Automata-logic connection

for guarded logics

Michael Vanden Boom

University of Oxford

CiE 2015 - Special Session on Automata, Logic, and Infinite Games
July 2015

Including joint work with
Michael Benedikt, Balder ten Cate, and Thomas Colcombet

1/21

Guarded logics

constrain
quantification

(Gxy) A p(xy))
Vx(Glxy) > w(xy))

[Andréka, van Benthem,

F O Németi '95-'98]

2/21

Guarded logics

constrain
quantification

(Gxy) A p(xy))
Vx(Glxy) > w(xy))

[Andréka, van Benthem,
Németi '95-'98]
constrain

negation

x(w(xy))
~$(x)

[ten Cate, Segoufin 11]

2/21

Guarded logics

constrain
quantification

(Gxy) A p(xy))
Vx(Glxy) > w(xy))

[Andréka, van Benthem,
Németi '95-'98]
constrain

negation

Ix(w(xy))
Glxy) A =(xy)

[ten Cate, Segoufin 11]
[Bérany, ten Cate, Segoufin '11]

2/21

Guarded logics

constrain
quantification

(Gxy) A p(xy))
Vx(Glxy) > w(xy))

[Andréka, van Benthem,
Németi '95-'98]
constrain

negation

Ix(w(xy))
Glxy) A =(xy)

[ten Cate, Segoufin 11]
[Bérany, ten Cate, Segoufin '11]

Guarded logics extend modal logic
while still retaining many of its nice properties, e.g. decidable satisfiability.

2/21

Guarded logics

constrain
quantification

3x(Glxy) A Y(xy))
Vx(G(xy) - p(xy))
[Andréka, van Benthem,

Németi '95-'98]

constrain
negation

Ix(w(xy))
Glxy) A =(xy)

[ten Cate, Segoufin 11]
[Bérany, ten Cate, Segoufin '11]

These guarded fixpoint logics extend the modal y-calculus
while still retaining many of its nice properties, e.g. decidable satisfiability.

3/21

Exploiting model theoretic properties of these guarded logics

GF, UNF, and GNF have finite model property
(but fixpoint extensions do not).

4/21

Exploiting model theoretic properties of these guarded logics

GF, UNF, and GNF have finite model property
(but fixpoint extensions do not).

GFP, UNFP, and GNFP have tree-like models
(models of bounded tree-width).

4/21

Exploiting model theoretic properties of these guarded logics

GF, UNF, and GNF have finite model property
(but fixpoint extensions do not).

GFP, UNFP, and GNFP have tree-like models
(models of bounded tree-width).

= amenable to techniques using tree automata

4/21

The plan for this talk

Construct automata for deciding satisfiability of GFP sentences.
[Gradel+Walukiewicz "99]

Describe how these automata can be adapted to decide certain
boundedness problems. [Benedikt, Colcombet, ten Cate, VB. "15]

5/21

Guarded fixpoint logic (GFP)

Fix some relational signature o.

Syntax for GFP[0]

@ u=Rx | aRx [Yx | oag | oV | Ty(Glxy) A oxy)) | Vy(Glxy) = o(xy)) |
[lfpyry.(p(y, Y, Z)](x) where Y only occurs positively in ¢ |
[gfpyly.(p(y, Y, Z)](x) where Y only occurs positively in ¢

where R is a relation in o or =, and
the guards G(xy) are atomic formulas that use all of the variables xy.

6/21

Guarded fixpoint logic (GFP)

Fix some relational signature o.
Syntax for GFP[0]

@ u=Rx | aRx [Yx | oag | oV | Ty(Glxy) A oxy)) | Vy(Glxy) = o(xy)) |
[lfpyry.(p(y, Y, Z)](x) where Y only occurs positively in ¢ |
[gfpyly.(p(y, Y, Z)](x) where Y only occurs positively in ¢

where R is a relation in o or =, and
the guards G(xy) are atomic formulas that use all of the variables xy.

Examples

©1(x) := Vy(Sxy - 3z(Ryz A Py A P2))
®; := Vx(Jy(Rxy A =Ryx)) = Vx(x = x = (Jy(Rxy A =Ryx))
@3(y) = [fpy, . Py v 3z(Ryz A YZ)](y)

6/21

Tree-like models for GFP

Theorem (Gradel '99)
Every satisfiable ¢ € GFP of width k has a model of tree width at most k — 1.

7/21

Tree-like models for GFP

Theorem (Gradel '99)

Every satisfiable ¢ € GFP of width k has a model of tree width at most k — 1.

A structure 2l has tree width
k —1if it can be covered by
(overlapping) bags of size at

most k, arranged in a tree t s.t.

m every guarded set appears
in some bag nodein t, and

m for each element, the set of
bags with this element
is connected.

¢ has width k if the max
number of free variables in
any subformula is k.

7/21

Tree-like models for GFP

Theorem (Gradel '99)

Every satisfiable ¢ € GFP of width k has a model of tree width at most k — 1.

A structure 2l has tree width
k —1if it can be covered by
(overlapping) bags of size at

most k, arranged in a tree t s.t.

m every guarded set appears
in some bag nodein t, and

m for each element, the set of
bags with this element
is connected.

¢ has width k if the max
number of free variables in
any subformula is k.

7/21

Encoding structures of tree width k — 1

FixasetK ={a,b,c, ...} of names of size 2k.

Let K := {€ : €is a o-structure with universe C € K of size at most k}.

A K-tree is an
unranked infinite tree with

m arbitrary branching
(possibly infinite), and

m node labels ¢ € K.

8/21

Encoding structures of tree width k — 1

FixasetK ={a,b,c, ...} of names of size 2k.

Let K := {€ : €is a o-structure with universe C € K of size at most k}.

A K-tree is an
unranked infinite tree with Q ®

m arbitrary branching
(possibly infinite), and

m node labels ¢ € K.

8/21

Encoding structures of tree width k — 1

FixasetK ={a,b,c, ...} of names of size 2k.

Let K := {€ : €is a o-structure with universe C € K of size at most k}.

A K-tree is an
unranked infinite tree with Q ®

m arbitrary branching
(possibly infinite), and

m node labels ¢ € K.

[K-trees are consistent if Q @)

C
neighboring nodes agree on
any shared names.

A consistent K-tree t encodes
a o-structure D(t).

8/21

Alternating parity automata on infinite unranked trees

A=(A,Q,90,4,Q)

6 describ ibl 2:Q- P
eSfoI Ees pO;SIAde moves forafinitesetPc N
or kve and Adam of priorities

Acceptance game A X t

m Positions in the game are Q x dom(t).
m Eve and Adam select the next position in the play based on 6.

m Eveis trying to ensure the play satisfies the parity condition:
the maximum priority occurring infinitely often in the play is even.

9/21

Alternating parity automata on infinite unranked trees

A=(A,Q,90,4,Q)

6 describ ibl 2:Q- P
eSfoI Ees pO;SIAde moves forafinitesetPc N
or kve and Adam of priorities

Acceptance game A X t

m Positions in the game are Q x dom(t).
m Eve and Adam select the next position in the play based on 6.

m Eveis trying to ensure the play satisfies the parity condition:
the maximum priority occurring infinitely often in the play is even.

L(A) := {t : Eve has a winning strategy in A X t}

9/21

Let A := {®, O},

L := {t : thereis some # in ts.t.
every downward path from this # has infinitely-many <¢}.

10/21

Let A := {®, O},

L := {t : thereis some # in ts.t.
every downward path from this # has infinitely-many <¢}.

Construct A := (A, Q, qo, 6, Q) recognizing L with
Q:={q0,ra,ro}and Q: gy, ra & 1,15 > 2.

m In state g, Eve chooses a neighbor of the current node.
If she sees an #, Eve can choose to switch to state

m Instate r, or r, when reading letter | € {s, ¢},
Adam selects a child in the tree and moves to state r,.

(Recall that Eve is trying to ensure that the parity condition is satisfied:
the maximum priority visited infinitely often is even.)

10/21

Automata for GFP

Fix sentence ¢ € GFP[o] of width k.

1/21

Automata for GFP

Fix sentence ¢ € GFP[o] of width k.

Proposition

There is a 1-way parity automaton Ci that checks if a [K-tree is consistent.

There is a 2-way parity automaton C, := (K, Q, g, 6, Q) that runs on
consistent K-trees t and accepts iff ¢ holds in o-structure D(t).

1/21

Automata for GFP

Fix sentence ¢ € GFP[o] of width k.

Proposition

There is a 1-way parity automaton Ci that checks if a [K-tree is consistent.

There is a 2-way parity automaton C, := (K, Q, g, 6, Q) that runs on
consistent K-trees t and accepts iff ¢ holds in o-structure D(t).

State set Q := cl(¢, K) (subformulas of ¢ with names from K substituted for free vars)
and initial state g := ¢.

1/21

Automata for GFP

Fix sentence ¢ € GFP[o] of width k.

Proposition

There is a 1-way parity automaton Ci that checks if a [K-tree is consistent.

There is a 2-way parity automaton C, := (K, Q, g, 6, Q) that runs on
consistent K-trees t and accepts iff ¢ holds in o-structure D(t).

State set Q := cl(¢, K) (subformulas of ¢ with names from K substituted for free vars)
and initial state g := ¢.
Transition function 6 in state g € Q at a position labelled € with universe C:

m If g is Ra or —Ra, then move to T if € E g, and move to | otherwise.
m If gis Y, V ¥y, then Eve can choose to switch to state g, or ;.
m If gis ¢ A P, then Adam can choose to switch to state g, or 5.

1/21

Automata for GFP

Transition function 6 in state g € Q at a position labelled € with universe C

m If gis 3x(G(ax) A Y(ax)) and a < C, then Eve can choose to

- stay in the same node, choose some b < C such that € E G(ab), and
move to state ¢(ab), or
- move to some neighbor (parent or child), and stay in state g.

m If gis Ix(G(ax) A Y(ax)) and a ¢ C, then move to state

12/21

Automata for GFP

Transition function 6 in state g € Q at a position labelled € with universe C

m If gis 3x(G(ax) A Y(ax)) and a < C, then Eve can choose to

- stay in the same node, choose some b < C such that € E G(ab), and
move to state ¢(ab), or
- move to some neighbor (parent or child), and stay in state g.

m If gis Ix(G(ax) A Y(ax)) and a ¢ C, then move to state

m If gis Vx(G(ax) - y(ax)) and a < C, then Adam can choose to

- stay in the same node, choose some b < C such that € k G(ab), and
move to state Y(ab), or
- move to some neighbor (parent or child), and stay in state g.

m If gis Vx(G(ax) - ¢(ax))and a ¢ C, then move to state T.

12/21

Automata for GFP

Transition function 6 in state g € Q at a position labelled € with universe C

m If gis 3x(G(ax) A Y(ax)) and a < C, then Eve can choose to

- stay in the same node, choose some b < C such that € E G(ab), and
move to state ¢(ab), or
- move to some neighbor (parent or child), and stay in state g.

m If gis Ix(G(ax) A Y(ax)) and a ¢ C, then move to state

m If gis Vx(G(ax) - y(ax)) and a < C, then Adam can choose to

- stay in the same node, choose some b < C such that € k G(ab), and
move to state Y(ab), or
- move to some neighbor (parent or child), and stay in state g.

m If gis Vx(G(ax) - ¢(ax))and a ¢ C, then move to state T.

Assume there is a subformula n of the form [fpy ,.¥(y, ¥, Z)](x).
m If gis n(a) or Ya, then the automaton moves to state y(a, Y, Z).

12/21

Automata for GFP

Ordering ¥; > - -+ > Y; of fixpoint variables based on nesting
(roughly speaking, outer fixpoint variables appear higher in this ordering).

Priority assignmentQ : Q - {0,1...,2j}

. . if Y; corresponds to least fixpoint
fixpoint variable Y; » <) .
2i if Y; corresponds to greatest fixpoint

existential requirement or L —
everythingelse » 0

Parity condition requires that max priority visited infinitely often is even

= existential requirement is always witnessed and

least fixpoint is only unfolded a finite number of times
(before an outer fixpoint is unfolded).

13/21

Complexity of satisfiability for GFP

Theorem ¢ € GFP
(Gradel, Walukiewicz '99)
Satisfiability is decidable for

GFP in 2EXPTIME

| 2-way
(EXPTIME for fixed width). parity automaton

l

L(A,) #+ @?

14/21

Complexity of satisfiability for GFP

Theorem ¢ E GFP
(Gradel, Walukiewicz '99)
Satisfiability is decidable for

GFP in 2EXPTIME

| 2-way
(EXPTIME for fixed width). parity automaton
Ap = Cp A Ck
EXPTIME
using [Vardi'98]

L(A,) #+ @?

14/21

Complexity of satisfiability for GFP

Theorem ¢ € GFP
(Gradel, Walukiewicz '99)
Satisfiability is decidable for
GFP in 2EXPTIME 2-way
(EXPTIME for fixed width). parity automaton
Ay = C, AC
Similar techniques yield ¢ ¢ K
2EXPTIME complexity for EX.PTIME .
GNFP satisfiability testing. using [Vardi'98]

L(A,) #+ @?

14/21

Tree automata are a useful tool to decide satisfiability for expressive logics
like GFP and GNFP that have tree-like models.

15/21

Tree automata are a useful tool to decide satisfiability for expressive logics
like GFP and GNFP that have tree-like models.

But we can do more...

15/21

Let ¢(y, Y) positive in Y.

For all 21, ¢ induces a monotone operation V - g (V) :={a: 2, a,V E ¢}
= there is a unique least fixpoint | J,, tpg[.

0

Yo =2
wa = Ya(wd)
v = us

a<A

16/21

Boundedness

Let ¢(y, Y) positive in Y.

For all 21, ¢ induces a monotone operation V - g (V) :={a: 2, a,V E ¢}
= there is a unique least fixpoint | J,, (pg[.

0

Yo =2
wa = o (0d)
v = us
a<A

Boundedness problem for £

Input: Y(y, Y) € £ positive in Y

Question: is there n € N s.t. for all structures 2, g = i ?
(i.e. the least fixpoint is always reached within n iterations)

16/21

Boundedness

For ¢ in GFP or GNFP of width k, ¢ is bounded over all structures
iff Y is bounded over tree-like structures (of tree width k —1).

17/21

Boundedness

Proposition

For ¢ in GFP or GNFP of width k, ¢ is bounded over all structures
iff Y is bounded over tree-like structures (of tree width k —1).

= boundedness amenable to techniques using tree automata

17/21

Boundedness

Proposition

For ¢ in GFP or GNFP of width k, ¢ is bounded over all structures
iff Y is bounded over tree-like structures (of tree width k —1).

= boundedness amenable to techniques using tree automata

Construct 2-way parity automaton A, for ¢ := [Ifpy ,..0(x, X)](x) as before.

Add a counter which is incremented each time the least fixpoint is unfolded
(and is untouched otherwise).

This new automaton B, is a cost automaton.
Boundedness of is related to boundedness of function defined by B,,.

17/21

Cost automata on infinite trees

B=A0a%9Q

6 describes possible moves Q:Q0-P
for Eve and Adam, for a finite set P € N
and associated counter actions of priorities

(increment, reset, leave unchanged)

n-acceptance game B x t

m Positions in the game are Q x dom(t).
m Eve and Adam select the next position in the play based on 6.

m Eveis trying to ensure the play has counter value at most n and the
maximum priority occurring infinitely often in the play is even.

Semantics [B] : A-trees - N U {oo}
[B1(t) := inf{n : Eve wins the n-acceptance game B x t}

18/21

Boundedness for cost automata

Boundedness problem for cost automata

Input: cost automaton B

Question: is there n € N such that for all trees t, [B|(t) < n?

19/21

Boundedness for cost automata

Boundedness problem for cost automata

Input: cost automaton B

Question: is there n € N such that for all trees t, [B|(t) < n?

Decidability of boundedness is not known in general for cost automata
over infinite trees...

19/21

Boundedness for cost automata

Boundedness problem for cost automata

Input: cost automaton B

Question: is there n € N such that for all trees t, [B|(t) < n?

Decidability of boundedness is not known in general for cost automata
over infinite trees...

..but we are interested in special cases using distance-parity automata:
1 counter that is only incremented or left unchanged (never reset)
for which boundedness is known to be decidable.

19/21

Complexity of boundedness for guarded logics

Theorem (/J € GFP

(Benedikt, Colcombet,
ten Cate, VB. '15)

Boundedness for GFP is
decidable in elementary time. 2-way distance-parity

automaton B

[B] bounded?

20/21

Complexity of boundedness for guarded logics

Theorem (/J € GFP

(Benedikt, Colcombet,
ten Cate, VB. '15)

Boundedness for GFP is
decidable in elementary time. 2-way distance-parity

automaton B

[B] bounded?

20/21

Complexity of boundedness for guarded logics

Theorem (/J € GFP

(Benedikt, Colcombet,
ten Cate, VB. '15)

Boundedness for GFP is
decidable in elementary time. 2-way distance-parity

automaton B

Similar techniques yield
elementary complexity for
GNFP boundedness.

[B] bounded?

Improves upon results of
[Blumensath, Otto, Weyer "14],
[Barany, ten Cate, Otto "12].

20/21

Tree automata are a useful tool to decide satisfiability for expressive logics
like GFP and GNFP that have tree-like models.

Cost automata can be used to decide boundedness for these logics
(Benedikt, Colcombet, ten Cate, VB. "15)

21/21

Tree automata are a useful tool to decide satisfiability for expressive logics
like GFP and GNFP that have tree-like models.

Cost automata can be used to decide boundedness for these logics
(Benedikt, Colcombet, ten Cate, VB. "15)

Automata used to prove uniform interpolation for L, and this

automata-logic connection can be used to prove interpolation for UNFP
(Benedikt, ten Cate, VB. "15)

21/21

Automata for GNFP

Proposition

For all y(a) € cl(o, K), there is a 2-way localized parity automaton Ai(a)
running on [K-trees t such that

Ai(a) accepts t starting from v iff t), [vial,....[v.q] F g(x).

Construct inductively. In general, on input t:

m Eve guesses an annotation t' of t with subformulas from cl(¢, K) and checks
Y(a) on t' (assuming annotations are correct),

m Adam can challenge some n(d’) in the annotation by launching
(inductively defined) Af](a,).

Complexity of satisfiability for GNFP

Theorem ¢ € GNFP
(Barany, ten Cate, Segoufin '11) l

Satisfiability is decidable for
GNFP in 2EXPTIME
(even for fixed width). l

2-way localized automata Ai(a)

2-way parity automaton

Automata approach: 2
Benedikt, Colcombet, A¢ = ‘A(p A Ck
ten Cate, VB. 15 l

L(A,) # @?

	Appendix

