal is to construct a B-quasi-
weak automaton B that is equivalent to U .

We seek a notion of “cost trap” that implies a contradiction with JUKB ≈ JU ′KS.
More specifically, we want a notion of blocks and traps that will help witness a
bounded B-value from U on some set of trees but an unbounded S-value for U ′ on
the same set, showing JU ′KS 64 JUKB and therefore JU ′KS 6≈ JUKB.

The definition of a block when using arbitrary B- and S-counter actions coming
from U and U ′ would be very intricate because it would have to deal with the in-
teraction of the B- and S-actions. To avoid these complications, we first package
U and U ′ into a single nondeterministic BS-Büchi automaton U × U ′ in an obvi-
ous way: a run of this automaton is simply the composition of a run of U and a
run of U ′ on the same input. We then consider a hierarchical BS-Büchi automaton
A = 〈QA,A, qA0 ,ΓB, FB,ΓS, FS, δA〉 that satisfies A u U × U ′ but uses hierarchical
BS-counter actions as described in Section 3.4. This is possible by Lemma 3.18.

A block based on hierarchical BS-actions from A has accepting states from both
FB and FS (corresponding to accepting states for U and U ′), but it also has a reset
for B-counter γ if γ is incremented in that block in order to ensure pumping does not
inflate the B-value. The number of blocks we are required to count is dependent on the
size of A and the number of S-counters in A and is increased to m := (|QA|+2)|ΓS |+1.

A cost trap for A is a frontier Em and for every branch π up to Em a strictly
increasing set of nodes eπ0 < · · · < eπm ∈ Em such that there exists a tree t and a
run R of A on t with valueS(R) > |QA| satisfying the following properties: for all
0 ≤ i < m and for all branches π, [eπi , eπi+1) is a block; and if branches π1 and π2 share
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some prefix up to position y and x < y is the first position with eπ1
i = x and eπ2

i 6= x

then eπ2
i > y (we call this the nesting condition, which ensures that pumping blocks

from π2 does not damage blocks from π1).
An intricate, but not difficult, pumping argument shows that the existence of a

cost trap for A implies U and U ′ are not equivalent.

Proposition 6.10. Let U (respectively, U ′) be a nondeterministic B-Büchi automaton
(respectively, S-Büchi automaton). Let A u U × U ′ be a nondeterministic hBS-
automaton. If there exists a cost trap for A, then JU ′K 64 JUK.

The idea for the proof is that by pumping blocks, we first construct an infinite
tree and a run of A on this tree that is B-accepting and S-accepting, has a low B-
value, and also has an S-value at least |QA|. From this single tree and run, we then
construct a family of trees and runs that are still B-accepting, S-accepting and have
a low B-value, but have unbounded S-value. This is done by pumping segments with
increments before check-resets a finite, but increasing, number of times. We delay
the proof of this result until after we describe the construction.

This result holds for any A that is BS-equivalent to U ×U ′. For the construction,
however, we fix a particular A. Specifically, if H is the transducer H(ΓUB,ΓU

′
S ) from

Theorem 3.17, then we letA be the nondeterministicBS-Büchi automatonH◦(U×U ′)
and let m := (|QA|+ 2)|ΓH

S |+1 where ΓHS is the set of S-counters used by H.

Overview of construction

We now describe informally the construction of a B-quasi-weak automaton B. On an
input tree t, B is designed to:

• simulate in parallel a run of U (selected by Eve) and a run of U ′ (selected by
Adam) on the input t;

• run the hBS-transducer H over the composed actions from U and U ′;

• analyse the hierarchical counter actions output byH together with the accepting
states of U and U ′, keeping track of blocks (described below);

• output the B-actions from the run of U .

We want to ensure that the run of U that Eve plays is actually a run with a low
B-value and is accepting for the Büchi condition. We ensure that it has a low B-value
by copying exactly the B-actions from the run played by Eve. The difficulty is that
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we cannot directly check whether the run that Eve plays satisfies the Büchi condition,
because we only have the power of a quasi-weak automaton. This is where the block
counting and acceptance condition comes in.

The acceptance condition is similar to the classical construction: while the blocks
are being counted, it requires that if an accepting state from U ′ is seen, then eventually
an accepting state from U is seen (i.e. a block is never left open because we are waiting
for an accepting state from U). That means while we are counting blocks, we are
ensuring that accepting states from U are being visited.

In [KV99], the block number only increases and it suffices to count blocks up
to a fixed bound. This means that there is no cycle containing both accepting and
rejecting states, so the resulting automaton is weak.

Here the definition of a block also forbids the presence of an increment for some
B-counter γ that does not have a reset for γ. It may be the case that on a branch of a
run of U , some counter is incremented but is never reset. This could disrupt the block
counting, because a block could remain open in an accepting state simply because
it is waiting for a reset for γ, and this reset may not necessarily exist. Because this
block is open, Eve could cheat and play a run with a low B-value but is not accepting
for the Büchi condition since, while the block is open, B is not checking for additional
accepting states from U .

One idea would be to allow Eve to guess whether or not there are infinitely many
resets for each B-counter in the run that she wants to play. If this is the case, then
the block counting can start immediately and proceed as in the classical construction
since there will always be a reset for each B-counter γ that is incremented. If not,
then Eve could guess when the last increment without a reset is seen, and then start
counting the blocks after this point. This sort of construction is possible over words
(in fact, this idea can be used to give an improved construction over words [KVB12]
that generalizes [KV01]). However, consider a tree and a nondeterministic B-Büchi
automaton that at positions 0∗1 outputs ic (and everywhere else ε). At every position
0d along the spine, Eve would never be able to start counting blocks because 0d1 is
a position where there is an increment without a reset. This means that the block
counting would never start on the spine, allowing Eve to cheat by playing a run that
is not accepting for the Büchi condition on the spine.

Because of this issue with the branching, we must employ a more sophisticated
block counting technique. Indeed, B should be able allowed to restart the block count-
ing if an increment is seen that does not have a later reset. The crucial point here
is that any decrease in the block number when B restarts the counting is prompted
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by an increase in the cost of the play due to an increment from a B-counter. Conse-
quently, the bound on the number of blocks and the number of alternations between
accepting and rejecting states depends on the B-value of the selected run, which is
exactly the property of a quasi-weak automaton.

With this block counting with restarts in place, the proof of correctness starts by
assuming that JUKB ≈ JU ′KS and proves that JBKB ≈ JUKB. If U accepts some t with
low value, then it gives Eve a strategy of the same value in B×t, so JBKB(t) ≤ JUKB(t).
On the other hand, assuming (for the sake of contradiction) that Eve has a low-value
strategy in B×t but U actually assigns t a high value, means that one could construct
a cost trap, which is absurd by Proposition 6.10. This implies that JUKB 4 JBKB.
Overall, JBKB ≈ JUKB ≈ JU ′KS as desired.

Formal construction

Recall A is H ◦ (U × U ′) and m = (|QA|+ 2)|ΓH
S |+1. Let K = |ΓHB |.

Formally, the B-quasi-weak automaton B has states

Q := QU ×QU ′ ×QH × ((I × J × Z) ∪ {q>})

where

I := [1,m][0,K] , J := {ε,⊥,>}[0,K] , Z := {ε, ic, r}[0,K] .

This means a state is of the form (qU , qU ′ , qH, (i, j, z)) where i, j, and z are vectors
used while the automaton is counting blocks, or (qU , qU ′ , qH, q>) when the automaton
is no longer counting blocks but is still simulating a run of U and U ′. We write,
e.g. i(k) for the kth component of the vector i. In fact, there is only a subset Quse

of Q that is used: an element (qU , qU ′ , qH, (i, j, z)) is in Quse if for all k, k′ ∈ [0, K],
k < k′ implies j(k) ≤ j(k′), for the order ε < ⊥ < >; also, any (qU , qU ′ , qH, q>) is
in Quse.

Consider B acting on a tree t. The idea is that Eve selects a run of U on t and
Adam selects a run of U ′ on t (technically this is done one move at a time). The
B-actions output are exactly those from the run of U chosen by Eve. However, at
the same time, the transducer H is simulated by Adam on the composed BS-actions,
and this output is analysed for the presence of blocks. The reason why Adam is in
charge of the nondeterministic choices of the transducer H is that these choices aim
at maximizing the S-values (Theorem 3.17 ensures that Adam cannot adversely affect
the B-value by his choice of the run of H). Adam also selects a branch in the tree.
This means that each play in B× t describes a branch of the binary tree t, a run of U
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and a run of U ′ on this branch, and Adam’s choices in the simulation of H on the
output from these runs.

A subpath π of a play is called a block if the following hold:

• a state from F UB occurs after a state from F U
′

S during π;

• for every counter γ ∈ ΓHB , if there is an increment for γ in π, there is also a reset
for the same γ in π.

We will call a block of level k a block that occurs in an {ε, r}-sequence of B-counter
k+1 (a block of levelK is just a normal block). Given a state (qU , qU ′ , qH, (i, j, z)) ∈ Q
the components (i, j, z) track information about blocks at each level. For k ∈ [0, K],

• i(k) ∈ [1,m] is the number of the current block of level k;

• j(k) is ε if no F U ′
S state has been seen in the current block of level k, ⊥ if F U ′

S

has been seen but no F UB following it, and > if F UB has been seen following F U ′
S ;

• z(k) is ic if there was an increment for counter k or lower but no reset for
counter k in the current block of level k, r if there was a reset for counter k in
the block, and ε otherwise.

Notice that B-counters are indexed [1, K] but the block levels are taken from [0, K],
so z(0) is never ic. A block of level k can be closed when an F U

′
S and then an F UB

have been seen (so j(k) = >), and if an ic for counter k has been seen, then an r
has also been seen (so z(k) ∈ {ε, r}).

The initial state is (qU0 , qU
′

0 , q
H
0 , (i1, jε, zε)) where i1(k) = 1, jε(k) = ε and zε(k) = ε

for all k ∈ [0, K]. Table 6.3 describes the sequence of update rules performed by B
to determine in a deterministic way the new vectors i, j, z depending on the counter
actions and states coming from the choices of Eve and Adam. In these update rules,
restarting level k means that for all k′ ≤ k, i(k′) is set to 1, j(k′) to ε, and z(k′)
to ε (this represents restarting the block counting for level k and below because an
increment has been seen for counter k+ 1). Note that the counter actions referenced
in the update rules come from the transducer H and are BS-hierarchical.

A state of the form (qU , qU ′ , qH, (i, j, z)) is accepting if H is in its rejecting sink
state or j(k) 6= ⊥ for all k. Any state (qU , qU ′ , qH, q>) is accepting.

It is straightforward to verify that according to these updates, all reachable states
are in Quse.
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1. If a state from F UB is seen, all j(k) = ⊥ are updated to >.

2. If a state from F U
′

S is seen, all j(k) = ε are updated to ⊥.

3. If action r is seen for counter k (with ε for k′ > k and r for k′ ≤ k), then the
automaton sets z(k) to r for all k′ ≤ k.

4. If action ic is seen for counter k (with ε for k′ > k and r for k′ < k), then the
automaton restarts level k − 1. Moreover, for all k′ ≥ k such that z(k′) = ε,
z(k′) is set to ic.

5. After updates 1 to 4, if there is a k with j(k) = >, z(k) ∈ {ε, r} and i(k) = l,
then for all k′ ≤ k, i(k′) is set to l + 1, j(k′) is set to ε, and z(k′) is set to ε.

6. If some i(k) is supposed to increase by rule 5 but is already at m, then the
automaton moves to q>.

Table 6.3. Update rules for (i, j, z) components of B.

Example 6.11. We give an example showing how the vectors (i, j, z) would be up-
dated given a sequence of states and counter actions. We assume there is only
one B-counter, so each vector has two components. We also assume qB ∈ F UB and
qS ∈ F U

′
S . Each column shows the values of (i, j, z) after the action in the column

header is read and update rules 1–6 have been applied to the vectors described by
the previous column.

init qS r qB qB qS ic qS qB r
i(0) 1 1 1 2 2 2 1 1 2 3
j(0) ε ⊥ ⊥ ε ε ⊥ ε ⊥ ε ε
z(0) ε ε r ε ε ε ε ε ε ε
i(1) 1 1 1 2 2 2 2 2 2 3
j(1) ε ⊥ ⊥ ε ε ⊥ ⊥ ⊥ > ε
z(1) ε ε r ε ε ε ic ic ic ε

Note that (i, j, z) would usually be updated based on both the state and counter
action at each position in the run (it would not be separated as in this example).

6.2.3 Technical proofs

We now proceed with the technical proofs showing correctness and quasi-weakness
of B. The proof of correctness utilizes Proposition 6.10 (which is given at the end of
the section).
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Proof of correctness

We break the proof that JBKB ≈ JUKB into two directions. The easier direction is
captured in the following lemma.

Lemma 6.12. JBKB ≤ JUKB.

Proof. Let t be a tree and M ∈ N such that JUKB(t) = M . We want to show
JBKB(t) ≤M . Let R be a B-accepting run of U on t of value M .

Let σ be the strategy of Eve in the game B × t that consists in playing from the
run R. We have valueB(σ) = valueB(R) = M (the value according to the B-counter
actions, not considering the accepting states visited), since B just copies the B-actions
of U .

It remains to show that the strategy σ actually satisfies the acceptance condition.
Assume for the sake of contradiction that there is a play π ∈ σ that stabilizes in
rejecting states. Recall that each rejecting state is of the form (qU , qU ′ , qH, (i, j, z))
where there is some k′ such that j(k′) = ⊥. Let k be the maximum such that there
is j(k) = ⊥ infinitely often in π.

We show that after some point, j(k) must stabilize in ⊥. If k is the highest
counter, then level k can never be restarted, so rule 1, 5, and 2 (which could result in
j(k) cycling between ⊥, >, and ε) can only be applied m times. Hence, j(k) stabilizes
in ⊥. Otherwise, assume j(k) does not stabilize in ⊥. There must be infinitely many
updates of j(k) from ε to ⊥, and infinitely many restarts of level k. Let k′ > k.
By choice of k, j(k′) must stabilize in ε or > (otherwise, j(k′) is ⊥ infinitely often,
contradicting the choice of k). If j(k′) stabilizes in ε, every update of j(k) from ε to ⊥
is simultaneously done on j(k′) by update rule 2 so this is absurd. If j(k′) stabilizes
in >, then the infinitely many restarts of level k must come from infinitely many ic
for counter k′ (since if level k′ was also restarted infinitely many times, j(k′) cannot
stabilize in >). Since the B-value of any play is at most M , this means there must
be infinitely many resets of counter k′. But this is absurd, since by update rule 3,
action r for counter k′ would result in j(k′) = > and z(k′) = r, which results in an
increment of i(k′) and sets j(k′) back to ε (or m is reached and the automaton moves
to q>).

Hence j(k) stabilizes in ⊥. But this is absurd, because there are infinitely many
accepting states F UB of U on π, so update rule 1 implies that j(k) cannot stabilize in
⊥ on π.

From this, we can conclude that value(σ) = M , so JBKB ≤ JUKB.
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The other direction is the more challenging part of the proof of correctness, and
requires the notion of a cost trap and Proposition 6.10.

Lemma 6.13. JUKB 4 JBKB.

Proof. Assume for the sake of contradiction that JUKB 64 JBKB, i.e. there exists a
set U such that {JBKB(t) : t ∈ U} is bounded by some M ∈ N, but {JUKB(t) : t ∈ U}
is unbounded. Note that since JUKB ≈ JU ′KS, we have {JU ′KS(t) : t ∈ U} also un-
bounded.

By Theorem 3.17, H uβ
α I (recall H outputs hierarchical actions, but I outputs

the actions unchanged). This means that JIKBS (M) 4βM JHKBS (α(M)). Let (ϑn)n∈N
be the translation strategies witnessing the history determinism of H. Let A be the
nondeterministic BS-Büchi automaton H◦ (U ×U ′) from Section 3.4, which satisfies
A uβ

α U × U ′ by Lemma 3.18.
Let σ be an accepting strategy for Eve in B × t, witnessing value(σ) ≤ M . We

look in particular at the set P of plays compatible with σ where Adam chooses to
play from a run R′ of U ′ on some t ∈ U with JU ′KS(t) > N := βM(|QA| + 1), and
uses strategy ϑ|QA|+1 to drive H. Notice that the only remaining choice for Adam
concerns the branching, so P describes a binary tree of possible plays, which agree
on common prefixes.

We know that in order for value(σ) ≤ M , Eve must play a run R of U such that
valueB(R) ≤M on every branch of P and Adam must choose an accepting run of H
on each branch. Let π be a branch of the binary tree described by P .

Consider v = (outB(R, π), outS(R′, π)) with outB(R, π) (respectively, outS(R′, π))
the infinite word describing the actions output by run R (respectively, R′) on the
branch π. By Theorem 3.17, any run of H on v has valueB(RH) ≤ α(M). Moreover,
there is a run Rπ

H of H on v driven by ϑ|QA|+1 such that valueB(Rπ
H) ≤ α(M) and

βM(valueS(Rπ
H)) ≥ N = βM(|QA| + 1), and for any π and π′, Rπ

H and Rπ′
H agree on

any shared prefix. This means that every play of P represents an accepting run of H
over v and outputs hierarchical BS-actions with S-value at least |QA|+1 and B-value
at most M .

Next we show that B must witness m = (|QA|+2)|ΓH
S |+1 blocks on every play in P .

These blocks will eventually be used to build a cost trap. Let π be a play in P .
If the automaton B reaches the accepting sink state q> on π, it means that for

some level k, m blocks have been witnessed. We assume by contradiction that it is
not the case. Let k be the least level such that i(k) does not change infinitely many
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times in π, so it must stabilize to some value (this is always the case for i(K), which
can only increase).

If i(k) stabilizes, then j(k) must stabilize as well. It is impossible for j(k) to
stabilize to ε: R′ is accepting so any of the infinitely many states from F U

′
S would

make j(k) change to ⊥ by update rule 2. It also cannot stabilize in ⊥: value(σ) ≤M

implies that every play in σ is accepting, which is not possible if j(k) stabilizes in ⊥.
Hence j(k) must stabilize in >. This means that there is a finite number of resets for
counter k, otherwise i(k) would be incremented by rule 5. Since the play has bounded
value, we can conclude that the number of increments for any counter k′ ≥ k on π

is also finite. But i(k − 1) is supposed to change infinitely many times, and this can
only be done by incrementing infinitely many times higher counters (rule 4). This is
absurd, so π must witness m consecutive blocks, and stabilize in q>.

Now we build a cost trap for the automaton A u U×U ′. Recall that the transition
function of B is defined such that Eve selects a run of U , Adam selects a run of U ′,
and Adam controls H which outputs the hierarchical BS-actions corresponding to
these composed runs. Let RA be the run of A on t corresponding to the tree of
plays P (ignoring the components of the state dealing with the blocks). We have
valueB(RA) ≤M and valueS(RA) > |QA|.

We showed that for any branch π of RA, state q> is reached on π, som consecutive
blocks are witnessed along this branch. If π is a branch of RA, for all l ∈ [0,m], we
take for eπl the last position of π where some level k has i(k) = l. By the definition
of the transitions of B (rules 1 to 6), the path [eπl , eπl+1) is always a block.

It remains to show the nesting condition of the cost trap definition. Let π1, π2

be two branches of RA, sharing some prefix up to position y, and let x < y be the
first position where they disagree: eπ1

l = x but eπ2
l > x. By definition of the eπl ’s, we

have that x is the last position on π1 where some i(k) has value l. Assume eπ2
l ≤ y,

then eπ2
l is on π1, but some i(k) has value l, which is absurd since eπ2

l > x. We can
conclude that eπ2

l > y, so the nesting condition is satisfied.
We have completed the proof that RA is a cost trap for A. By Proposition 6.10,

this implies JU ′KS 64 JUKB, which is a contradiction.

Quasi-weakness of B

Next, we show that B is a B-quasi-weak automaton.
Fix some t and assume there is a strategy σ in B × t with value(σ) ≤ n. Let

π ∈ σ. We define a configuration C of the automaton B to be an element of the set
([0, n][0,K] × I × J × Z) ∪ {q>} where I, J , and Z are as defined in the construction.
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For a configuration of the form (v, i, j, z), the i, j, z components are as before. The
new element v stores the value of B-counter k for all k ∈ [1, K]. Since level 0 does
not correspond to a counter, we fix the value of v(0) to be always 0. Note that for
the other components of v, the set of values [0, n] is sufficient because counter values
never go above n in π if value(σ) ≤ n.

We now analyse the evolution of C on the path π, according to the update rules
1 to 6. An alternation is a switch from accepting states to rejecting states (or vice-
versa). We show that if a subpath of π begins and ends in the same configuration C,
then it is alternation-free. We call such a subpath a configuration cycle to distinguish
it from a true cycle based on the state of the automaton.

Lemma 6.14. If a subpath of π begins and ends in the same configuration C, then it
is alternation-free.

Proof. Fix some configuration cycle. Notice that the update rules 1–3 only increase
j(k) and z(k) for all k (for the ordering ε < ⊥ < > and ε < ic < r), while update
rules 4 and 5 can decrease these components.

If no i(k) is modified during the configuration cycle, then update rule 4 cannot
have been applied, so the configuration cycle must contain only one configuration,
and hence is alternation-free.

Otherwise let k be maximal such that i(k) changes during the configuration cycle.
In order to return to the same configuration, the configuration cycle must restart
level k. By rule 4, this means some ic is seen for counter k′ > k. Level k′ is never
restarted (otherwise k would not be maximal), so according to rules 1 and 2, j(k′)
can only increase during the configuration cycle. Since the configuration C is the
same in the beginning and in the end, we get that j(k′) must not change during the
whole configuration cycle.

We consider the possible cases for j(k′). If j(k′) is ⊥, then the whole configuration
cycle is non-accepting, so there is no alternation.

We know that v(k′) is incremented at some point by action ic for counter k′, so
counter k′ has to be reset in the configuration cycle in order to match the original
value. Thus if the value of j(k′) during the configuration cycle is >, it means that we
will have z(k′) = r and j(k′) = > at some point in the configuration cycle. Rule 5
implies that i(k′) would then be incremented, which is absurd because k′ > k implies
that i(k′) does not change during the configuration cycle (by choice of k).

The only remaining case is j(k′) = ε during the entire configuration cycle. By
definition of Quse, for all k′′ ≤ k′, j(k′′) = ε during the whole configuration cycle.
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Moreover, for k′′ > k′, j(k′′) can only increase (since levels k′ and above are never
restarted), so in order to return to the initial configuration, these components cannot
change at all. Since acceptance is determined by the j(k′′) for k′′ > k′ and these
components never change, the configuration cycle is alternation-free.

Any configuration cycle is alternation-free, so the number of alternations in π is
bounded by the number of configurations, which is at most ((n+ 1)(m+ 1)9)K+1 + 1.
Hence the length of an alternating chain in a play π in B × t with value(π) ≤ n is
bounded by α(n) = ((n+ 1)(m+ 1)9)K+1 + 1, where K and m are fixed by U and U ′

and do not depend on the input tree.
This is enough to conclude that B is a B-quasi-weak alternating automaton.

Proof of Proposition 6.10

We start by assuming that there is a cost trap for some BS-Büchi automaton A =
〈QA,A, qA0 ,ΓB, FB,ΓS, FS, δA〉 such thatA u U×U ′. We aim to show that JU ′K 64 JUK.

Let m := (|QA| + 2)|ΓS |+1. By the definition of cost trap, there is a frontier Em,
a set of nodes {eπi : 0 ≤ i ≤ m and π ∈ [0, 1]ω}, an input tree, and a run R of A on t
such that valueS(R) > |QA|, and for all branches π, eπ0 < · · · < eπm ∈ Em are nodes of
π such that for all 0 ≤ i < m the portion of R corresponding to [eπi , eπi+1) is a block,
i.e. contains states from both FB and FS, and for all γ ∈ ΓB, if γ is incremented in
the block then it is also reset in the block.

Moreover, if branches π1 and π2 share some prefix up to position y and x < y is
the first position with eπ1

i = x and eπ2
i 6= x then eπ2

i > y (the nesting condition). In
this case we will say that π1 <nest π2 and y is a nesting node. If π1 and π2 do not
disagree on the ei’s on their common prefix, we will say that π1 ≈nest π2. The idea
is that if π1 <nest π2, then pumping the blocks from π2 will not damage any of the
blocks from π1.

The first step will be to build a single tree t′ such that there is some n with
JAKB(t′) ≤ n <∞, and also JAKBS (n)(t′) > |QA|.

Lemma 6.15. There exists a tree t′ such that there exists n ∈ N with JAKB(t′) ≤ n

and JAKBS (n)(t′) > |QA|.

Proof. Let tm be the finite tree obtained from t by removing all nodes after the
frontier Em. The tree t′ will be obtained from tm by an infinite pumping of some
blocks on every branch.

Let G be the set of all branches of tm, a finite set that is partially ordered by <nest.
We inductively build sets (Gj)j∈N in the following way: for all j, Gj is the set of
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branches of tm that are maximal for <nest in G \ (⋃j′<j Gj′). Let p ∈ N be such that
Gp 6= ∅ and for all j > p, Gj = ∅. Then G1, . . . , Gp form a partition of G, and for all
j ∈ [1, p] and for all π1, π2 ∈ Gj, we have π1 ≈nest π2. Notice that for all j ∈ [1, p]
and all i ∈ [1,m], the set {eπi : π ∈ Gj} is a partial frontier of tm (more precisely, it
is the intersection of a frontier of tm with Gj).

We can now adapt the technique of Rabin [Rab70], but applying it only on the
branches of G1 (for now). Let N := |QA|. In the following, S-values will be approxi-
mated by assigning value N + 1 for any value larger than N . Unlike [Rab70], when
we pump we must be careful that we do not reduce the S-value below N .

We define sets Hm, . . . , H0 by induction: we set Hm := QA × [0, N + 1]ΓS , and
(q, η) ∈ Hi−1 if (q, η) ∈ Hi and there is a finite tree tf contained in tm and a partial
run Rf of A over tf starting from state q and valuation η for the S-counters, such that

• every branch of Rf is a block,

• on every leaf of tf , the state and S-counters values configuration (q′, η′) of A
belongs to Hi.

Notice that some nodes of tf are allowed to have only arity 1 (the nodes corresponding
to nesting nodes of tm). The idea is that when starting from a node in Hi−1 (which
is also in Hi), we can reach a Hi-frontier with blocks.

We have H0 ⊆ H1 ⊆ · · · ⊆ Hm, and moreover, the run R on branches G1 witnesses
the fact that for all branches π ∈ G1 and for all i ∈ [0,m], the configuration (q, η) of A
in the run R at node eπi always belongs to Hi. Moreover, there is a finite tree t0 such
that A has a run over t0 starting in (q0, 0) and ending in a configuration belonging
to H0 on every leaf (t0 is a prefix of tm, and this run is a prefix of the run R).

But |Hm| = N · (N + 2)|ΓS | ≤ m, so there must be i ∈ [0,m − 1] such that
Hi = Hi+1. It means that from any configuration of Hi, we can find a finite tree tf
contained in tm, and a partial run of A over tf (contained in R), such that any branch
of this run is a block, and the configuration on any leaf is again in Hi. This will
allow us to construct an infinite tree and a run with infinitely many Hi-frontiers by
pumping.

Pumping cannot result in a run with S-value less than N since no block from R

can check a S-value less than N and the value of the S-counter is stored as part of
this configuration (up to value N).

Pumping can distort the B-value slightly. The definition of block includes a
constraint on B-actions (for all B-counters γ, if a block increments γ, then it also
resets γ) which ensures that pumping does not result in an unbounded B-value.
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However, when appending two blocks, the worst case that can happen is when the
first block starts with a reset and then make some increments, and the second block
makes some increments and then resets. The maximum value resulting from this
type of error is nblocks := max {valueB(uv) : u, v are blocks in R from Hi to Hi}, the
maximal B-value obtained by appending two blocks (appending more than two blocks
cannot increase this value further). We also define npref to be the B-value of the partial
run reaching the first Hi-frontier from the root in the run R. Thus, the B-value after
pumping is at most n1 := nblocks + npref.

This allows us to build an infinite (but not complete) tree t1, and a partial run R1

of A over t1, by using R to reach the Hi-frontier (nodes eπi for π ∈ G1), and then
repeating infinitely many finite trees witnessing partial runs from Hi-nodes to Hi-
frontiers. Note that every infinite play π of R1 is B-accepting with valueB(π) ≤ n1,
and S-accepting with valueS(π) > N , by the block condition and the fact that no
S-value less than N is checked during R.

The tree t1 also contains infinitely many finite branches, which are duplicated from
G2, . . . , Gp. Let us call G′2 the infinite set of finite branches in t1 coming from G2.
The nesting condition implies that pumping branches of G1 did not split blocks of
the other Gi’s, so we can now define the sets H0, . . . , Hm as before, and pump all the
branches of G′2 simultaneously, building a tree t2 satisfying the same properties as t1,
but with additional infinite branches.

Iterating this process p times yields a complete binary infinite tree t′ := tp, and
some n := n1 + n2 + · · · + np (only depending on the finite set of blocks from the
run R on tm) such that there is a run R′ of A on t′ witnessing both JAKB(t′) ≤ n,
and JAKBS (n)(t′) > N (i.e. the run R′ is B-accepting with B-value less than n, and
S-accepting with S-value strictly above N).

We will now build from t′ an infinite sequence of infinite trees that will witness
bounded B-value but unbounded S-value.

Lemma 6.16. There is an infinite sequence of infinite trees (t′s)s∈N, such that for all
s ∈ N, JAKB(t′s) ≤ n, and JAKBS (n)(t′s) > |QA|+ s.

Proof. Let N := |QA| as in the previous lemma. Consider the run R′ on t′ from
Lemma 6.15. In order for R′ to have S-value more than N , any action cr for γ ∈ ΓS
must occur when the value of γ is at least N + 1, so the cr must be immediately
preceded by a sequence of at least N + 1 increments of γ. This path may contain ε
but cannot contain any r or cr for γ.
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By the choice of N , there must be positions x and y on this path that both output
action i for γ and correspond to the same state q ∈ QA, and such that there are no
r or cr for γ between x and y. Let uγ be the subpath [x, y].

Recall that we are using hierarchical BS-actions. Consider the behaviour of the
other counters during uγ.

• If γ′ is a B- or S-counter higher than γ in the hierarchy, any non-ε action for γ′

resets γ, which is not possible in uγ. Hence uγ contains only action ε for γ′ > γ.

• If γ′ is a B- or S-counter lower than γ, then uγ starts with action r for γ′.

This means that if there is some γ′ < γ, if vγ′ (based on some other path) intersects
uγ, then vγ′ must occur entirely within uγ (because increments for γ result in resets
for γ′). If γ = γ′ and uγ and vγ′ intersect, then iterating one could increase the value
of the other, but cannot change the properties we are interested in: it would still
result in a path from some q ∈ QA to q, starting with an action i for γ and without
any reset for γ. In any case, repeating uγ several times does not adversely affect the
values of other B- and S-counters, or prevent iterating some other vγ′ .

Let t′s be the infinite tree obtained from t′ where for all S-counters γ and for all
position z where action cr on γ is done in R′, the path uγ relative to this position z
is repeated s times. The run R′ induces a run R′s for each t′s that is still B-accepting
and S-accepting (accepting states still appear infinitely often since t′ was B-accepting
and S-accepting and we are only iterating parts of the tree finitely many times), has
B-value less than n, but where at least s increments have been added before each
action cr of any counter, so valueS(Rs) > N + s.

We are now ready to observe the contradiction required to prove Proposition 6.10.
Let α and (βi)i∈N be corrections functions witnessing A u U × U ′. In particular
JAKB ≈α JU ×U ′KB = JUKB (U ′ does not play any role in the B-semantics of U ×U ′).
This implies that JUKB(t′s) ≤ α(n) for any t′s from Lemma 6.16.

But we also have JAKBS (n) 4βn JU×U ′KBS (α(n)), soN+s ≤ βn(JU×U ′KBS (α(n))(t′s))
for all s ∈ N. But JU × U ′KBS (α(n))(t′s) is

sup
{

valueS(R′′) : R′′ is an S-accepting run of U × U ′ on t′s
with valueB(R′′) ≤ α(n)

}
.

Since we know that JU × U ′KB(t′s) ≤ α(n), there must be an S-accepting run R′′ of
U×U ′ on t′s witnessing βn(JU×U ′KBS (t′s)) ≥ N+s. This means βn(valueS(R′′)) ≥ N+s.
But R′′ induces an S-accepting run RU ′ of U ′ over t′s with βn(valueS(RU ′)) ≥ N + s.
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Therefore, for all s ∈ N, βn(JU ′KS(t′s)) ≥ N + s. This means JU ′KS is unbounded
over the set {t′s : s ∈ N} while JUKB is bounded over the same set, which shows that
a cost trap implies a contradiction with JU ′KS 4 JUKB.

6.3 Discussion
One of the goals in the theory of regular cost functions introduced by Colcombet
in [Col09c] was to develop a theory that retained the robust equivalences, closure
properties, and decidability of the classical theory of regular languages. As described
in Chapter 2, this goal was achieved over finite words and finite trees.

Chapter 5 extended the theory to weak cost functions over infinite trees. The
correspondence between weak cost automata and cost WMSO, and the decidability
result that follows from this, parallels the classical theory nicely. The new quasi-weak
automata that arise in this setting, and the fact that quasi-weak cost automata, rather
than weak cost automata, admit the Rabin-style characterization is an interesting
divergence from the classical theory. Figure 6.4 (courtesy of Kuperberg) compares
the classical theory over trees compared to the known results in the cost setting.

A major difference between the classical picture and the cost version shown in
Figure 6.4 is that the relationship between the full cost MSO logic and arbitrary
cost-parity automata (and the decidability of this class) is not known. A major open
question is to prove the equivalence of cost MSO and cost-parity automata, and derive
a decidability result for the corresponding cost functions. As explained in Chapter 4,
this comes down to showing that finite memory strategies suffice in the cost-parity
games that come out of cost-parity automata acting on infinite trees.

If we restrict to cost functions over infinite words rather than infinite trees, how-
ever, the correspondence with classical results holds again. For instance, Kuperberg
and the author have recently shown that the classical equivalence of WMSO and
MSO over infinite words holds in the cost setting [KVB12]. Moreover, over infinite
words, cost functions definable by B-quasi-weak, B/S-weak, and nondeterministic
B/S-Büchi automata are actually equivalent and capture all regular cost functions
over infinite words. This implies that the domination preorder is decidable for all
regular cost functions over infinite words (although this result was already known by
Colcombet [Col12b] using algebraic methods).

In fact, additional classical results can be lifted to the cost setting over infinite
words. It turns out that a cost version of first-order logic (FO), linear temporal logic
(LTL), and very-weak automata (weak automata with a further restriction that any
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Weak automata
WMSOBüchi Büchi

Regular Languages
MSO

B-weak automata
Cost WMSO

B-Büchi S-Büchi

Regular Cost Functions
Cost MSO?

B-quasi-weak

Figure 6.4. Comparison of the theory of regular languages and the theory of weak cost
functions over infinite trees.

cycle consists of only one state) are equivalent, which parallels well-known classical
results. We refer the interested reader to [KVB12] for details. A comparison of the
classical theory compared to the cost theory over infinite words is given in Figure 6.5.

These results over infinite words and infinite trees give additional evidence that
the theory of regular cost functions is a robust quantitative extension to the theory
of regular languages.
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MSO Büchi automata
WMSO Weak automata

FO
LTL

Very-weak automata

Regular Languages

First-Order Fragment

Cost MSO B/S-Büchi automata
Cost WMSO B/S-weak automata

B-quasi-weak automata

Cost FO
Cost LTL

B-very-weak automata
with one counter

Regular Cost Functions

First-Order Fragment

Figure 6.5. Comparison of the theory of regular languages and the theory of regular cost
functions over infinite words (see [KVB12]).
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Chapter 7

Application to Parity Index Problem

As mentioned in Chapter 1, one of the earliest motivations for studying automata
with counters came from problems in formal language theory, such as the star height
problem. In this chapter, we describe two problems from language theory called the
parity index problem (Section 7.1) and weak definability problem (Section 7.2). After
reviewing the known decidability results, we apply the results on cost automata over
infinite trees developed in this thesis to decide special cases of these problems that
were previously open. The result on the special case of the weak definability problem
in Section 7.2 is based on joint work with Kuperberg [KVB11].

7.1 Parity index problem
The range of priorities [i, j] used in a parity automaton is a useful measure of the
complexity of the automaton, even more so than the number of states. Indeed, all
known algorithms for solving parity games (and hence deciding the emptiness problem
for parity automata) are essentially exponential in the number of priorities but only
polynomial in the number of the states [Jur00].

Of course, if a language is definable using an [i, j] automaton (a parity automaton
using only priorities in [i, j]), then the language is definable using an automaton with
a larger range of priorities, i.e. an [i′, j′] automaton with j′ − i′ > j − i. Likewise,
if the priorities used by a parity automaton are shifted by steps of 2 or -2, then the
language defined by the automaton is unaffected. Hence, we can restrict attention to
[i, j] with i ∈ [0, 1]. We call [i, j] the parity index of the automaton.

We can consider the hierarchy of indices of parity automata, and the languages
expressible using automata of a given index. This is known as the Mostowski hier-
archy or Mostowski-Rabin hierarchy after the first researchers who studied automata
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[0, 0] [0, 1] [0, 2] [0, k] [0, k + 1]

[1, 1] [1, 2] [1, 3] [1, k + 1] [1, k + 2]

Figure 7.1. The Mostowski hierarchy of parity indices.

using a parity acceptance condition (see Figure 7.1). This hierarchy comes in several
flavours depending on the structure of the transition relation used by the automata,
i.e. whether the automata are deterministic, nondeterministic, or alternating. We will
refer to, e.g. the nondeterministic Mostowski hierarchy, if we want to make this clear.

Over infinite words, the nondeterministic hierarchy collapses to the [1, 2] level
since every regular language of infinite words is expressible using a nondeterministic
Büchi automaton (see Theorem 3.1 and [Tho97]). Likewise, the alternating hierarchy
for automata over infinite words collapses to the intersection of the [0, 1] and [1, 2]
levels. This follows from the fact that regular languages are closed under comple-
ment [Büc60], and an alternating co-Büchi automaton for a regular language L can
be obtained from the nondeterministic Büchi automaton for L by switching the con-
junctions and disjunctions in the transition relation and replacing priority p ∈ [1, 2]
with p− 1 ∈ [0, 1].

Over infinite trees, however, the Mostowski hierarchy is strict for determinis-
tic1 [Wag77] (as cited in [NW03]), nondeterministic [Niw86], and alternating mod-
els [Bra98, Arn99].

Given a regular language of infinite trees in the form of an arbitrary parity au-
tomaton for the language, it is helpful to know if there is a simpler (lower index)
automaton defining the same language. The parity index problem is:

Given an arbitrary parity automaton A and a range of priorities [i, j], is
there an [i, j] automaton A[i,j] such that L(A) = L(A[i,j])?

7.1.1 Known decidability results

The status of the parity index problem over trees depends on which version of the
hierarchy is being used (i.e. whether A[i,j] is required to be deterministic, nondeter-
ministic, or alternating). It also depends on the types of languages allowed as input to
the problem. We refer the reader to [NW05] for a nice introduction to this problem.

1In fact, the deterministic hierarchy is strict even over words.
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The lowest levels [0, 0] and [1, 1] of the nondeterministic and alternating hierarchies
coincide and are known to be decidable. Level [0, 0] consists of the regular languages
of infinite trees that are closed under the standard prefix topology [JL02] (building
on earlier work in [Mos91]). This means that membership in the [0, 0] level can be
decided by constructing the closure Acl of A and testing whether L(A) ∩ L(Acl) = ∅
(see [Löd09, Theorem 5.1]). Level [1, 1] consists of regular languages of finite trees
(since no infinite structure can be accepted when using only priority 1). Deciding this
level can be reduced to determining whether L(A) ∩ Linf = ∅ where Linf is the set of
all infinite trees (a regular language). As described in Section 4.4, this is decidable.

Decidability of the parity index problem has also been established when the input
automaton A is deterministic. Deterministic tree languages form a proper, decidable
subclass of all regular tree languages [NW05]. Unlike nondeterministic automata,
it is natural to identify a deterministic tree automaton A over alphabet A with a
deterministic word automaton Aw over A× [0, 1] such that

t ∈ L(A) iff for all branches π, π ∈ L(Aw).

This has been exploited to show the decidability of the deterministic [NW98] and
nondeterministic [NW05] hierarchies. The proof proceeds by reducing membership in
a given level to the detection of special patterns (called flowers) in the graph of Aw.
Since the search for these patterns is effective, the parity index problem is decidable.
The alternating hierarchy is actually easier since all deterministic tree languages are
contained in the [0, 1] level: there is a nondeterministic Büchi automaton for L(A)
that guesses a branch rejected by A, so this automaton can be dualized as described
above to get an alternating co-Büchi automaton for L(A) [Mur08a].

7.1.2 Reduction to boundedness for cost-parity automata

For the remainder of this section, we concentrate on the case of the nondeterministic
hierarchy. Unfortunately, the techniques mentioned above cannot be generalized to
the nondeterministic Mostowski hierarchy when the input is an alternating or non-
deterministic automaton. Recently, Colcombet and Löding have suggested another
route, by providing a reduction of the decidability of the nondeterministic hierarchy
to the decidability of ≈ for cost-parity automata.2

2The notation and terminology used in [CL08b] is different than in this thesis. The “distance-
parity” automata in that work are actually hB-parity automata with priorities and counter opera-
tions labelling states rather than transitions. The reduction is to the uniform universality problem
(see Remark 2.2) of an automaton Uij . The construction of Uij uses an automaton Aij , which
corresponds to E here.
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Proposition 7.1 ([CL08b]). Given a parity automaton A and an index [i, j], there
is a nondeterministic B-[i, j] automaton E and a correction function α such that
JEK ≈α χL(A) if and only if L(A) is recognizable by a nondeterministic [i, j] automaton.

One direction of the proof of Proposition 6.1 is straightforward. If there is some
E that satisfies JEK ≈α χL(A) then t ∈ L(A) if and only if there is an accepting run ρ
of E on t with value(ρ) ≤ α(0). Hence, there is a nondeterministic [i, j] automaton E ′

based on E but without counters that recognizes L(A). The automaton E ′ simulates
the counters in the state up to value α(0), and enters a special rejecting sink state as
soon as a counter would exceed this bound. This E ′ is the witness to the fact that
L(A) has index [i, j].

The other direction requires us to examine the construction of E . In some sense,
the goal of E is to take an accepting run of A using some set of priorities P and
optimize it so it uses only the desired priorities [i, j]. That is, E must guess a run
of A and a mapping from the original set of priorities P to [i, j]. In order to preserve
correctness (i.e. to ensure that a tree is accepted by E only if A accepted it), these
mappings must satisfy some properties: odd priorities must be mapped to odd pri-
orities, and the ordering of the priorities should be preserved such that the image of
any odd priority dominates the image of all lower priorities.

Unfortunately, it is not true in general that there is a connection between the
priorities in an arbitrary automaton such as A and the priorities in an [i, j] au-
tomaton defining the same language. However, guidable parity automata (introduced
in [CL08b] and studied in more detail in [Löd09]) do have this good property. A
parity automaton is guidable if for any B such that L(B) = L(A) (in fact, even
L(B) ⊆ L(A)), there is a deterministic transducer with state set QA that reads a
run ρB and outputs a run ρA of A such that if ρB is accepting for B, then ρA is
accepting for A. Formally, this means that there exists a mapping g : QA×∆B ∆A
satisfying

• g(p, (q, a, q′, q′′)) = (p, a, p′, p′′) for p′, p′′ ∈ QA, and

• if ρB is an accepting run of B over some tree t, then ρA := g(ρB) is an accepting
run of A over t where g(ρB) is the unique run such g(ρB)(ε) = q0

A, and for all
x ∈ [0, 1]∗,

(ρA(x), t(x), ρA(x0), ρA(x1)) = g(ρA(x), (ρB(x), t(x), ρB(x0), ρB(x1))).
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The key property of guidable automata is that in any cycle in a composed run
of B and the guided run of A, if the maximum priority in this cycle in the run of B
is even, then the maximum priority in the run of A in this cycle is also even.

Lemma 7.2 ([CL08b, Lemma 2]). Let A be a guidable parity automaton and let B be
a nondeterministic parity automaton with L(B) = L(A). Set ρA := g(ρB) to be the
run of A guided by some run ρB of B. Let x, y ∈ [0, 1]∗ with x < y. If ρA(x) = ρA(y),
ρB(x) = ρB(y), and the maximum priority in ρB between x and y is even, then the
maximum priority in ρA between x and y is even.

We use the term loop to describe a cycle between positions x and y in the composed
runs of some ρB and ρA := g(ρB) such that ρA(x) = ρA(y) and ρB(x) = ρB(y). The
previous lemma implies that if there is some [i, j] automaton B with L(A) = L(B),
then there will be a nice relationship between the priorities [i, j] and the priorities in
the guidable automaton A in loops.

It turns out that if a parity automaton A has been constructed from its comple-
ment A′ using a standard complementation procedure (see, e.g. [Löd09, Section 1.4]),
then it is guidable [CL08b, Theorem 1].

This is not surprising once the idea behind the complementation procedure for
parity automata over trees is recalled: on input t, A guesses a positional strategy for
Adam in A′ × t and then runs a deterministic parity automaton on each branch to
check that this is a winning strategy for Adam. This positional strategy for Adam is
essentially a labelling of positions with a function ∆A′ [0, 1], so selecting a transition
of A corresponds to selecting a mapping ∆A′ [0, 1] for a given position. The precise
definition of the function g witnessing the guidability of A is not necessary for our
work here, but the idea is that given some transition from B, g selects an element
from ∆A′ [0, 1] by using a positional strategy for Adam in the intersection game
GB∩A′ (see Section 4.4), which can be viewed as a mapping ∆B (∆A′ [0, 1]).

The important point is that every regular language has a guidable parity automa-
ton recognizing it, and this guidable version can be constructed from an arbitrary
parity automaton by using two complementations.

Returning to the description of E , we can assume without loss of generality that A
is guidable. Then E guesses a run of the guidable parity automaton A and mappings
s : P ([i, j] ∪ {⊥}). We must allow these mappings to use the undefined value ⊥
since there may be no connection between priorities P and [i, j] in some parts of
the run (e.g. outside of loops). The automaton E has |P | counters and each counter
is responsible for ensuring that eventually E makes a guess for the corresponding
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priority (i.e. counter p is incremented to penalize E if priority p is used in the run
ofA but s(p) = ⊥). The counters also catch other mistakes in the mappings (when the
automaton is forced to change its mind about the mapping because it changes strongly
connected component). These errors may be unavoidable because the nice connection
between priorities P and [i, j] may only hold in the context of loops. However, the
automaton can only change strongly connected component a finite number of times,
so the number of errors and hence the counter values are bounded. Therefore, it can
be shown that JEK ≈ χL(A).

This is an interesting reduction to a question of boundedness which is quite differ-
ent than the star height reduction. Unfortunately, it reduces the decidability of the
challenging parity index problem to another challenging problem, namely deciding ≈
for regular cost functions over infinite trees. It is not known in general whether the
boundedness relation ≈ is decidable for cost functions over infinite trees definable by
arbitrary cost-parity automata. However, the results in this thesis can be combined
with Proposition 7.1 in order to show the decidability of the [0, 1] level.

7.1.3 Decidability of the [0,1] level

As mentioned above, the only levels of the nondeterministic Mostowski hierarchy that
are known to be decidable when the input is a nondeterministic parity automaton
are the lowest levels [0,0] and [1,1]. We can apply the simulation and duality result
from Chapter 4 to prove the decidability of the co-Büchi level (index [0, 1]). This is
a corollary of Theorem 4.28 and Proposition 7.1 (with thanks to Löding for pointing
out this application [Löd11]).

Proposition 7.3. Given a parity automaton A over infinite trees, it is decidable
whether or not there is a co-Büchi automaton A′ such that L(A) = L(A′).

Proof. By Proposition 7.1, given a parity automaton A, there is a nondeterministic
B-[0, 1] automaton E such that JEK ≈ χL(A) if and only if L(A) is recognizable by a
co-Büchi automaton.

Recall by Example 2.3 that for an automaton without counters such as A, we have
JAKB = χL(A) = JA′KS where A′ accepts the complement of L(A). Hence, in order
to test whether or not χL(A) 4 JEK, A′ can be constructed from A using a standard
complementation procedure, and the algorithm from Theorem 4.32 can be run to test
JA′KS 4 JEKB.
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The more difficult test is for JEK 4 χL(A). By applying the duality result (Theo-
rem 3.15) and the simulation result (Theorem 4.28), we can construct a nondetermin-
istic S-[1, 2] automaton E ′ such that JEK ≈ JE ′K. Hence, it suffices to test JE ′KS 4 JAKB
which is decidable by Theorem 4.32.

Based on the structure of the proof of Proposition 7.3, one route to proving the
decidability of the other levels [i, j] of the Mostowski hierarchy would be to prove
a simulation result similar to Theorem 4.28 for arbitrary alternating S-[i + 1, j + 1]
automata. This would likely rely on showing that finite memory strategies suffice in
B-[i, j] games. As discussed in Chapter 4, this remains a challenging open problem.

7.2 Weak definability problem
The weakly definable languages are a proper subclass of the regular languages of
infinite trees. This subclass is well-studied since it is expressive (e.g. the temporal logic
CTL embeds in it) but still admits efficient model checking procedures [KV99]. As a
result, it is desirable to know when a language lies in this class. The weak definability
problem is the problem of deciding whether a given language of regular trees is weakly
definable (i.e. definable in weak monadic second-order logic or, equivalently, using a
weak alternating automaton).

Since Rabin [Rab70] characterized weak languages L as exactly those languages
for which both L and L are recognizable by nondeterministic Büchi automata (see
Theorem 6.5), one route to proving the decidability of the weak definability problem
would be to show the decidability of level [1, 2] in the nondeterministic Mostowski
hierarchy. Indeed, this means that the weak definability problem is decidable when
the input is a deterministic tree language [NW05]. Because the decidability of the
[1,2] level in the nondeterministic hierarchy is open in general, an alternative method
is used here. We have been unable to prove the general decidability of the weak
definability problem, but we can solve some special cases when it is possible to obtain
a nondeterministic Büchi automaton for L or L as input to the problem.

7.2.1 Decidability for Büchi input

If a Büchi automaton U for L is given as input (instead of an arbitrary parity automa-
ton), there is a reduction of the weak definability problem to the decidability of ≈ for
quasi-weak automata. This can also be viewed as a decidability result for the [1, 2]
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level in the Mostowski hierarchy in the case when the input is a Büchi automaton for
the complement language.

Theorem 7.4. Given a Büchi automaton U with L = L(U), there exists effectively a
quasi-weak B-automaton B such that JBK ≈ χL if and only if L is weakly definable.

Proof. Given the Büchi automaton U without counters, we view this as an S-Büchi
automaton with JUKS = χL. Using Proposition 7.1 we get a B-Büchi automaton E
that satisfies JEKB ≈ χL if and only if L is Büchi. We run the construction in Theorem
6.6 with E and U which yields a B-quasi-weak automaton B with the property that
JBK ≈ χL if JEKB ≈ JUKS.

Assume that JBK ≈ χL. Then there exists N such that for all t ∈ L, there is an
accepting run ρ of B on t with value(ρ) ≤ N . Hence, there is an alternating Büchi
automaton B′ based on B that simulates the counters in the state up to value N , and
enters a special rejecting state as soon as a counter would exceed this bound. It is
not hard to see that L(B′) = L.

Moreover, because B is quasi-weak, this bound N on the value also implies that
there is a bound β(N) on the number of alternations between accepting and rejecting
states needed in order to recognize t ∈ L (and consequently, in B′, a bound β(N) + 1
on the number of alternations between accepting and rejecting states for t ∈ L).
Hence, B′ is a weak automaton recognizing L, and by closure of weak languages
under complementation, L and L must be weakly definable.

In the other direction, we assume that L is weak and need to prove that JBK ≈ χL.
But if L is weak, then L and L are also Büchi, so JEK ≈ χL by Proposition 7.1. Hence
by Theorem 6.6, JBK ≈ JEK ≈ χL as desired.

Corollary 7.5. Given an alternating Büchi automaton, alternating co-Büchi automa-
ton, or deterministic parity automaton A, it is decidable whether there is a weak
automaton W such that L(W) = L(A).

Proof. Because JBK ≈ χL is decidable when B is quasi-weak and L is a regular lan-
guage (by Corollary 6.8 and Theorem 4.32), Theorem 7.4 implies the decidability of
the weak definability problem when the input is a nondeterministic Büchi automaton.

The other inputs can all be transformed into a nondeterministic Büchi automaton
recognizing the language or its complement.

If the input is an alternating Büchi automaton, then an equivalent nondetermin-
istic Büchi automaton can be constructed ([MS95]), and Theorem 7.4 can be applied.
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If the input is an alternating co-Büchi automaton, then the complement is an
alternating Büchi automaton and we can use the previous case to decide whether L
is weak. Since weakly definable languages are closed under complement, L is weak if
and only if L is weak.

Finally, if the input is a deterministic parity automaton (not necessarily Büchi),
then an alternating co-Büchi automaton can be constructed for the language [Mur08a,
Proposition 2], so we reduce to the other cases. As mentioned earlier, the decidability
of this case was known already from [NW05] using different methods.

7.2.2 An alternative construction

We now describe another construction for B in Theorem 7.4 that does not use the
involved construction from Theorem 6.6. This alternative construction is much sim-
pler (both in terms of the informal description and the number of states) compared
to the automaton that comes out of applying the construction from Chapter 6. It
also serves as another nice example where quasi-weak automata (rather than weak
automata) arise naturally.

It will be useful to refer to Section 6.2.2 and Section 7.1.2 for a summary of [KV99]
and [CL08b], since details of these constructions are required in the definition and
proof of correctness for B.

We are given a Büchi automaton U = 〈QU ,A, qU0 , FU ,∆U〉 (without counters),
with L = L(U). Using a standard complementation procedure starting from U ,
we construct a parity automaton A′ using priorities P such that L(A′) = L (this
means A′ is guidable, but not necessarily Büchi). From A′, we construct the B-Büchi
automaton E = 〈QE ,A, qE0 ,ΓE , FE ,∆E〉 using Proposition 7.1 which simulates A′ while
guessing priority mappings, and satisfies JEKB ≈ χL if and only if L is Büchi.

We use U and E to build an alternating B-Büchi automaton B = 〈Q,A, q0,Γ, F,∆〉
described below. It will turn out that B is quasi-weak and JBK ≈ χL if and only if L
is weak.

The state set is
Q := QE ×QU × {ε,⊥}

with initial state q0 := (qE0 , qU0 , ε).
We now describe the operation of B on some input t. The idea is that Adam

(respectively, Eve) selects a run of U (respectively, E) on t (technically, this is done
one move at a time). Eve also selects a branch of the tree.
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Acceptance is determined by an analysis of blocks. For the construction in Sec-
tion 6.2.2, a complicated definition of blocks was required because both B- and S-
actions were involved. Here, we can use the simpler definition of blocks that is similar
to [KV99]. A complete B-block must first witness an accepting state from the run
of U followed by an accepting state from the run of E . The last component of the
state (qE , qU , z) tracks these accepting states from E and U : z = ε if no accepting
states have been seen and z = ⊥ if FU has been visited but FE has not. If z = ⊥ and
a state from FE is seen, then the current block is closed and z is set to ε. The set F
consists of all states (qE , qU , z) where z 6= ⊥.

Thus far, this is similar to the construction in [KV99] that takes nondeterministic
Büchi automata for a language and its complement and constructs a weak automaton
for the same language. The key difference is that instead of counting the blocks in
the state up to some fixed bound depending on the size of the initial nondeterministic
Büchi automata, in this construction the number of blocks are going to be tracked
using counters because the approximate nature of E means that we do not know this
bound upfront.

For this reason, the set of counters is Γ := ΓE ∪ {γalt}. The counter actions
are copied from the run of E chosen by Eve. In addition, the new counter γalt is
incremented any time B closes a block (when the last component of the state changes
from ⊥ to ε).

Because of γalt, B satisfies the quasi-weak cycle condition and hence is quasi-weak
by Proposition 6.3.

We are now ready to give an alternative proof of Theorem 7.4.

Alternative proof of Theorem 7.4. Assuming that JBK ≈ χL and then proving that L
is weak is the same as the original proof of Theorem 7.4 above.

The other direction is the interesting case.
Assume that L is weak. We already have a nondeterministic Büchi automaton U

such that L(U) = L. By Theorem 6.5, there is a nondeterministic Büchi automaton U ′

such that L(U ′) = L. This implies that JEK ≈α χL.
By Theorem 6.5, we can construct a weak automaton W defining L (using the

construction from [KV99] starting from U and U ′, see Section 6.2.2) in which at each
position, Eve selects a transition of U and Adam selects a transition of U ′ and a direc-
tion. Blocks are counted in the resulting play as described in Section 6.2.2: complete
blocks have FU after FU ′ , and are counted up to some fixed bound M := |QU | · |QU ′|.
We call these W-blocks to distinguish from the B-blocks described above.

We show that JBK ≈ χL.
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First, assume by contradiction that χL 64 JBK. This means that there is some t
such that Eve has a strategy σ in B × t with value(σ) ≤ N ∈ N, but t ∈ L. Consider
the play π in B × t resulting from Eve playing according to σ and Adam playing an
accepting run of U on t (possible since t ∈ L). Then π will have infinitely many
states from FU . If there are finitely many states from FE , then π must stabilize in
rejecting states of the form (qE , qU ,⊥) and value(π) =∞. If there are infinitely many
states from FE then there will be infinitely many blocks, so γalt will be unbounded and
value(π) =∞. In either case, this contradicts the assumption that value(σ) ≤ N .

Finally, we prove JBK 4 χL. Let M := |QU | · |QU ′ | and N := (M + 1) · (α(0) + 2).
For all t ∈ L, we describe a strategy σ for Eve in B × t such that value(σ) ≤ N ,
witnessing the fact that JBK is bounded.

Because t ∈ L, there is a winning strategy for Adam in W × t. In fact, we can fix
an accepting run ρU ′ of U ′ on t and consider the variant of the game where Adam plays
according to ρU ′ and only chooses a direction. Adam still has a winning strategy in this
game, so there is a positional winning strategy σdir : (T ×∆U) [0, 1]. This means
that any π ∈ σdir must have at most M W-blocks (since in the construction from
[KV99], a play is immediately winning for Eve if the number of blocks exceeds M).

Let m ≤ M be the number of W-blocks in some π ∈ σdir. This means π can be
partitioned into sections π1π2 · · · πmπ′ where each partial play πi = uivi for i ∈ [1,m]
has some (possibly empty) prefix ui with no FU ′ followed by a suffix vi of length at
least 1 that begins with a state from FU ′ , ends with a state from FU , but has no
intermediate states from FU . Since π is winning for Adam in W × t, the infinite
continuation π′ after the m blocks has some FU ′ that is not followed by any FU . This
means it can be split into π′ = u′v′ where u′ is a possibly empty prefix with no FU ′ ,
and v′ is an infinite play beginning with a state from FU ′ and containing no states
from FU .

We now describe a finite memory strategy σ for Eve in B× t which needs to select
a branch and a run of E given the run of U selected by Adam. Recall that a run
of E consists of simulating a run of A′ and guessing mappings s : P ([1, 2] ∪ {⊥}).
Because t ∈ L, there is a strategy (run) σE in E × t with value(σE) ≤ α(0) that is
obtained by using ρU ′ to guide a run ρA′ := g(ρU ′) and the corresponding mappings
s : P ([1, 2] ∪ {⊥}) (see [Löd09, Section 5.3] for further explanation of how these
mappings are chosen based on ρU ′).

The strategy σ plays the direction according to σdir and the run ρA′ := g(ρU ′) (the
run of A′ guided by ρU ′). This requires no additional memory.
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The choice of mappings is determined by σE and the partitions πi = uivi (based on
the run of U and U ′ being played). On the ui part, σ maps all priorities P in A′ to 1,
and we call this the wait mode. On the vi part, σ maps priorities according to σE ,
and we call this the active mode. This can be done in a deterministic way using
finite memory (Eve remembers which of these two modes she is currently in, and
changes mode based on conditions involving FU and FU ′ described above). Similarly,
on π′ = u′v′, σ maps all priorities P to 1 on u′, and according to σE on v′.

Let π ∈ σ and partition into π1π2 · · · πmπ′ as described above. Consider some
πi = uivi on positions [x, y].

We claim that on [x, y) (which represents one W-block) there is at most one
complete B-block. Indeed, in the wait mode on ui, B may move to a state with z = ⊥
but cannot close this block since there will be no accepting state from FE (since all
priorities are mapped to 1). In the active mode on vi, however, this block might be
closed. But because y is the only position in vi that can have a state from FU , there
is no way to start/finish more B-blocks on [x, y). Since γalt is only incremented at
the close of a B-block, this means that γalt has value at most 1 on this segment.

We also claim that on [x, y) the value is at most α(0) + 2 based on the counters
from E (where α comes from Proposition 7.1 and depends only on A′). On the vi
part, the counters from E have value at most α(0) (since value(σE) ≤ α(0)). Recall
that E increments a counter if the guess about the priority mapping changes; thus
the additional two increments could come from changing the guess to priority 1 at
the start of ui, and then changing back to the priority mapping according to σE at
the end of ui.

Likewise, on π′ = u′v′, γalt can be incremented at most once (i.e. there can be
at most one B-block) and the value from the counters from E is at most α(0) + 1.
Moreover, we know that the infinite play on the v′ part visits FE infinitely many times
(since value(σE) ≤ α(0)), so this play is accepting.

Since any π ∈ σ is of the form π1π2 · · · πmπ′ for m ∈ [1,M ], this means that γalt

has a maximum value M + 1 and the counters from E have a maximum value of
(M + 1) · (α(0) + 2). Hence value(σ) ≤ N .

7.3 Discussion
Cost automata (in particular, distance and nested distance desert automata) were
originally introduced as tools to help solve problems from formal language theory
such as the star height problem. In this chapter, we have seen that cost automata
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over infinite trees can be used to address problems about regular languages of infinite
trees.

The fact that we can only decide the [0, 1] level of the nondeterministic Mostowski
hierarchy (as shown in Proposition 7.3) comes down to the challenge of proving finite
memory determinacy in arbitrary cost-parity games, as discussed in Chapter 4.

The decidability of the weak definability problem for Büchi input is implied by
the Rabin-style characterization result from Chapter 6. The alternative construction
provides more insight into the problem. As described in Section 7.2.2, the idea is that
Adam guesses a run of the given Büchi automaton while Eve uses a guidable automa-
ton for the complement and guesses a mapping from the original set of priorities P to
the desired priorities [1, 2]. The work from [CL08b] provides a way for the counters
to be used to ensure that these guesses are valid and that the resulting automaton
is quasi-weak. A first attempt to extend this approach to the general problem would
allow both players to guess runs of guidable automata for the language and its comple-
ment. Unfortunately, thus far we are unable to design a quasi-weak cost automaton
that ensures that both Adam and Eve make appropriate choices. This is related to
the fact that guidable automata preserve accepting loops (loops where the maximum
priority is even), but a relationship between rejecting loops (where the maximum
priority is odd) would also be needed in such a construction, and this relationship is
not guaranteed in guidable automata.

Despite these setbacks, it seems worthwhile to explore the cost automaton ap-
proach to this problem further. A similar problem that could also be studied is the
weak index problem. Given a weakly definable language, the weak index is related
to the length of alternating chains in the corresponding weak automaton. The weak
index problem asks for the minimum weak index for a weakly definable language and
is known to be decidable when the input is a deterministic tree language [Mur08b],
or an extension known as a game tree language [DFM11]. It would be interesting to
explore whether or not this problem (or at least special cases of this problem) can be
reduced to a question of the decidability of 4 for quasi-weak cost automata.
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Chapter 8

Conclusion

This thesis has developed the theory of regular cost functions over infinite trees and
provides further proof that this is a robust quantitative extension to the theory of
regular languages. The main results can be summarized as follows.

• Alternating B-parity and alternating S-parity automata over infinite trees, as
well as versions with hierarchical counters, are effectively equivalent (Theo-
rem 3.15).

• For cost functions f and g over infinite trees, f 4 g is decidable when f is given
as a nondeterministic S-parity automaton and g is given as a nondeterministic
B-parity automaton (Theorem 4.32).

• Finite memory strategies cannot always guarantee the optimal value in cost-
parity games. However, finite memory strategies are sufficient (up to ≈) for Eve
in B-[1, 2] and B-[0, 1] games when the underlying game graph is chronological
and finite branching (Corollary 4.12).

• Alternating B-[1, 2] automata can be simulated by nondeterministic B-[1, 2] au-
tomata, and alternating S-[1, 2] automata can be simulated by nondeterministic
S-[1, 2] automata (Theorem 4.28).

• The logic cost WMSO is effectively equivalent to weak cost automata (Theo-
rem 5.13). Because weak cost automata can be simulated by both nondeter-
ministic B-[1, 2] and S-[1, 2] automata (Corollary 5.5), the logic is decidable:
given cost WMSO sentences ϕ and ψ, it is decidable whether or not JϕK 4 JψK
(Theorem 5.18).
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• Quasi-weak automata exhibit a new variant of weakness: unlike weak automata
which bound the number of alternations between accepting and rejecting priori-
ties using the state, quasi-weak cost automata bound the number of alternations
using the counters. Quasi-weak cost automata are strictly more expressive than
weak cost automata over infinite trees (Proposition 6.4). Moreover, it is this
larger class of quasi-weak cost functions that admits a Rabin-style character-
ization: a cost function over infinite trees is quasi-weak if and only if it is
recognizable by both a nondeterministic B-[1, 2] and nondeterministic S-[1, 2]
automaton (Theorem 6.6).

• These results about the theory of regular cost functions over infinite trees imply
the decidability of some special cases of problems from language theory. In par-
ticular, the [0, 1] level of the nondeterministic Mostowski hierarchy is decidable
(Proposition 7.3), and the weak definability problem is decidable when a Büchi
or co-Büchi automaton is provided as input (Theorem 7.4).

We view the proofs about finite memory strategies in certain cost-parity games
from Chapter 4 and the Rabin-style characterization from Chapter 6 as the main
contributions of this thesis.

Further directions

We have already mentioned some open questions in the discussion section at the end
of each chapter, but we highlight three directions for further work here.

• The main open problem in the theory is whether or not further classes of cost-
parity games admit finite memory strategies. Proving finite memory deter-
minacy for arbitrary cost-parity games over acyclic game graphs would imply
the decidability of 4 over infinite trees, the decidability of full cost MSO over
infinite trees, and the decidability of the parity index problem and weak defin-
ability problem. Proving that finite memory strategies are not sufficient would
be unexpected and very interesting as well.

• Another research direction would be to study other logics related to bound-
edness. The relationship between cost WMSO and WMSO+U (described in
Sections 2.4 and 5.3) still needs to be resolved. Likewise, the study of the logic
FO+RR (also described in Section 5.3) and its application in model checking
seems like a promising line of work as well.
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• Finally, additional applications of quasi-weak or other types of cost automata
could be explored. In particular, the question remains whether there is a re-
duction of the general weak definability problem or weak index problem to the
decidability of quasi-weak cost automata (see Section 7.3). These applications
would probably benefit from a finer analysis of the complexity of the various
decidability results in this thesis, which we also leave for further work.

The hope is that this thesis sets the stage for further development of this theory
of regular cost functions over infinite trees, which may ultimately help settle the
decidability of important problems like the parity index problem.
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