Effective interpolation for guarded logics

Michael Benedikt¹, Balder ten Cate², **Michael Vanden Boom**¹

¹University of Oxford ²LogicBlox and UC Santa Cruz

LogIC Seminar at Imperial College London December 2014

	ML
finite model property	\checkmark
tree-like model property	\checkmark
Craig interpolation	\checkmark

	ML	FO^2	
finite model property	√	1	
tree-like model property	\checkmark	×	
Craig interpolation	1	X	

constrain number of variables

constrain quantification [Andréka, van Benthem, Németi '95-'98]

 $\exists x (G(xy) \land \psi(xy)) \\ \forall x (G(xy) \rightarrow \psi(xy))$

constrain number of variables

constrain quantification [Andréka, van Benthem, Németi '95-'98]

 $\exists x (G(xy) \land \psi(xy)) \\ \forall x (G(xy) \rightarrow \psi(xy))$

constrain negation [ten Cate, Segoufin '11]

 $\exists \boldsymbol{x} \left(\psi(\boldsymbol{x}\boldsymbol{y}) \right) \\ \neg \psi(\boldsymbol{x})$

MLFO2GFUNFfinite model property✓✓✓tree-like model property✓✓✓Craig interpolation✓✓✓

X

X

constrain number of variables

constrain quantification [Andréka, van Benthem, Németi '95-'981

 $\exists x (G(xy) \land \psi(xy))$ $\forall x (G(xy) \to \psi(xy))$

constrain negation [ten Cate, Segoufin '11] [Bárány, ten Cate, Segoufin '11]

 $\exists x (\psi(xy))$

 $G(xy) \wedge \neg \psi(xy)$

tree-like model property Craig interpolation

$\varphi \models \psi$

 $\exists xyz(Txyz \land Rxy \land Ryz \land Rzx) \models \exists xy(Rxy \land ((Sx \land Sy) \lor (\neg Sx \land \neg Sy)))$

"there is a *T*-guarded 3-cycle using *R*"

 $\exists xyz(Txyz \land Rxy \land Ryz \land Rzx) \models \exists xy(Rxy \land ((Sx \land Sy) \lor (\neg Sx \land \neg Sy)))$

"there is a *T*-guarded 3-cycle using *R*"

 $\exists xyz(Txyz \land Rxy \land Ryz \land Rzx) \models \exists xy(Rxy \land ((Sx \land Sy) \lor (\neg Sx \land \neg Sy)))$

"there is a *T*-guarded 3-cycle using *R*"

 $\exists xyz(Txyz \land Rxy \land Ryz \land Rzx) \models \exists xy(Rxy \land ((Sx \land Sy) \lor (\neg Sx \land \neg Sy)))$

"there is a *T*-guarded 3-cycle using *R*"

interpolant $\chi := \exists xyz(Rxy \land Ryz \land Rzx)$

"there is a 3-cycle using R"

 $\exists xyz(Txyz \land Rxy \land Ryz \land Rzx) \models \exists xy(Rxy \land ((Sx \land Sy) \lor (\neg Sx \land \neg Sy)))$

"there is a *T*-guarded 3-cycle using *R*"

GNF interpolant $\chi := \exists xyz(Rxy \land Ryz \land Rzx)$

"there is a 3-cycle using R"

Theorem (Bárány+Benedikt+ten Cate '13)

Given GNF formulas φ and ψ such that $\varphi \models \psi$, there is a GNF interpolant χ (but model theoretic proof implies no bound on size of χ).

Theorem (Bárány+Benedikt+ten Cate '13)

Given GNF formulas φ and ψ such that $\varphi \models \psi$, there is a GNF interpolant χ (but model theoretic proof implies no bound on size of χ).

Even when input is in GF, no idea how to **compute** interpolants (or other rewritings related to interpolation).

Theorem (Bárány+Benedikt+ten Cate '13)

Given GNF formulas φ and ψ such that $\varphi \models \psi$, there is a GNF interpolant χ (but model theoretic proof implies no bound on size of χ).

Theorem (Benedikt+ten Cate+VB. '14)

Given GNF formulas φ and ψ such that $\varphi \models \psi$, we can **construct** a GNF interpolant χ of doubly exponential DAG-size (in size of input).

A mosaic $\tau(a)$ for φ is a collection of subformulas of φ over some guarded set a of parameters.

A mosaic $\tau(a)$ for φ is a collection of subformulas of φ over some guarded set a of parameters.

A mosaic $\tau(a)$ for φ is a collection of subformulas of φ over some guarded set a of parameters.

Internally consistent mosaics are windows into a (guarded) piece of a structure.

Mosaics can be **linked** together to fulfill an existential requirement if they agree on all formulas that use only shared parameters.

Mosaics can be **linked** together to fulfill an existential requirement if they agree on all formulas that use only shared parameters.

Mosaics can be **linked** together to fulfill an existential requirement if they agree on all formulas that use only shared parameters.

We say a set *S* of mosaics is **saturated** if every existential requirement in a mosaic $\tau \in S$ is fulfilled in τ or in some linked $\tau' \in S$.

Fix some set *P* of size $2 \cdot \text{width}(\varphi)$ and let \mathcal{M}_{φ} be the set of mosaics for φ over parameters *P*. The size of \mathcal{M}_{φ} is doubly exponential in the size of φ .

Theorem

 φ is satisfiable iff there is a saturated set *S* of internally consistent mosaics from \mathcal{M}_{φ} that contains some τ with $\varphi \in \tau$.

Fix some set *P* of size $2 \cdot \text{width}(\varphi)$ and let \mathcal{M}_{φ} be the set of mosaics for φ over parameters *P*. The size of \mathcal{M}_{φ} is doubly exponential in the size of φ .

Theorem

 φ is satisfiable iff there is a saturated set *S* of internally consistent mosaics from \mathcal{M}_{φ} that contains some τ with $\varphi \in \tau$.

τ3

$\mathsf{S} = \left\{ \left[\tau_1 \right], \left[\tau_2 \right], \left[\tau_3 \right], \left[\tau_4 \right] \right\}$

Fix some set *P* of size $2 \cdot \text{width}(\varphi)$ and let \mathcal{M}_{φ} be the set of mosaics for φ over parameters *P*. The size of \mathcal{M}_{φ} is doubly exponential in the size of φ .

Theorem

 φ is satisfiable iff there is a saturated set *S* of internally consistent mosaics from \mathcal{M}_{φ} that contains some τ with $\varphi \in \tau$.

$\mathsf{S} = \left\{ \left[\tau_1 \right], \left[\tau_2 \right], \left[\tau_3 \right], \left[\tau_4 \right] \right\}$

Fix some set *P* of size $2 \cdot \text{width}(\varphi)$ and let \mathcal{M}_{φ} be the set of mosaics for φ over parameters *P*. The size of \mathcal{M}_{φ} is doubly exponential in the size of φ .

Theorem

 φ is satisfiable iff there is a saturated set *S* of internally consistent mosaics from \mathcal{M}_{φ} that contains some τ with $\varphi \in \tau$.

$\mathsf{S} = \left\{ (\tau_1), (\tau_2), (\tau_3), (\tau_4) \right\}$

Fix some set *P* of size $2 \cdot \text{width}(\varphi)$ and let \mathcal{M}_{φ} be the set of mosaics for φ over parameters *P*. The size of \mathcal{M}_{φ} is doubly exponential in the size of φ .

Theorem

 φ is satisfiable iff there is a saturated set *S* of internally consistent mosaics from \mathcal{M}_{φ} that contains some τ with $\varphi \in \tau$.

$\mathsf{S} = \left\{ (\tau_1), (\tau_2), (\tau_3), (\tau_4) \right\}$

Stage 1. Eliminate mosaics with internal

inconsistencies.

Stage 1.

Eliminate mosaics with internal inconsistencies.

Stage *i* + 1.

Eliminate mosaics with existential requirements that can only be fulfilled using mosaics eliminated in earlier stages.

Stage 1.

Eliminate mosaics with internal inconsistencies.

Stage *i* + 1.

Eliminate mosaics with existential requirements that can only be fulfilled using mosaics eliminated in earlier stages.

Continue until fixpoint \mathcal{M}' reached. The set \mathcal{M}' is a saturated set of internally consistent mosaics.

Theorem

 φ is satisfiable iff there is some mosaic $\tau \in \mathscr{M}'$ with $\varphi \in \tau$.

Assume $\varphi_{L} \models \varphi_{R}$.

Idea: Construct interpolant from proof that $\varphi_L \wedge \neg \varphi_R$ is unsatisfiable.

Assume $\varphi_{L} \models \varphi_{R}$.

Idea: Construct interpolant from proof that $\varphi_L \wedge \neg \varphi_R$ is unsatisfiable.

Consider mosaics for $\varphi_{\rm L} \wedge \neg \varphi_{\rm R}$.

Annotate each mosaic and each formula with a provenance L or R.

Linking must respect the provenance annotations.

Assume $\varphi_{L} \models \varphi_{R}$.

Test satisfiability of $\varphi_L \wedge \neg \varphi_R$ using mosaic elimination.

Assume $\varphi_{L} \models \varphi_{R}$.

Test satisfiability of $\varphi_{\rm L} \wedge \neg \varphi_{\rm R}$ using mosaic elimination.

Assign a **mosaic interpolant** θ_{τ} to each eliminated mosaic τ such that $\tau_{L} \models \theta_{\tau}$ and $\theta_{\tau} \models \neg \tau_{R}$.

Mosaic interpolants θ_{τ} describe why the mosaic τ was eliminated.

Assume $\varphi_{L} \models \varphi_{R}$.

Test satisfiability of $\varphi_{\rm L} \wedge \neg \varphi_{\rm R}$ using mosaic elimination.

Assign a **mosaic interpolant** θ_{τ} to each eliminated mosaic τ such that $\tau_{L} \models \theta_{\tau}$ and $\theta_{\tau} \models \neg \tau_{R}$.

Mosaic interpolants θ_{τ} describe why the mosaic τ was eliminated.

Assume $\varphi_{L} \models \varphi_{R}$.

Test satisfiability of $\varphi_L \wedge \neg \varphi_R$ using mosaic elimination.

Assign a **mosaic interpolant** θ_{τ} to each eliminated mosaic τ such that $\tau_{L} \models \theta_{\tau}$ and $\theta_{\tau} \models \neg \tau_{R}$.

Mosaic interpolants θ_{τ} describe why the mosaic τ was eliminated.

Assume $\varphi_{L} \models \varphi_{R}$.

Test satisfiability of $\varphi_{\rm L} \wedge \neg \varphi_{\rm R}$ using mosaic elimination.

Assign a **mosaic interpolant** θ_{τ} to each eliminated mosaic τ such that $\tau_{L} \models \theta_{\tau}$ and $\theta_{\tau} \models \neg \tau_{R}$.

Mosaic interpolants θ_{τ} describe why the mosaic τ was eliminated.

Theorem

An interpolant χ for $\varphi_L \models \varphi_R$ of at most doubly exponential DAG-size can be constructed from the mosaic interpolants.

Shape of interpolants

Mosaic interpolants θ_{τ} satisfy $\tau_{L} \models \theta_{\tau}$ and $\theta_{\tau} \models \neg \tau_{R}$. They describe why the mosaic τ was eliminated.

Stage 1:

	L:Rab	L∶¬Rab	\Rightarrow	$\theta_{\tau} := \bot$
Internal	R: <i>Rab</i>	R∶ <i>¬Rab</i>	\Rightarrow	$\theta_{\tau} \coloneqq \top$
inconsistency	L:Rab	R∶ <i>¬Rab</i>	\Rightarrow	$\theta_{\tau} := Rab$
	R:Rab	L∶¬Rab	\Rightarrow	$\theta_{\tau} := \neg Rab$

Shape of interpolants

Mosaic interpolants θ_{τ} satisfy $\tau_{L} \models \theta_{\tau}$ and $\theta_{\tau} \models \neg \tau_{R}$. They describe why the mosaic τ was eliminated.

Stage 1:

	L:Rab	L∶¬Rab	\Rightarrow	$\theta_{\tau} \coloneqq \bot$
Internal	R: <i>Rab</i>	R∶¬Rab	\Rightarrow	$\theta_{\tau} \coloneqq \top$
inconsistency	L:Rab	R∶¬ <i>Rab</i>	\Rightarrow	$\theta_{\tau} := Rab$
	R:Rab	L∶¬ <i>Rab</i>	\Rightarrow	$\theta_{\tau} := \neg Rab$

Stage *i* + 1:

Unfulfilled
$$L: \exists z [G(bz) \land \psi(bz)] \Rightarrow \theta_{\tau} := \bigvee_{\tau'(bc)} \exists z \left[\bigwedge_{\tau'' \supseteq \tau'} \theta_{\tau''}(bz) \right]$$

"there is a mosaic τ' that can be linked to τ to fulfil the requirement, but no matter what R-formulas are added, the resulting mosaic τ'' has already been eliminated" **Challenge:** ensure interpolant χ is in GNF

Challenge: ensure interpolant χ is in GNF

Solution: place further restrictions on the formulas in the mosaics

Challenge: ensure interpolant χ is in GNF

Solution: place further restrictions on the formulas in the mosaics

Idea: in an L-mosaic, only allow R-formulas that are guarded by some L-atom in the common signature.

full info about L-formulas

partial info about R-formulas R:τ' **full** info about

R-formulas

partial info about L-formulas

This makes it harder to prove completeness of mosaic method, but makes it easier to prove properties about the mosaic interpolants.

Lyndon interpolation: χ respects polarity of relations

A relation *R* occurs positively (respectively, negatively) in χ iff *R* occurs positively (respectively, negatively) in both $\varphi_{\rm L}$ and $\varphi_{\rm R}$.

Relativized interpolation: χ respects quantification pattern

If the quantification in φ_L and φ_R is relativized to a distinguished set of unary predicates \mathbb{U} , then χ is \mathbb{U} -relativized. i.e. quantification is of the form $\exists x (Ux \land \psi(xy))$ for $U \in \mathbb{U}$ φ is **preserved under extensions** if $\mathfrak{A} \models \varphi$ and $\mathfrak{A} \subseteq \mathfrak{B}$ implies $\mathfrak{B} \models \varphi$.

 φ is in **existential GNF** if no quantifier is in the scope of a negation.

Corollary (Analog of Loś-Tarski)

If φ is preserved under extensions and in GNF, then we can construct an equivalent existential GNF formula φ' of doubly exponential DAG-size.

Some decidable fragments of FO

	ML	FO^2	GF	UNF	GNF
finite model property	 Image: A start of the start of	 Image: A second s	1	1	 Image: A start of the start of
tree-like model property	1	×	1	\checkmark	1
Craig interpolation	1	X	X	1	1

Some decidable fragments of FO+LFP

	L_{μ}	GFP	UNFP	GNFP
finite model property	 Image: A set of the set of the	×	×	X
tree-like model property	 Image: A second s	1	\checkmark	 Image: A second s
Craig interpolation	1	?	?	?

Some decidable fragments of FO+LFP

	L_{μ}	GFP	UNFP	GNFP
finite model property	 Image: A set of the set of the	×	×	×
tree-like model property	 Image: A second s	1	\checkmark	1
Craig interpolation	1	X	?	×

Some decidable fragments of FO+LFP

	L_{μ}	GFP	UNFP	GNFP
finite model property	 Image: A set of the set of the	×	×	×
tree-like model property	 Image: A second s	1	\checkmark	1
Craig interpolation	1	X	1	×

The modal mu-calculus (L_{μ}) has uniform interpolation [D'Agostino+Hollenberg '00]...

Uniform interpolation: χ depends only on antecedent and the signature of the consequent

Given φ_L and a sub-signature σ , there is an interpolant χ over σ such that for all φ_R with $\varphi_L \models \varphi_R$ and common signature σ ,

 $\varphi_{L} \vDash \chi \text{ and } \chi \vDash \varphi_{R}$

Let UNFP^k denote the *k*-variable fragment of UNFP (when written in a normal form...)

Theorem (Benedikt+ten Cate+VB. unpublished)

UNFP^k has effective uniform interpolation. UNFP has Craig interpolation.

Let UNFP^k denote the *k*-variable fragment of UNFP (when written in a normal form...)

Theorem (Benedikt+ten Cate+VB. unpublished)

UNFP^k has effective uniform interpolation. UNFP has Craig interpolation.

RelationalCoded structuresstructures(tree decompositions of
width k)

$$\mathsf{UNFP}^k \varphi \longrightarrow L_\mu \widehat{\varphi}$$

Let UNFP^k denote the *k*-variable fragment of UNFP (when written in a normal form...)

Theorem (Benedikt+ten Cate+VB. unpublished)

UNFP^k has effective uniform interpolation. UNFP has Craig interpolation.

Let UNFP^k denote the *k*-variable fragment of UNFP (when written in a normal form...)

Theorem (Benedikt+ten Cate+VB. unpublished)

UNFP^k has effective uniform interpolation. UNFP has Craig interpolation.

Guarded logics have attractive computational and model-theoretic properties, including interpolation.

Guarded logics have attractive computational and model-theoretic properties, including interpolation.

Guarded logics have attractive computational and model-theoretic properties, including interpolation.

 φ is **monotone** if $\mathfrak{A} \models \varphi$ implies that $\mathfrak{A}' \models \varphi$ for any \mathfrak{A}' obtained from \mathfrak{A} by adding tuples to the interpretation of some relation.

 φ is **positive** if every relation appears within the scope of an even number of negations.

Corollary (Monotone = Positive)

If φ is monotone and in GNF, then we can construct an equivalent positive GNF formula φ' of doubly exponential DAG-size.

 φ is **monotone** if $\mathfrak{A} \models \varphi$ implies that $\mathfrak{A}' \models \varphi$ for any \mathfrak{A}' obtained from \mathfrak{A} by adding tuples to the interpretation of some relation.

 φ is **positive** if every relation appears within the scope of an even number of negations.

Corollary (Monotone = Positive)

If φ is monotone and in GNF, then we can construct an equivalent positive GNF formula φ' of doubly exponential DAG-size.

Let φ^i be the result of replacing every relation *R* with a copy R^i . The Lyndon interpolant χ for

$$\bigwedge_{R} \neg \exists \boldsymbol{y} \left(R^{1} \boldsymbol{y} \land \neg R^{2} \boldsymbol{y} \right) \land \varphi^{1} \models \varphi^{2}$$

can only use relations of the form R^2 , and these must all be positive. Replacing every R^2 with R in χ yields positive φ' equivalent to φ . φ is **preserved under extensions** if $\mathfrak{A} \models \varphi$ and $\mathfrak{A} \subseteq \mathfrak{B}$ implies $\mathfrak{B} \models \varphi$.

 φ is in **existential GNF** if no quantifier is in the scope of a negation.

Corollary (Analog of Loś-Tarski)

If φ is preserved under extensions and in GNF, then we can construct an equivalent existential GNF formula φ' of doubly exponential DAG-size.

 φ is **preserved under extensions** if $\mathfrak{A} \models \varphi$ and $\mathfrak{A} \subseteq \mathfrak{B}$ implies $\mathfrak{B} \models \varphi$.

 φ is in **existential GNF** if no quantifier is in the scope of a negation.

Corollary (Analog of Loś-Tarski)

If φ is preserved under extensions and in GNF, then we can construct an equivalent existential GNF formula φ' of doubly exponential DAG-size.

Let $\mathbb{U} := \{U^1, U^2\}$ be a set of fresh unary predicates. Let φ^i be the result of relativizing every quantification to U^i .

The relativized Lyndon interpolant χ for

 $\neg \exists y \left(U^{1} y \land \neg U^{2} y \right) \land \varphi^{1} \vDash \varphi^{2}$

is an existential GNF formula. Replacing every $U^2 z$ in χ with \top yields the desired existential GNF φ' .