Two-way cost automata and cost logics over infinite trees

Achim Blumensath1, Thomas Colcombet2,
Denis Kuperberg3, Pawel Parys3, and Michael Vanden Boom4

1TU Darmstadt, 2Université Paris Diderot,
3University of Warsaw, 4University of Oxford

CSL-LICS 2014
Vienna, Austria
Boundedness questions

Finite power property [Simon ’78, Hashiguchi ’79]
given regular language L of finite words,
is there $n \in \mathbb{N}$ such that $L^* = \{\varepsilon\} \cup L^1 \cup L^2 \cup \cdots \cup L^n$?

Star-height problem [Hashiguchi ’88, Kirsten ’05]
given regular language L of finite words and $n \in \mathbb{N}$,
is there a regular expression for L with at most n nestings of Kleene star?

Fixpoint closure boundedness [Blumensath+Otto+Weyer ’09]
given an MSO formula $\varphi(x, X)$ positive in X,
is there $n \in \mathbb{N}$ such that the least fixpoint of φ over finite words
is always reached within n iterations?
Boundedness questions

The **theory of regular cost functions** is an extension of the theory of regular languages that can be used to solve these boundedness questions in a uniform way.
Boundedness questions

The **theory of regular cost functions** is an extension of the theory of regular languages that can be used to solve these boundedness questions in a uniform way.

Boundedness problem

Instance: function $f : \mathcal{D} \to \mathbb{N} \cup \{\infty\}$

(\mathcal{D} is set of words or trees over some fixed finite alphabet \mathbb{A})

Question: Is there $n \in \mathbb{N}$ such that for all structures $s \in \mathcal{D}$, $f(s) \leq n$?
Cost functions over finite words [Colcombet’09]

Regular Cost Functions
- nondeterministic cost automata
- cost MSO
- BS expressions
- stabilization monoids

Boundedness decidable
[Colcombet’09, Bojańczyk+Colcombet’06]
Cost functions over finite words

Cost monadic second-order logic (CMSO)

Atomic formulas: \(a(x) \quad x \in X \quad |X| \leq N \)

must occur positively

Constructors: \(\wedge, \vee, \neg \)

Boolean connectives

\(\exists x \)

first-order quantification

\(\exists X \)

monadic second-order quantification
Cost functions over finite words

Cost monadic second-order logic (CMSO)

Atomic formulas: \(a(x) \quad x \in X \quad |X| \leq N \)

must occur positively

Constructors: \(\land, \lor, \neg \)

first-order quantification

Boolean connectives

monadic second-order quantification

Semantics \(\llbracket \varphi \rrbracket : \mathbb{A}^* \rightarrow \mathbb{N} \cup \{\infty\} \)

\(\llbracket \varphi \rrbracket (u) := \inf \{ n : u \models \varphi[n/N] \} \)
Cost functions over finite words

Cost monadic second-order logic (CMSO)

 Atomic formulas: \(a(x) \quad x \in X \quad |X| \leq N \)

 must occur positively

 Constructors: \(\land, \lor, \neg \)

 Boolean connectives

 \(\exists x \)

 first-order quantification

 \(\exists X \)

 monadic second-order quantification

 Semantics \([\varphi] : A^* \rightarrow \mathbb{N} \cup \{\infty\} \)

 \([\varphi](u) := \inf \{ n : u \models \varphi[n/N] \} \)

 Example

 If \(\varphi \) is in MSO, then \([\varphi](u) := \begin{cases} 0 & \text{if } u \models \varphi \\ \infty & \text{otherwise} \end{cases} \)
Cost functions over finite words

Cost monadic second-order logic (CMSO)

Atomic formulas: \(a(x) \quad x \in X \quad |X| \leq N \)

Constructors: \(\land, \lor, \neg \) first-order quantification \(\forall X \) monadic second-order quantification

Semantics \(\llbracket \varphi \rrbracket : \mathbb{A}^* \rightarrow \mathbb{N} \cup \{\infty\} \)

\(\llbracket \varphi \rrbracket (u) := \inf \{ n : u \models \varphi[\frac{n}{N}] \} \)

Example

Maximum length of a block of \(a \)'s

\(\varphi := \forall X \left((\text{block}(X) \land \forall x(x \in X \rightarrow a(x)) \rightarrow |X| \leq N \right) \)
Cost functions over finite words [Colcombet’09]

Regular Cost Functions

- Nondeterministic cost automata
- Cost MSO
- BS expressions
- Stabilization monoids

Boundedness decidable

[Colcombet’09, Bojańczyk+Colcombet’06]
Cost functions over finite words [Colcombet’09]

Regular Cost Functions
- nondeterministic cost automata
- cost MSO
- BS expressions
- stabilization monoids

Boundedness decidable
[Colcombet’09, Bojańczyk+Colcombet’06]

Language universality, inclusion, and emptiness decidable
Cost functions over finite words [Colcombet’09]

Regular Cost Functions

- nondeterministic cost automata
- cost MSO
- BS expressions
- stabilization monoids

Boundedness decidable
[Colcombet’09, Bojańczyk+Colcombet’06]

- language universality, inclusion, and emptiness decidable
- finite power property, star height problem, fixpoint closure boundedness, ...
 decidable
The theory of regular cost functions is a robust decidable extension of the theory of regular languages over:

- **finite words** [Colcombet ’09, Bojanczyk+Colcombet ’06]

- **infinite words** [Kuperberg+VB’12, Colcombet unpublished]

- **finite trees** [Colcombet+Löding ’10]
The theory of regular cost functions is a robust decidable extension of the theory of regular languages over:

- **finite words** [Colcombet ’09, Bojanczyk+Colcombet ’06]
- **infinite words** [Kuperberg+VB’12, Colcombet unpublished]
- **finite trees** [Colcombet+Löding ’10]
- **infinite trees**
Motivating open problem

Mostowski index problem

Instance: regular language L of infinite trees, and set $\{i, i+1, \ldots, j\}$

Question: Is there a nondeterministic parity automaton \mathcal{A} using only priorities $\{i, i+1, \ldots, j\}$ such that $L = L(\mathcal{A})$?
Motivating open problem

Mostowski index problem

Instance: regular language L of infinite trees, and set $\{i, i + 1, \ldots, j\}$

Question: Is there a nondeterministic parity automaton \mathcal{A} using only priorities $\{i, i + 1, \ldots, j\}$ such that $L = L(\mathcal{A})$?

Reduced to deciding boundedness for certain cost functions over infinite trees [Colcombet+Löding ’08]
Cost functions over infinite trees

- Regular Cost Functions
 - alternating cost-parity automata

- QW Cost Functions
 - quasi-weak cost automata

- Boundedness decidable
 - [Kuperberg+VB’11]

- Weak cost automata
 - WCMSO

Special case of Mostowski index problem
Cost functions over infinite trees

Regular Cost Functions
alternating cost-parity automata

QW Cost Functions
quasi-weak cost automata
QWCMSO

Boundedness decidable
[Kuperberg+VB’11]

weak cost automata
WCMSO

special case of Mostowski index problem
Cost functions over infinite trees

Regular Cost Functions
alternating 2-way/1-way cost-parity automata

QW Cost Functions
2-way/1-way qw cost automata
QWCMSO

Boundedness decidable
[Kuperberg+VB’11]

weak cost automata
WCMSO

special case of Mostowski index problem
Cost parity automata on infinite trees

\[\mathcal{A} = \langle A, Q, q_0, \delta, \Omega \rangle \]

- \(\delta \) describes possible moves for Eve and Adam, and associated counter actions (increment, reset, leave unchanged)
- \(\Omega : Q \rightarrow P \) for a finite set of priorities \(P \)

n-acceptance game \(\mathcal{A} \times t \)

- Positions in the game are \(Q \times \text{dom}(t) \).
- Eve and Adam select the next position in the play based on \(\delta \).
- Eve is trying to ensure the play has counter value at most \(n \) and the maximum priority occurring infinitely often in the play is even.

Semantics

\[[\mathcal{A}](t) := \inf \{ n : \text{Eve wins the } n\text{-acceptance game } \mathcal{A} \times t \} \]
Weak cost automata and logic over infinite trees

Weak cost automaton
alternating cost-parity automaton such that no cycle visits both even and odd priorities
Weak cost automata and logic over infinite trees

Weak cost automaton
alternating cost-parity automaton such that no cycle visits both even and odd priorities

Weak cost monadic second-order logic (WCMSO)
Syntax like CMSO, but interpret second-order quantification over finite sets
Weak cost automata and logic over infinite trees

Weak cost automaton
alternating cost-parity automaton such that no cycle visits both even and odd priorities

Weak cost monadic second-order logic (WCMSO)
Syntax like CMSO, but interpret second-order quantification over finite sets
Quasi-weak cost automata and logic over infinite trees

Quasi-weak cost automaton
alternating cost-parity automaton such that
in any cycle with both even and odd priorities,
there is a counter which is incremented but not reset
Quasi-weak cost automata and logic over infinite trees

Quasi-weak cost automaton
alternating cost-parity automaton such that
in any cycle with both even and odd priorities,
there is a counter which is incremented but not reset

Quasi-weak cost monadic second-order logic (QWCMSO)
Add bounded expansion operator to WCMSO:

\[z \in \mu^N Y. \{x : \varphi(x, Y)\} \]

where \(Y \) occurs positively in \(\varphi(x, Y) \),
and this operator occurs positively in the enclosing formula.
Quasi-weak cost automata and logic over infinite trees

Quasi-weak cost automaton

alternating cost-parity automaton such that in any cycle with both even and odd priorities, there is a counter which is incremented but not reset.

Quasi-weak cost monadic second-order logic (QWCMSO)

Add **bounded expansion operator** to WCMSO:

\[z \in \mu^N Y. \{ x : \varphi(x, Y) \} \]

where \(Y \) occurs positively in \(\varphi(x, Y) \), and this operator occurs positively in the enclosing formula.

Example

Maximal size of block of \(a \)'s on a branch starting at the root:

\[\exists w[\text{root}(w) \land w \in \mu^N X. \{ x : \exists yz[b(x, y, z) \lor (a(x, y, z) \land y \in X \land z \in X)] \}] \]
Game for testing
\(z \in \mu^N \cdot \{ x : \varphi(x, Y) \} \) for \(n \in \mathbb{N} \).

Initial position \(x := z \).

Game from position \(x \):

- Eve chooses set \(Y \) such that \(\varphi(x, Y) \) holds
 (if it is not possible, she loses).
- Adam chooses some new \(y \in Y \)
 (if it is not possible, he loses).
- Game continues in next round with \(x := y \)

If the game exceeds \(n \) rounds, Adam wins.
Bounded expansion operator and 2-way automata

Game for testing
\[z \in \mu^N \forall x: \varphi(x, Y) \] for \(n \in \mathbb{N} \).

Initial position \(x := z \).

Game from position \(x \):

- **Eve chooses** set \(Y \) such that \(\varphi(x, Y) \) holds
 (if it is not possible, she loses).
- Adam chooses some new \(y \in Y \)
 (if it is not possible, he loses).
- Game continues in next round with \(x := y \)

If the game exceeds \(n \) rounds, Adam wins.
Game for testing \(z \in \mu^N \mathcal{Y}. \{x : \varphi(x, \mathcal{Y})\} \) for \(n \in \mathbb{N} \).

Initial position \(x := z \).

Game from position \(x \):

- Eve chooses set \(\mathcal{Y} \) such that \(\varphi(x, \mathcal{Y}) \) holds
 (if it is not possible, she loses).

- Adam chooses some new \(y \in \mathcal{Y} \)
 (if it is not possible, he loses).

- Game continues in next round with \(x := y \)

If the game exceeds \(n \) rounds, Adam wins.
Bounded expansion operator and 2-way automata

Game for testing
\[z \in \mu^N \{ x : \phi(x, Y) \} \text{ for } n \in \mathbb{N}. \]

Initial position \(x := z \).

Game from position \(x \):
- Eve chooses set \(Y \) such that \(\phi(x, Y) \) holds
 (if it is not possible, she loses).
- Adam chooses some new \(y \in Y \)
 (if it is not possible, he loses).
- Game continues in **next round** with \(x := y \)

If the game exceeds \(n \) rounds, Adam wins.
Game for testing
\(z \in \mu^N Y.\{x : \phi(x, Y)\} \) for \(n \in \mathbb{N} \).

Initial position \(x := z \).

Game from position \(x \):
- **Eve chooses** set \(Y \) such that
 \(\phi(x, Y) \) holds
 (if it is not possible, she loses).
- Adam chooses some new \(y \in Y \)
 (if it is not possible, he loses).
- Game continues in next round with \(x := y \)

If the game exceeds \(n \) rounds, Adam wins.
Bounded expansion operator and 2-way automata

Game for testing
\[z \in \mu^N \{ x : \varphi(x, Y) \} \text{ for } n \in \mathbb{N}. \]

Initial position \(x := z \).

Game from position \(x \):

- Eve chooses set \(Y \) such that \(\varphi(x, Y) \) holds
 (if it is not possible, she loses).
- **Adam chooses** some new \(y \in Y \)
 (if it is not possible, he loses).
- Game continues in next round with \(x := y \)

If the game exceeds \(n \) rounds, Adam wins.
Summary

Regular Cost Functions
- alternating 2-way/1-way cost-parity automata
- cost μ-calculus

QW Cost Functions
- 2-way/1-way qw cost automata
- alternation-free cost μ-calculus
- QWCMSO

Boundedness decidable
- weak cost automata
- WCMSO