Query Answering with Transitive and Linear-Ordered Data

Antoine Amarilli1, Michael Benedikt2, Pierre Bourhis3 and Michael Vanden Boom2

1LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay
2University of Oxford
3CNRS CRIStAL, Université Lille 1, INRIA Lille

IJCAI 2016
New York, USA
Query answering problem (QA)

Given: finite set of initial facts \mathcal{F}_0, constraints Σ, boolean query Q (UCQ).

The query answering problem $\text{QA}(\mathcal{F}_0, \Sigma, Q)$ asks: does $\mathcal{F}_0 \land \Sigma$ entail Q?
Query answering problem (QA)

Given: finite set of initial facts \mathcal{F}_0, constraints Σ, boolean query Q (UCQ).

The query answering problem $\text{QA}(\mathcal{F}_0, \Sigma, Q)$ asks: does $\mathcal{F}_0 \land \Sigma$ entail Q?

Equivalently:

- is Q certain given \mathcal{F}_0 and Σ?
- is $\mathcal{F}_0 \land \Sigma \land \neg Q$ unsatisfiable?
- for all sets of facts $\mathcal{F} \supseteq \mathcal{F}_0$ satisfying Σ, does \mathcal{F} satisfy Q?
Query answering problem (QA)

Given: finite set of initial facts \mathcal{F}_0, constraints Σ, boolean query Q (UCQ).

The **query answering problem** QA(\mathcal{F}_0, Σ, Q) asks: does $\mathcal{F}_0 \land \Sigma$ entail Q?

Equivalently:

- is Q certain given \mathcal{F}_0 and Σ?
- is $\mathcal{F}_0 \land \Sigma \land \neg Q$ unsatisfiable?
- for all sets of facts $\mathcal{F} \supseteq \mathcal{F}_0$ satisfying Σ, does \mathcal{F} satisfy Q?

Example

\mathcal{F}_0 : $S(a, b), R(b, a)$

Σ : $\forall xy \ (S(x, y) \rightarrow R(x, y))$

$\quad \forall x \ (R(x, x) \rightarrow \exists y \ T(y))$

$Q : \exists x \ T(x)$

Q is not certain in general...
Query answering problem (QA)

Given: finite set of initial facts \mathcal{F}_0, constraints Σ, boolean query Q (UCQ).

The **query answering problem** $\text{QA}(\mathcal{F}_0, \Sigma, Q)$ asks: does $\mathcal{F}_0 \land \Sigma$ entail Q?

Equivalently:

is Q certain given \mathcal{F}_0 and Σ?

is $\mathcal{F}_0 \land \Sigma \land \neg Q$ unsatisfiable?

for all sets of facts $\mathcal{F} \supseteq \mathcal{F}_0$ satisfying Σ, does \mathcal{F} satisfy Q?

Example

\[
\begin{align*}
\mathcal{F}_0 & : \quad S(a, b), R(b, a) \\
\Sigma & : \quad \forall xy \ (S(x, y) \rightarrow R(x, y)) \\
& \quad \forall x \ (R(x, x) \rightarrow \exists y \ T(y)) \\
Q & : \quad \exists x \ T(x)
\end{align*}
\]

Q is not certain in general... but it is certain when R is a transitive relation.
Transitivity in description logics

Many DLs support transitive relations.

QA is **decidable** for

- \(ZIQ, ZOQ, ZOI \) [Calvanese et al., 2009]
- Horn-\(SROIQ \) [Ortiz et al., 2011]
- \(\text{regular-}E\mathcal{L}^{++} \) [Krötzsch and Rudolph, 2007]

(sometimes with restrictions on interaction between transitivity & other features).

QA is **undecidable** for

- \(\text{ALCOIF}^* \) [Ortiz et al., 2010]
- \(ZOIQ \) [Ortiz, 2010]

QA is **open** for

- \(SROIQ \) and \(SHOIQ \) [Ortiz and Šimkus, 2012]
QA with tuple generating dependencies (a.k.a. existential rules)

\[\forall xy \ (\varphi(x, y) \rightarrow \exists z \ \psi(y, z)) \]

body \(\varphi \) and head \(\psi \) are a conjunction of atoms
QA with tuple generating dependencies (a.k.a. existential rules)

\[\text{TGD: } \forall xy (\varphi(x, y) \rightarrow \exists z \psi(y, z)) \n\]
body \(\varphi \) and head \(\psi \) are a conjunction of atoms

Frontier-guarded TGD (FGTGD):
\(\varphi \) includes atom using all of the frontier variables \(y \)

\[\forall x y_1 y_2 (S(x, y_1) \land S(x, y_2) \land R(y_1, y_2) \rightarrow \exists z (S(y_2, z) \land T(y_1))) \]
QA with tuple generating dependencies (a.k.a. existential rules)

TGD: $\forall xy \ (\varphi(x,y) \rightarrow \exists z \ \psi(y,z))$

body φ and head ψ are a conjunction of atoms

Frontier-guarded TGD (FGTGD):
φ includes atom using all of the frontier variables y

$\forall x y_1 y_2 \ (S(x, y_1) \land S(x, y_2) \land R(y_1, y_2) \rightarrow \exists z \ (S(y_2, z) \land T(y_1)))$

QA is **decidable** with FGTGD constraints and UCQ. [Baget et al., 2011]
QA with tuple generating dependencies (a.k.a. existential rules)

\[\forall xy \left(\varphi(x, y) \rightarrow \exists z \psi(y, z) \right) \]

body \(\varphi \) and head \(\psi \) are a conjunction of atoms

Frontier-guarded TGD (FGTGD):
\(\varphi \) includes atom using all of the frontier variables \(y \)
\[\forall x \ y_1 \ y_2 \left(S(x, y_1) \land S(x, y_2) \land R(y_1, y_2) \rightarrow \exists z \left(S(y_2, z) \land T(y_1) \right) \right) \]

QA is \text{decidable} \ with FGTGD constraints and UCQ. [Baget et al., 2011]

FGTGDs cannot express transitivity, and QA is \text{undecidable} \ with FGTGDs when some relations are required to be transitive. [Gottlob et al., 2013]
QA with tuple generating dependencies (a.k.a. existential rules)

TGD: \(\forall xy (\varphi(x, y) \rightarrow \exists z \psi(y, z)) \)

body \(\varphi \) and head \(\psi \) are a conjunction of atoms

Frontier-guarded TGD (FGTGD):
\(\varphi \) includes atom using all of the frontier variables \(y \)
\(\forall x y_1 y_2 (S(x, y_1) \land S(x, y_2) \land R(y_1, y_2) \rightarrow \exists z (S(y_2, z) \land T(y_1))) \)

QA is **decidable** with FGTGD constraints and UCQ. [Baget et al., 2011]

FGTGDs cannot express transitivity, and QA is **undecidable** with FGTGDs when some relations are required to be transitive. [Gottlob et al., 2013]

How can we recover **decidability** for QA with transitive relations?
- restrict to (subclass of) linear TGDs [Baget et al., 2015];
- disallow the transitive relations as guards (our approach).
Our approach

Fix relational signature $\sigma := \sigma_B \sqcup \sigma_D$ where

σ_D: **distinguished binary relations** with special interpretations (e.g., transitively closed)

σ_B: **base relations**

We introduce constraint languages that disallow σ_D-relations as guards:

Base FGTGD: FGTGD where guard for frontier variables is from σ_B.

$$\forall x y_1 y_2 \left(R(x, y_1) \land R(x, y_2) \land S(y_1, y_2) \rightarrow \exists z \left(R(y_2, z) \land T(y_1) \right) \right)$$
Our approach

Fix relational signature $\sigma := \sigma_B \sqcup \sigma_D$ where

σ_D: distinguished binary relations with special interpretations (e.g., transitively closed)

σ_B: base relations

We introduce constraint languages that disallow σ_D-relations as guards:

Base FGTGD: FGTGD where guard for frontier variables is from σ_B.

$\forall x_1 y_1 y_2 \left(R(x, y_1) \land R(x, y_2) \land S(y_1, y_2) \rightarrow \exists z \left(R(y_2, z) \land T(y_1) \right) \right)$

Base-covered FGTGD: Base FGTGD where for every σ_D-atom in the body, there is a σ_B-atom in the body using its variables.

$\forall x_1 y_1 y_2 \left(C(x, y_1) \land R(x, y_1) \land C(x, y_2) \land R(x, y_2) \land S(y_1, y_2) \rightarrow \exists z \left(R(y_2, z) \land T(y_1) \right) \right)$
Our contribution

We consider three different special interpretations for relations in σ_D:

- **QAt** each $R \in \sigma_D$ is transitively closed
- **QAtc** each $R^+ \in \sigma_D$ is the transitive closure of $R \in \sigma_B$
- **QAlin** each $R \in \sigma_D$ is a linear order
Our contribution

We consider three different special interpretations for relations in σ_D:

- **QAttr** each $R \in \sigma_D$ is transitively closed
- **QAtc** each $R^+ \in \sigma_D$ is the transitive closure of $R \in \sigma_B$
- **QAlin** each $R \in \sigma_D$ is a linear order

Theorem

QAttr and QAtc are **decidable** with base FGTGDs and UCQ.

QAlin is **decidable** with base-covered FGTGDs and base-covered UCQ.
Our contribution

We consider three different special interpretations for relations in σ_D:

- **QAtTr** each $R \in \sigma_D$ is transitively closed
- **QAtc** each $R^+ \in \sigma_D$ is the transitive closure of $R \in \sigma_B$
- **QAlin** each $R \in \sigma_D$ is a linear order

Theorem

QAtTr and QAtc are **decidable** with base FGTGDs and UCQ.

QAlin is **decidable** with base-covered FGTGDs and base-covered UCQ.

We also analyze combined complexity and data complexity, and show that slight changes in the restrictions lead to undecidability.
Theorem

\[\text{QAt}r(\mathcal{F}_0, \Sigma, Q) \text{ is decidable in } 2\text{EXPTIME combined complexity and PTIME data complexity for base-covered FGTGDs } \Sigma \text{ and base-covered UCQ } Q. \]

Proof idea:

Reduce in PTIME to traditional QA problem \(\text{QA}(\mathcal{F}_0, \Sigma', Q) \) with FGTGDs \(\Sigma' \).
Transitive relations

Theorem

\(\text{QAt}(\mathcal{F}_0, \Sigma, Q) \) is \textbf{decidable} in 2EXPTIME combined complexity and PTIME data complexity for base-covered FGTGDs \(\Sigma \) and base-covered UCQ \(Q \).

Proof idea:

Reduce in PTIME to traditional QA problem \(\text{QA}(\mathcal{F}_0, \Sigma', Q) \) with FGTGDs \(\Sigma' \).

\textbf{Bad news}: we cannot axiomatize transitivity using FGTGDs.
Transitive relations

Theorem

$\text{QAt}(\mathcal{F}_0, \Sigma, Q)$ is decidable in 2EXPTIME combined complexity and PTIME data complexity for base-covered FGTGDs Σ and base-covered UCQ Q.

Proof idea:

Reduce in PTIME to traditional QA problem $\text{QA}(\mathcal{F}_0, \Sigma', Q)$ with FGTGDs Σ'.

Bad news: we cannot axiomatize transitivity using FGTGDs.

Good news: we can approximate transitivity using FGTGD constraints $\Sigma' \supseteq \Sigma$.

If $\mathcal{F}_0 \land \Sigma' \land \neg Q$ is satisfiable, then it has a tree-like witness (a set of facts with a tree decomposition of some bounded tree-width).

Key technical result: This tree-like witness can be extended to a set of facts satisfying $\mathcal{F}_0 \land \Sigma \land \neg Q$ where $R \in \sigma_D$ is transitively closed.
Transitive relations

Theorem

\[\text{QA}_\text{tr}(\mathcal{F}_0, \Sigma, Q) \text{ is decidable} \text{ in 2EXPTIME combined complexity and PTIME data complexity for base-covered FGTGDs } \Sigma \text{ and base-covered UCQ } Q. \]

Proof idea:

Reduce in PTIME to traditional QA problem QA(\mathcal{F}_0, \Sigma', Q) with FGTGDs \Sigma'.

Bad news: we cannot axiomatize transitivity using FGTGDs.

Good news: we can approximate transitivity using FGTGD constraints \(\Sigma' \supseteq \Sigma \).

If \(\mathcal{F}_0 \land \Sigma' \land \neg Q \) is satisfiable, then it has a tree-like witness (a set of facts with a tree decomposition of some bounded tree-width).

Key technical result: This tree-like witness can be extended to a set of facts satisfying \(\mathcal{F}_0 \land \Sigma \land \neg Q \) where \(R \in \sigma_D \) is transitively closed.

(Similar approach for linear order: approximate transitivity and totality.)
Conclusion

<table>
<thead>
<tr>
<th></th>
<th>QAtr data</th>
<th>QAtc data</th>
<th>QAlin data</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaseFGTGDs</td>
<td>in coNP 2EXP-c</td>
<td>coNP-c 2EXP-c</td>
<td>undecidable</td>
</tr>
<tr>
<td>BaseCovFGTGDs</td>
<td>P-c 2EXP-c</td>
<td>coNP-c 2EXP-c</td>
<td>coNP-c 2EXP-c</td>
</tr>
</tbody>
</table>
Conclusion

<table>
<thead>
<tr>
<th></th>
<th>QAtr</th>
<th>QAtc</th>
<th>QAlin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>data</td>
<td>combined</td>
<td>data</td>
</tr>
<tr>
<td>BaseFGTGDs</td>
<td>in coNP</td>
<td>2EXP-c</td>
<td>coNP-c</td>
</tr>
<tr>
<td>BaseCovFGTGDs</td>
<td>P-c</td>
<td>2EXP-c</td>
<td>coNP-c</td>
</tr>
</tbody>
</table>

Also in paper:

- Generalization to “guarded” logics that include disjunction and some negation (rather than just TGDs);

- Lower bounds for QA,tc and QAlin even with inclusion dependencies (reduction from QA with *disjunctive* inclusion dependencies, using distinguished relations to emulate disjunction).
Conclusion

<table>
<thead>
<tr>
<th></th>
<th>QA\text{tr}</th>
<th>QA\text{tc}</th>
<th>QA\text{lin}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>data</td>
<td>combined</td>
<td>data</td>
</tr>
<tr>
<td>BaseFGTGDs</td>
<td>in co\text{NP}</td>
<td>2EXP-\text{c}</td>
<td>co\text{NP}-\text{c}</td>
</tr>
<tr>
<td>BaseCovFGTGDs</td>
<td>P-\text{c}</td>
<td>2EXP-\text{c}</td>
<td>co\text{NP}-\text{c}</td>
</tr>
</tbody>
</table>

Also in paper:

- Generalization to “guarded” logics that include disjunction and some negation (rather than just TGDs);

- Lower bounds for QA\text{tc} and QA\text{lin} even with inclusion dependencies (reduction from QA with disjunctive inclusion dependencies, using distinguished relations to emulate disjunction).

Open questions

Is query answering decidable . . . for other special interpretations? when we restrict only to finite sets of facts?
For FGTGD constraints Σ and a UCQ Q:
if $\mathcal{F}_0 \land \Sigma \land \neg Q$ is satisfiable, then there is a witness \mathcal{F} that has a **tree decomposition** of some bounded tree-width.

A tree decomposition of tree-width $k - 1$
for a set of facts $\mathcal{F} \supseteq \mathcal{F}_0$ is a tree t with each node labelled by a set $S \subseteq \mathcal{F}$ s.t.

- the root is labelled with \mathcal{F}_0;
- every fact appears in some node in t;
- each non-root node mentions at most k elements;
- for each element, the set of nodes with this element is connected in t.
Tree decompositions

For FGTGD constraints Σ and a UCQ Q:
if $\mathcal{F}_0 \land \Sigma \land \neg Q$ is satisfiable, then there is a witness \mathcal{F} that has a tree decomposition of some bounded tree-width.

A tree decomposition of tree-width $k - 1$ for a set of facts $\mathcal{F} \supseteq \mathcal{F}_0$ is a tree t with each node labelled by a set $S \subseteq \mathcal{F}$ s.t.

- the root is labelled with \mathcal{F}_0;
- every fact appears in some node in t;
- each non-root node mentions at most k elements;
- for each element, the set of nodes with this element is connected in t.