Query Answering with Transitive & Linear-Ordered Data

Antoine Amarilli¹, Michael Benedikt², Pierre Bourhis³, Michael Vanden Boom² 1: LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay; Paris, France 2: University of Oxford; Oxford, United Kingdom 3: CNRS CRIStAL, Université Lille 1, INRIA Lille; Lille, France

Query Answering

(or query entailment)

Initial set of facts \mathcal{F} (or A-box)

Constraints Σ: logical rules (or T-box)

Boolean query Q: CQ or UCQ

QA problem: does $\mathcal{F} \wedge \Sigma$ entail Q?

Equivalently:

Constraint languages

Tuple-generating dependencies (TGDs) (or existential rules)

 $\forall x \, y \, \varphi(x, y) \rightarrow \exists z \, \psi(x, z)$

where φ (body) and ψ (head) are conjunctions of atoms

Frontier-guarded TGDs (FGTGDs) $\forall x y \varphi(x, y) \land G(x) \rightarrow \exists z \psi(x, z)$

• is Q certain given \mathcal{F} and Σ ? • is $\mathcal{F} \land \Sigma \land \neg Q$ unsatisfiable?

Our goal: identify and study constraint languages for which QA is decidable, even when some relations are restricted to be **transitive** or to be **linear orders**.

Our approach

Fix relational signature $\sigma := \sigma_B \sqcup \sigma_D$ where σ_D : **distinguished** binary relations σ_B : **base** relations

We consider query answering with three different special interpretations for the distinguished relations:

• **QAtr**: each $R \in \sigma_D$ is transitively closed

Guarded Negation Fragment (GNF)

rules built up from atoms using

- disjunction
- guarded negation
- existential quantification

BaseFGTGDs

FGTGDs where guards for frontier variables are from σ_B e.g. $\forall x y_1 y_2 R(x,y_1) \land R(x,y_2) \land S(y_1,y_2) \rightarrow \exists z R(y_2,z) \land T(y_1)$ where $\sigma_D = \{R\}$ and $\sigma_B = \{S,T\}$

 $G(\mathbf{x}) \wedge \neg \psi(\mathbf{x})$

BaseCovFGTGDs

BaseFGTGDs where for every σ_D atom in the body using variables v, there is a σ_B atom in the body guarding v

e.g. $\forall x y_1 y_2 C(x,y_1) \land R(x,y_1) \land C(x,y_2) \land R(x,y_2) \land S(y_1,y_2) \rightarrow \exists z R(y_2,z) \land T(y_1)$ where $\sigma_D = \{R\}$ and $\sigma_B = \{S,T,C\}$

variables **x**

Atom using

is called a **guard** for **x**

- **QAtc**: each $R^+ \in \sigma_D$ is the transitive closure of $R \in \sigma_B$
- **QAlin**: each $R \in \sigma_D$ is a linear order

We introduce **base-frontier-guarded** and **base-covered** constraint languages that disallow the use of distinguished relations as guards.

BaseGNF

Main results	Complexity	QA data c	tr combined	Q data	Atc combined	Q data	Alin combined
QAtr & QAtc are decidable for BaseGNF (undecidable for FGTGDs).	BaseGNF	coNP-c	2EXP-c	coNP-c	2EXP-c	undecidable	
	BaseCovGNF	coNP-c	2EXP-c	coNP-c	2EXP-c	coNP-c	2EXP-c
QAlin is decidable for BaseCovGNF (undecidable for BaseFGTGDs).	BaseFGTGDs	in coNP	2EXP-с	coNP-c	2EXP-c	unde	ecidable
	BaseCovFGTGDs	P-c	2EXP-c	coNP-c	2EXP-c	coNP-c	2EXP-c

Proof ideas

Key property:

For φ in GNF, if φ is satisfiable then it has a **tree-like** witness: a set of facts satisfying φ that has a **tree decomposition** of bounded tree-width. For QAtr & QAtc with base-frontier-guarded constraints Σ : reduce to tree automaton emptiness test. $L(\mathcal{A}) = \emptyset$?

For BaseGNF, there are tree-like witnesses even when each distinguished relation is required to be the transitive closure of some base relation.

Hence it suffices to construct a tree automaton \mathcal{A} that runs on encodings of tree-like sets of facts and checks $\mathcal{F} \wedge \Sigma \wedge \neg Q$.

For **QAtr** & **QAlin** with base-covered constraints Σ : reduce to traditional QA with GNF Σ '.

Cannot axiomatize transitivity or totality using GNF, but can approximate using Σ' in GNF. Key technical result shows that a tree-like approximate witness can be extended to an actual witness respecting special interpretations for σ_D relations.

Actual witness

for $\mathcal{F} \land \Sigma \land \neg Q$

