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Some decidable fragments of Brst-order logic

FOML

FO
2

GF

UNF

GNF

constrain

number of variables

constrain

quantiBcation

[Andréka, van Benthem,

Németi ’95-’98]

∃x (G(xy) ∧ ψ(xy))
∀x (G(xy) → ψ(xy))

constrain

negation

∃x (ψ(xy))
¬ψ(x)∃x (ψ(xy))

G(xy) ∧ ¬ψ(xy)

ML

FO
2

GF UNF GNF

Bnite model property 3

3 3 3 3

tree-like model property 3

7 3 3 3

Craig interpolation 3

7 7 3 3
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Interpolation

φ ⊧ ψ

φ ⊧ χ ⊧ ψ

only uses

relations in

both φ and ψ

interpolant
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Interpolation example

∃xyz(Txyz ∧ Rxy ∧ Ryz ∧ Rzx) ⊧ ∃xy(Rxy ∧ ((Sx ∧ Sy) ∨ (¬Sx ∧ ¬Sy)))

“there is a T-guarded

3-cycle using R”

a

b

ca

b

c

interpolant χ ∶= ∃xyz(Rxy ∧ Ryz ∧ Rzx)
“there is a 3-cycle using R”
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Interpolation

φ ⊧ ψ

φ ⊧ χ ⊧ ψ

only uses

relations in

both φ and ψ

interpolant

Theorem (Bárány+Benedikt+ten Cate ’13)

Given GNF formulas φ and ψ such that φ ⊧ ψ, there is a GNF interpolant χ

(but model theoretic proof implies no bound on size of χ).

Even when input is in GF, no idea how to compute interpolants

(or other rewritings related to interpolation).Theorem (Benedikt+ten Cate+VB. ’14)

Given GNF formulas φ and ψ such that φ ⊧ ψ, we can construct a

GNF interpolant χ of doubly exponential DAG-size (in size of input).
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Theorem (Bárány+Benedikt+ten Cate ’13)

Given GNF formulas φ and ψ such that φ ⊧ ψ, there is a GNF interpolant χ

(but model theoretic proof implies no bound on size of χ).

Even when input is in GF, no idea how to compute interpolants

(or other rewritings related to interpolation).

Theorem (Benedikt+ten Cate+VB. ’14)

Given GNF formulas φ and ψ such that φ ⊧ ψ, we can construct a

GNF interpolant χ of doubly exponential DAG-size (in size of input).

5 / 20



Mosaics

Amosaic τ(a) for φ is a collection of subformulas of φ

over some guarded set a of parameters.

τ1(ab)
Raa

¬Sa
∃z(Rbz ∧ Sz)

Sb

Rba

⋯

τ2(bc)
Sb

¬Rbb
Rbc ∧ Sc

Rcb

Sc

⋯

τ3(d)
Sd

¬Sd

∃yz(Ryz ∧ Sz)
∀z(Rdz)
Rdd ∨ Sd

⋯
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Mosaics

Amosaic τ(a) for φ is a collection of subformulas of φ

over some guarded set a of parameters.

τ1(ab)

a b

τ2(bc)

b c

τ3(d)
Internally

inconsistent

(e.g. Sd & ¬Sd)

Internally consistent mosaics are windows

into a (guarded) piece of a structure.
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Linking mosaics

Mosaics can be linked together to fulBll an existential requirement if they

agree on all formulas that use only shared parameters.

τ1

a b

∃z(Rbz ∧ Sz)

τ2

b c

We say a set S of mosaics is saturated if every existential requirement in a

mosaic τ ∈ S is fulBlled in τ or in some linked τ
′
∈ S.
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Mosaics

Fix some set P of size 2 ⋅ width(φ) and let Mφ be the set of mosaics for φ

over parameters P. The size of Mφ is doubly exponential in the size of φ.

Theorem

φ is satisBable i> there is a saturated set S of internally consistent mosaics

from Mφ that contains some τ with φ ∈ τ.

τ4τ3τ2τ1S = , , , }{

τ3

τ4

τ1

τ2

⋮
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Mosaic elimination algorithm for satisBability testing

Stage 1.

Eliminate mosaics with internal

inconsistencies.

Stage i + 1.

Eliminate mosaics with existential

requirements that can only be

fulBlled using mosaics eliminated in

earlier stages.

Continue until Bxpoint M
′
reached.

The set M
′
is a saturated set of

internally consistent mosaics.

τ1

τ2

τ3

τ5

τ4

τ6

τ7

Mφ

Theorem

φ is satisBable i> there is some mosaic τ ∈ M
′
with φ ∈ τ.
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Mosaics for interpolation

Assume φL ⊧ φR.

Idea: Construct interpolant from proof that φL ∧ ¬φR is unsatisBable.

Consider mosaics for φL ∧ ¬φR.

Annotate each mosaic and each formula with a provenance L or R.

L ∶ τ1(ab) R ∶ τ2(bc) L ∶ τ3(d)

Linking must respect the provenance annotations.

10 / 20



Mosaics for interpolation

Assume φL ⊧ φR.

Idea: Construct interpolant from proof that φL ∧ ¬φR is unsatisBable.

Consider mosaics for φL ∧ ¬φR.

Annotate each mosaic and each formula with a provenance L or R.

L ∶ τ1(ab)
L ∶ Raa
R ∶ ¬Sa

R ∶ ∃z(Rbz ∧ Sz)
R ∶ ¬Rbb
L ∶ Sb
R ∶ Rba

. . .

R ∶ τ2(bc)
L ∶ Sb

R ∶ ¬Rbb
R ∶ Rbc ∧ Sc

R ∶ Rbc
L ∶ Rcb

R ∶ ∃z(Rbz ∧ Sz)
R ∶ Sc

. . .

L ∶ τ3(d)
L ∶ Sd

R ∶ ¬Sd

R ∶ Rdd ∧ Sd

R ∶ ∃yz(Ryz ∧ Sz)
L ∶ ∀z(Rdz)
L ∶ Rdd ∨ Sd

. . .

Linking must respect the provenance annotations.

10 / 20



Mosaics for interpolation

Assume φL ⊧ φR.

Test satisBability of φL ∧ ¬φR

using mosaic elimination.

Assign amosaic interpolant θτ

to each eliminated mosaic τ

such that τL ⊧ θτ and θτ ⊧ ¬τR.

Mosaic interpolants θτ describe

why the mosaic τ was eliminated.

τ1

τ2

τ3

τ5

τ4

τ6

τ7

MφL∧¬φR

θ5

θ6

θ7

Theorem

An interpolant χ for φL ⊧ φR of at most doubly exponential DAG-size can be

constructed from the mosaic interpolants.
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Shape of interpolants

Mosaic interpolants θτ satisfy τL ⊧ θτ and θτ ⊧ ¬τR.

They describe why the mosaic τ was eliminated.

Stage 1:

L ∶ Rab L ∶ ¬Rab ⇒ θτ ∶= ⊥
Internal R ∶ Rab R ∶ ¬Rab ⇒ θτ ∶= ⊤
inconsistency L ∶ Rab R ∶ ¬Rab ⇒ θτ ∶= Rab

R ∶ Rab L ∶ ¬Rab ⇒ θτ ∶= ¬Rab

Stage i + 1:

UnfulBlled L ∶ ∃z [G(bz) ∧ ψ(bz)] ⇒ θτ ∶= ⋁
τ
′(bc)

∃z [ ⋀
τ
′′
⊇τ

′

θτ
′′(bz)]

“there is amosaic τ
′
that can be linked to τ to fulBl the requirement,

but no matter what R-formulas are added, the resulting mosaic τ
′′

has already been eliminated”

12 / 20
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Mosaics for interpolation

Challenge: ensure interpolant χ is in GNF

Solution: place further restrictions on the formulas in the mosaics

Idea: in an L-mosaic, only allow R-formulas that are guarded by some

L-atom in the common signature.

L ∶ τ

full info about

L-formulas

partial info about

R-formulas

R ∶ τ
′

full info about

R-formulas

partial info about

L-formulas

This makes it harder to prove completeness of mosaic method,

but makes it easier to prove properties about the mosaic interpolants.
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Stronger interpolation theorems for GNF

Lyndon interpolation: χ respects polarity of relations

A relation R occurs positively (respectively, negatively) in χ i> R occurs

positively (respectively, negatively) in both φL and φR.

Relativized interpolation: χ respects quantiBcation pattern

If the quantiBcation in φL and φR is relativized to a distinguished set of

unary predicatesU, then χ isU-relativized.

i.e. quantiBcation is of the form ∃x (Ux ∧ ψ(xy)) for U ∈ U

14 / 20



Bonus: e>ective preservation theorems

φ is preserved under extensions if A ⊧ φ and A ⊆ B implies B ⊧ φ.

φ is in existential GNF if no quantiBer is in the scope of a negation.

Corollary (Analog of Loś-Tarski)

If φ is preserved under extensions and in GNF, then we can construct an

equivalent existential GNF formula φ
′
of doubly exponential DAG-size.

15 / 20



Some decidable fragments of FO

FOML

FO
2

GF

UNF

GNF

constrain

number of variables

constrain

quantiBcation

[Andréka, van Benthem,

Németi ’95-’98]

∃x.α(xy) ∧ ψ(xy)
∀x.α(xy) → ψ(xy)

constrain

negation

∃x(ψ(xy))
G(xy) ∧ ¬ψ(xy)

[ten Cate, SegouBn ’11]

[Bárány, ten Cate, SegouBn ’11]

ML FO
2

GF UNF GNF

Bnite model property 3 3 3 3 3
tree-like model property 3 7 3 3 3
Craig interpolation 3 7 7 3 3
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Some decidable fragments of FO+LFP

FO

+

LFP

Lµ

GFP

GNFP

UNFP

constrain

quantiBcation
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[Andréka, van Benthem,
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¬ψ(x)
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Craig interpolation 3 ? ? ?
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FO

+

LFP

Lµ

GFP

GNFP

UNFP

constrain

quantiBcation

∃x(G(xy) ∧ ψ(xy))
∀x(G(xy) → ψ(xy))

[Andréka, van Benthem,

Németi ’95-’98]

constrain

negation

∃x(ψ(xy))
¬ψ(x)

constrain

negation

∃x(ψ(xy))
G(xy) ∧ ¬ψ(xy)

[ten Cate, SegouBn ’11]

[Bárány, ten Cate, SegouBn ’11]
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Uniform interpolation

The modal mu-calculus (Lµ) has uniform interpolation

[D’Agostino+Hollenberg ’00]...

Uniform interpolation: χ depends only on antecedent and the signature of

the consequent

Given φL and a sub-signature σ ,

there is an interpolant χ over σ such that

for all φR with φL ⊧ φR and common signature σ ,

φL ⊧ χ and χ ⊧ φR

18 / 20



Uniform interpolation for UNFP
k

Let UNFP
k

denote the k-variable fragment of UNFP

(when written in a normal form...)

Theorem (Benedikt+ten Cate+VB. unpublished)

UNFP
k

has e>ective uniform interpolation. UNFP has Craig interpolation.

Relational

structures

Coded structures

(tree decompositions of

width k)

UNFP
k

φ Lµ φ̂

Lµ χ̂

over subsignature

encoding

UNFP
k

χ
over subsignature

[D’Agostino+Hollenberg’00]
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Summary

Guarded logics have attractive computational

and model-theoretic properties, including interpolation.

ML GF UNF GNF

Lµ GFP UNFP GNFP

Craig interpolation 3 7 3 3

3 7 3 7

adapted

mosaic method

fromML

[Benedikt,ten Cate,VB.’14]

used

uniform interpolation

for Lµ

[Benedikt,ten Cate,VB.

unpublished]

20 / 20



Summary

Guarded logics have attractive computational

and model-theoretic properties, including interpolation.

ML GF UNF GNF Lµ GFP UNFP GNFP

Craig interpolation 3 7 3 3 3 7 3 7
adapted

mosaic method

fromML

[Benedikt,ten Cate,VB.’14]

used

uniform interpolation

for Lµ

[Benedikt,ten Cate,VB.

unpublished]

20 / 20



Summary

Guarded logics have attractive computational

and model-theoretic properties, including interpolation.

ML GF UNF GNF Lµ GFP UNFP GNFP

Craig interpolation 3 7 3 3 3 7 3 7
adapted

mosaic method

fromML

[Benedikt,ten Cate,VB.’14]

used

uniform interpolation

for Lµ

[Benedikt,ten Cate,VB.

unpublished]

20 / 20



E>ective preservation theorems

φ is monotone if A ⊧ φ implies that A
′
⊧ φ for anyA

′
obtained from A by

adding tuples to the interpretation of some relation.

φ is positive if every relation appears within the scope of an even number

of negations.

Corollary (Monotone = Positive)

If φ is monotone and in GNF, then we can construct an equivalent positive

GNF formula φ
′
of doubly exponential DAG-size.

Let φ
i
be the result of replacing every relation Rwith a copy R

i
.

The Lyndon interpolant χ for

⋀
R

¬∃y (R1
y ∧ ¬R

2
y) ∧ φ

1
⊧ φ

2

can only use relations of the form R
2
, and these must all be positive.

Replacing every R
2
with R in χ yields positive φ

′
equivalent to φ.
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Loś-Tarski preservation theorem

φ is preserved under extensions if A ⊧ φ and A ⊆ B implies B ⊧ φ.

φ is in existential GNF if no quantiBer is in the scope of a negation.

Corollary (Analog of Loś-Tarski)

If φ is preserved under extensions and in GNF, then we can construct an

equivalent existential GNF formula φ
′
of doubly exponential DAG-size.

LetU ∶= {U1
, U

2} be a set of fresh unary predicates.

Let φ
i
be the result of relativizing every quantiBcation to U

i
.

The relativized Lyndon interpolant χ for

¬∃y (U1
y ∧ ¬U

2
y) ∧ φ

1
⊧ φ

2

is an existential GNF formula.

Replacing every U
2
z in χ with⊤ yields the desired existential GNF φ

′
.
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