Query Answering with Transitive and Linear-Ordered Data

Antoine Amarilli¹, Michael Benedikt², Pierre Bourhis³ and **Michael Vanden Boom**²

¹LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay ²University of Oxford ³CNRS CRIStAL, Université Lille 1, INRIA Lille

> IJCAI 2016 New York, USA

The **query answering problem** QA(\mathcal{F}_0, Σ, Q) asks: does $\mathcal{F}_0 \wedge \Sigma$ entail Q?

The **query answering problem** QA(\mathcal{F}_0, Σ, Q) asks: does $\mathcal{F}_0 \wedge \Sigma$ entail Q?

Equivalently:

is Q certain given \mathcal{F}_0 and Σ ? is $\mathcal{F}_0 \land \Sigma \land \neg Q$ unsatisfiable?

for all sets of facts $\mathfrak{F} \supseteq \mathfrak{F}_0$ satisfying Σ , does \mathfrak{F} satisfy Q?

The **query answering problem** QA(\mathcal{F}_0, Σ, Q) asks: does $\mathcal{F}_0 \wedge \Sigma$ entail Q?

Equivalently:

is Q certain given \mathcal{F}_0 and Σ ?

is $\mathcal{F}_0 \wedge \Sigma \wedge \neg Q$ unsatisfiable?

for all sets of facts $\mathcal{F} \supseteq \mathcal{F}_0$ satisfying Σ , does \mathcal{F} satisfy Q?

Example

- $\mathcal{F}_0: S(a, b), R(b, a)$
 - $\Sigma: \quad \forall xy \left(S(x, y) \to R(x, y) \right) \\ \forall x \left(R(x, x) \to \exists y T(y) \right)$
 - $Q: \exists x T(x)$

Q is not certain in general...

The **query answering problem** QA(\mathcal{F}_0, Σ, Q) asks: does $\mathcal{F}_0 \wedge \Sigma$ entail Q?

Equivalently:

is Q certain given \mathfrak{F}_0 and Σ ?

is $\mathcal{F}_0 \wedge \Sigma \wedge \neg Q$ unsatisfiable?

for all sets of facts $\mathcal{F} \supseteq \mathcal{F}_0$ satisfying Σ , does \mathcal{F} satisfy Q?

Example

- $\mathcal{F}_0: S(a, b), R(b, a)$
 - $\Sigma: \quad \forall xy \left(S(x, y) \to R(x, y) \right) \\ \forall x \left(R(x, x) \to \exists y T(y) \right)$
 - $Q: \exists x T(x)$

Q is not certain in general... but it is certain when R is a transitive relation.

Many DLs support transitive relations.

QA is decidable for

- *ZIQ*, *ZOQ*, *ZOI* [Calvanese et al., 2009]
- Horn-*SROIQ* [Ortiz et al., 2011]
- regular-*EL*⁺⁺ [Krötzsch and Rudolph, 2007]

(sometimes with restrictions on interaction between transitivity & other features).

QA is undecidable for

- *ALCOIF*^{*} [Ortiz et al., 2010]
- ZOIQ [Ortiz, 2010]

QA is open for

■ *SROIQ* and *SHOIQ* [Ortiz and Šimkus, 2012]

TGD:
$$\forall xy (\varphi(x, y) \rightarrow \exists z \psi(y, z))$$

body φ and head ψ are a conjunction of atoms

TGD:
$$\forall xy (\varphi(x, y) \rightarrow \exists z \psi(y, z))$$

body φ and head ψ are a conjunction of atoms

Frontier-guarded TGD (FGTGD): φ includes atom using all of the frontier variables **y**

 $\forall x\,y_1\,y_2\left(S(x,y_1)\wedge S(x,y_2)\wedge R(y_1,y_2)\rightarrow \exists z\left(S(y_2,z)\wedge T(y_1)\right)\right)$

TGD:
$$\forall xy (\varphi(x, y) \rightarrow \exists z \psi(y, z))$$

body φ and head ψ are a conjunction of atoms

Frontier-guarded TGD (FGTGD): φ includes atom using all of the frontier variables \mathbf{y} $\forall x y_1 y_2 (S(x, y_1) \land S(x, y_2) \land R(y_1, y_2) \rightarrow \exists z (S(y_2, z) \land T(y_1)))$

QA is decidable with FGTGD constraints and UCQ. [Baget et al., 2011]

TGD:
$$\forall xy (\varphi(x, y) \rightarrow \exists z \psi(y, z))$$

body φ and head ψ are a conjunction of atoms

Frontier-guarded TGD (FGTGD): φ includes atom using all of the frontier variables \mathbf{y} $\forall x y_1 y_2 (S(x, y_1) \land S(x, y_2) \land R(y_1, y_2) \rightarrow \exists z (S(y_2, z) \land T(y_1)))$

QA is decidable with FGTGD constraints and UCQ. [Baget et al., 2011]

FGTGDs cannot express transitivity, and QA is undecidable with FGTGDs when some relations are required to be transitive. [Gottlob et al., 2013]

TGD:
$$\forall xy (\varphi(x, y) \rightarrow \exists z \psi(y, z))$$

body φ and head ψ are a conjunction of atoms

Frontier-guarded TGD (FGTGD): φ includes atom using all of the frontier variables \mathbf{y} $\forall x y_1 y_2 (S(x, y_1) \land S(x, y_2) \land R(y_1, y_2) \rightarrow \exists z (S(y_2, z) \land T(y_1)))$

QA is decidable with FGTGD constraints and UCQ. [Baget et al., 2011]

FGTGDs cannot express transitivity, and QA is undecidable with FGTGDs when some relations are required to be transitive. [Gottlob et al., 2013]

How can we recover decidability for QA with transitive relations?

- restrict to (subclass of) linear TGDs [Baget et al., 2015];
- disallow the transitive relations as guards (our approach).

Fix relational signature $\sigma \coloneqq \sigma_{\mathcal{B}} \sqcup \sigma_{\mathcal{D}}$ where

 $\sigma_{\mathcal{D}}$: distinguished binary relations with special interpretations (e.g., transitively closed)

 $\sigma_{\mathcal{B}}$: base relations

We introduce constraint languages that disallow $\sigma_{\mathbb{D}}$ -relations as guards:

Base FGTGD: FGTGD where guard for frontier variables is from $\sigma_{\mathcal{B}}$.

 $\forall x \, y_1 \, y_2 \left(R(x, y_1) \land R(x, y_2) \land S(y_1, y_2) \rightarrow \exists z \left(R(y_2, z) \land T(y_1) \right) \right)$

Fix relational signature $\sigma := \sigma_{\mathcal{B}} \sqcup \sigma_{\mathcal{D}}$ where $\sigma_{\mathcal{D}}$: distinguished binary relations with special interpretations (e.g., transitively closed) $\sigma_{\mathcal{B}}$: base relations

We introduce constraint languages that disallow $\sigma_{\mathbb{D}}$ -relations as guards:

Base FGTGD: FGTGD where guard for frontier variables is from $\sigma_{\mathcal{B}}$. $\forall x y_1 y_2 (R(x, y_1) \land R(x, y_2) \land S(y_1, y_2) \rightarrow \exists z (R(y_2, z) \land T(y_1)))$

Base-covered FGTGD: Base FGTGD where for every $\sigma_{\mathcal{D}}$ -atom in the body, there is a $\sigma_{\mathcal{B}}$ -atom in the body using its variables.

 $\forall x \, y_1 \, y_2 \left(C(x, y_1) \land R(x, y_1) \land C(x, y_2) \land R(x, y_2) \land S(y_1, y_2) \rightarrow \exists z \left(R(y_2, z) \land T(y_1) \right) \right)$

Our contribution

We consider three different special interpretations for relations in $\sigma_{\mathcal{D}}$:

- **QAtr** each $R \in \sigma_{\mathcal{D}}$ is transitively closed
- **QAtc** each $R^+ \in \sigma_{\mathcal{D}}$ is the transitive closure of $R \in \sigma_{\mathcal{B}}$
- **QAlin** each $R \in \sigma_{\mathcal{D}}$ is a linear order

We consider three different special interpretations for relations in $\sigma_{\mathbb{D}}$:

- **QAtr** each $R \in \sigma_{\mathcal{D}}$ is transitively closed
- **QAtc** each $R^+ \in \sigma_{\mathcal{D}}$ is the transitive closure of $R \in \sigma_{\mathcal{B}}$
- **QAlin** each $R \in \sigma_{\mathcal{D}}$ is a linear order

Theorem

QAtr and **QAtc** are decidable with base FGTGDs and UCQ.

QAlin is decidable with base-covered FGTGDs and base-covered UCQ.

We consider three different special interpretations for relations in $\sigma_{\mathbb{D}}$:

- **QAtr** each $R \in \sigma_{\mathcal{D}}$ is transitively closed
- **QAtc** each $R^+ \in \sigma_{\mathcal{D}}$ is the transitive closure of $R \in \sigma_{\mathcal{B}}$
- **QAlin** each $R \in \sigma_{\mathcal{D}}$ is a linear order

Theorem

QAtr and **QAtc** are decidable with base FGTGDs and UCQ.

QAlin is decidable with base-covered FGTGDs and base-covered UCQ.

We also analyze combined complexity and data complexity, and show that slight changes in the restrictions lead to undecidability.

QAtr(\mathcal{F}_0 , Σ , Q) is decidable in 2EXPTIME combined complexity and PTIME data complexity for base-covered FGTGDs Σ and base-covered UCQ Q.

Proof idea:

Reduce in PTIME to traditional QA problem QA($\mathcal{F}_0, \Sigma', Q$) with FGTGDs Σ' .

QAtr(\mathcal{F}_0 , Σ , Q) is decidable in 2EXPTIME combined complexity and PTIME data complexity for base-covered FGTGDs Σ and base-covered UCQ Q.

Proof idea:

Reduce in PTIME to traditional QA problem $QA(\mathcal{F}_0, \Sigma', Q)$ with FGTGDs Σ' .

Bad news: we cannot axiomatize transitivity using FGTGDs.

QAtr(\mathcal{F}_0 , Σ , Q) is decidable in 2EXPTIME combined complexity and PTIME data complexity for base-covered FGTGDs Σ and base-covered UCQ Q.

Proof idea:

Reduce in PTIME to traditional QA problem QA($\mathcal{F}_0, \Sigma', Q$) with FGTGDs Σ' .

Bad news: we cannot axiomatize transitivity using FGTGDs.

Good news: we can approximate transitivity using FGTGD constraints $\Sigma' \supseteq \Sigma$. If $\mathcal{F}_0 \land \Sigma' \land \neg Q$ is satisfiable, then it has a **tree-like witness** (a set of facts with a **tree decomposition** of some bounded tree-width).

Key technical result: This tree-like witness can be extended to a set of facts satisfying $\mathcal{F}_0 \land \Sigma \land \neg Q$ where $R \in \sigma_{\mathcal{D}}$ is transitively closed.

QAtr(\mathcal{F}_0 , Σ , Q) is decidable in 2EXPTIME combined complexity and PTIME data complexity for base-covered FGTGDs Σ and base-covered UCQ Q.

Proof idea:

Reduce in PTIME to traditional QA problem QA($\mathcal{F}_0, \Sigma', Q$) with FGTGDs Σ' .

Bad news: we cannot axiomatize transitivity using FGTGDs.

Good news: we can approximate transitivity using FGTGD constraints $\Sigma' \supseteq \Sigma$. If $\mathcal{F}_0 \land \Sigma' \land \neg Q$ is satisfiable, then it has a **tree-like witness** (a set of facts with a **tree decomposition** of some bounded tree-width).

Key technical result: This tree-like witness can be extended to a set of facts satisfying $\mathfrak{F}_0 \land \Sigma \land \neg Q$ where $R \in \sigma_{\mathfrak{D}}$ is transitively closed.

(Similar approach for linear order: approximate transitivity and totality.)

	QAtr		QAtc		QAlin	
	data	combined	data	combined	data	combined
BaseFGTGDs BaseCovFGTGDs	in coNP P-c	2EXP-c 2EXP-c	coNP-c coNP-c	2EXP-c 2EXP-c	unde coNP-c	cidable 2EXP-c

	QAtr		QAtc		QAlin	
	data	combined	data	combined	data	combined
BaseFGTGDs BaseCovFGTGDs	in coNP P-c	2EXP-c 2EXP-c	coNP-c coNP-c	2EXP-c 2EXP-c	unde coNP-c	cidable 2EXP-c

Also in paper:

- generalization to "guarded" logics that include disjunction and some negation (rather than just TGDs);
- Iower bounds for QAtc and QAlin even with inclusion dependencies (reduction from QA with *disjunctive* inclusion dependencies, using distinguished relations to emulate disjunction).

	QAtr		QAtc		QAlin	
	data	combined	data	combined	data	combined
BaseFGTGDs BaseCovFGTGDs	<mark>in coNP</mark> P-c	2EXP-c 2EXP-c	coNP-c coNP-c	2EXP-c 2EXP-c	undecidable coNP-c 2EXP-c	

Also in paper:

- generalization to "guarded" logics that include disjunction and some negation (rather than just TGDs);
- lower bounds for QAtc and QAlin even with inclusion dependencies (reduction from QA with *disjunctive* inclusion dependencies, using distinguished relations to emulate disjunction).

Open questions

Is query answering decidable ...

for other special interpretations?

when we restrict only to finite sets of facts?

For FGTGD constraints Σ and a UCQ Q: if $\mathcal{F}_0 \wedge \Sigma \wedge \neg Q$ is satisfiable, then there is a witness \mathcal{F} that has a **tree decomposition** of some bounded tree-width.

A tree decomposition of tree-width k - 1for a set of facts $\mathcal{F} \supseteq \mathcal{F}_0$ is a tree t with each node labelled by a set $S \subseteq \mathcal{F}$ s.t.

- the root is labelled with \mathcal{F}_0 ;
- every fact appears in some node in t;
- each non-root node mentions at most k elements;
- for each element, the set of nodes with this element is connected in *t*.

For FGTGD constraints Σ and a UCQ Q: if $\mathcal{F}_0 \wedge \Sigma \wedge \neg Q$ is satisfiable, then there is a witness \mathcal{F} that has a **tree decomposition** of some bounded tree-width.

A tree decomposition of tree-width k - 1for a set of facts $\mathcal{F} \supseteq \mathcal{F}_0$ is a tree t with each node labelled by a set $S \subseteq \mathcal{F}$ s.t.

- the root is labelled with \mathcal{F}_0 ;
- every fact appears in some node in t;
- each non-root node mentions at most k elements;
- for each element, the set of nodes with this element is connected in *t*.

