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Weak definability problem

Weak definability decision problem

INPUT: parity automaton U
OUTPUT: YES if there exists weak automaton W with L(W) = L(U),

NO otherwise

Theorem [Niwiński+Walukiewicz ’05]

The weak definability problem is decidable if L(U) is deterministic.

Theorem
[Facchini+Murlak+Skrzypczak ’13]

The weak definability problem is
decidable if L(U) is a
game language.

Theorem

The weak definability problem is
decidable if U is Büchi.
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Cost automata

Finite state automaton A
+ finite set of counters (initialized to 0, values range over N)
+ counter operations on transitions (increment i, reset r, no change ")

Semantics

JAK : structures ! N [ {1}

JAK(s) := min{n : 9 accepting run of A on s

with counter values at most n}

Boundedness with respect to language K (written JAK ⇡ �K )

JAK ⇡ �K if there is bound n 2 N such that JAK(s)  n if s 2 K and
JAK(s) = 1 if s /2 K
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Reduction to boundedness

Many problems for a regular language L have been reduced to deciding ⇡
for special types of cost automata

I Finite power property
[Simon ’78, Hashiguchi ’79]

is there some n such that L⇤ = {✏} [ L1 [ L2 [ · · · [ Ln?

I Star-height problem
[Hashiguchi ’88, Kirsten ’05, Colcombet+Löding ’08]

given n, is there a regular expression for L with at most n
nestings of Kleene star?

I Parity-index problem
[reduction in Colcombet+Löding ’08, decidability open]

given i < j , is there a nondeterministic parity automaton
for L which uses only priorities {i , i + 1, . . . , j}?
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[reduction in Colcombet+Löding ’08, decidability open]

given i < j , is there a nondeterministic parity automaton
for L which uses only priorities {i , i + 1, . . . , j}?

distance

nested
distance-
desert

cost-parity



Reduction to boundedness (example)

Finite power property decision problem

INPUT: Finite state automaton A over finite words with L = L(A)
OUTPUT: YES if there is n 2 N with L⇤ = {✏} [ L1 [ L2 [ · · · [ Ln,

NO otherwise

A
initial final

A0
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Reduction to boundedness (example)

Finite power property decision problem

INPUT: Finite state automaton A over finite words with L = L(A)
OUTPUT: YES if there is n 2 N with L⇤ = {✏} [ L1 [ L2 [ · · · [ Ln,

NO otherwise
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Finite power property holds i↵ JA0K ⇡ �L⇤



Block counting

Given nondeterministic Büchi automata U and V

I fix some tree t and let ⇢U and ⇢V be runs of U and V on t,
with accepting states marked with

⇢U

⇢V r0

q0

r1

q1

r2

q2

r3

q3

r4

q4

r5

q5

r6

q6

r7

q7

r8

q8

r9

q9

· · ·

· · ·

1 2 31 2 31 2 3

I divide each branch in the composed run into blocks containing
accepting state for V followed by accepting state for U

Theorem [Rabin ’70]

If there are at least m = |QU | · |QV | blocks on every branch in the
composed run, then L(U) \ L(V) 6= ;.
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Weak automaton construction [Kupferman+Vardi ’99]

Given nondeterministic Büchi automata U and V with L(U) = L(V)

Construct weak automaton W such that L(W) = L(V)

I Adam selects transition from �U
I Eve selects transition from �V and direction

I Accept/reject depending on occurrences of

I Store the block number in the state, up to value m := |QU | · |QV |
once m blocks have been witnessed, stabilize in rejecting state
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Reduction of weak definability to boundedness

Given nondeterministic Büchi automaton U

Construct cost automaton Q s.t. JQK ⇡ �L(U) i↵ L(U) is weakly definable

I Adam selects transition from �U
I Eve selects direction and guesses whether to output

I Accept/reject depending on occurrences of

I Store the block number in the counter

once m blocks have been witnessed, stabilize in rejecting state

Adam ⇢U

Eve

q0 q1 q2 q3 q4 q5 q6 q7 q8 q9

· · ·

· · ·q0 q1 q2 q4 q7 q8q3 q5 q6 q9

i i i
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Decidability of ⇡ for cost automata

Decidability of ⇡ for cost automata over infinite trees is open in general,
but is known in some special cases...

Theorem [Kuperberg+VB ’11]

The boundedness relation ⇡ is decidable for quasi-weak cost automata
over infinite trees.

Quasi-weak cost automaton

alternating cost-Büchi automaton such that in any cycle with both
accepting and non-accepting states, there is a counter which is
incremented but not reset



Deciding weak definability for Büchi input

Theorem

Given Büchi automaton U , we can construct a quasi-weak cost
automaton Q such that the following are equivalent:

I L(U) is weakly definable;

I JQK ⇡ �L(U).

#

Theorem [Kuperberg+VB ’11]

The boundedness relation ⇡ is decidable for quasi-weak cost automata.

#

Theorem

Given Büchi automaton U , it is decidable whether L(U) is weakly definable.



Conclusion

Cost automata can be used to help prove the decidability of definability
problems for regular languages of infinite trees.

I The weak definability problem is decidable when the input is a
Büchi automaton.

I The co-Büchi definability problem is decidable when the input is a
parity automaton.

Open question

Is ⇡ decidable for larger classes of cost automata over infinite trees?


