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Theorem (Barany+Benedikt+ten Cate "13)

Given GNF formulas ¢ and ¢ such that ¢ E ¢, there is a GNF interpolant y
(but model theoretic proof implies no bound on size of ).
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Theorem (Barany+Benedikt+ten Cate "13)

Given GNF formulas ¢ and ¢ such that ¢ E ¢, there is a GNF interpolant y
(but model theoretic proof implies no bound on size of ).

Even when input is in GF, no idea how to compute interpolants
(or other rewritings related to interpolation).
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Theorem (Barany+Benedikt+ten Cate "13)

Given GNF formulas ¢ and ¢ such that ¢ E ¢, there is a GNF interpolant y
(but model theoretic proof implies no bound on size of ).

Theorem (Benedikt+ten Cate+VB. '14)

Given GNF formulas ¢ and ¢ such that ¢ E ), we can construct a
GNF interpolant x of doubly exponential DAG-size (in size of input).
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A mosaic 1(a) for ¢ is a collection of subformulas of ¢
over some guarded set a of parameters.
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Mosaics

A mosaic 1(a) for ¢ is a collection of subformulas of ¢
over some guarded set a of parameters.

7i(ab) 7,(bc) 13(d)
nternall
Q<—@ @C@ inlcct>nsiste):1t

(e.g. Sd & =5d)

Internally consistent mosaics are windows
into a (guarded) piece of a structure.
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Mosaics can be linked together to fulfill an existential requirement if they
agree on all formulas that use only shared parameters.

3z(Rbz A S2)
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Mosaics can be linked together to fulfill an existential requirement if they
agree on all formulas that use only shared parameters.

We say a set S of mosaics is saturated if every existential requirement in a
mosaic T € Sis fulfilled in T or in some linked 7' € S.
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Fix some set P of size 2 - width(¢) and let .7, be the set of mosaics for ¢
over parameters P. The size of .#,, is doubly exponential in the size of ¢.

Theorem

@ is satisfiable iff there is a saturated set S of internally consistent mosaics
from .7, that contains some T with ¢ € 7.
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Mosaic elimination algorithm for satisfiability testing
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Mosaic elimination algorithm for satisfiability testing

Stage 1.

Eliminate mosaics with internal
inconsistencies.
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Mosaic elimination algorithm for satisfiability testing

Stage 1.
Eliminate mosaics with internal
inconsistencies.

Stagei+1.

Eliminate mosaics with existential
requirements that can only be
fulfilled using mosaics eliminated in
earlier stages.

P
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Mosaic elimination algorithm for satisfiability testing

Stage 1.
Eliminate mosaics with internal '/lqo

inconsistencies.

i
Stage i+ 1.
Eliminate mosaics with existential

requirements that can only be .
. . o . D
fulfilled using mosaics eliminated in [E

earlier stages.

Continue until fixpoint .#" reached. @
The set .7 is a saturated set of
internally consistent mosaics.

@ is satisfiable iff there is some mosaic T € .#Z' with ¢ € 7.
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Mosaics for interpolation

Assume @; F @g.

Idea: Construct interpolant from proof that ¢, A =@y is unsatisfiable.
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Mosaics for interpolation

Assume @; F @g.

Idea: Construct interpolant from proof that ¢, A =@y is unsatisfiable.

Consider mosaics for @;, A —@g.
Annotate each mosaic and each formula with a provenance L or R.

L : 1y(ab) R : 15(bc)

L : 13(d)
. L:Sb
L:Raa R:oRbb
R:aSa R: Rbc A Sc
R:3z(Rbz A S2) "

L:Sd
R:=5d
R:Rdd A Sd
R: 3yz(Ryz A Sz)
L: Vz(Rdz)
L:Rddv Sd

R:-Rbb R:Rbe
L:sh L:Rcb
. R:3z(Rbz A Sz)
R:Rba
R:Sc

Linking must respect the provenance annotations.
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Mosaics for interpolation

Assume @1, E @g. %(pL/\—«pR

Test satisfiability of ¢, A ~@g

using mosaic elimination.
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Mosaics for interpolation
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Assume @1, E @g. %(pL/\—«pR

Test satisfiability of ¢, A ~@g
using mosaic elimination.

Assign a mosaic interpolant 6,
to each eliminated mosaic T
such thatt, E 6, and 6; E —13.

6,
Mosaic interpolants 6, describe @
1

why the mosaic T was eliminated.
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Mosaics for interpolation

Assume @1, E @g. f//qoL/\—«pR 95
Test satisfiability of ¢, A ~@g 2

using mosaic elimination.

Assign a mosaic interpolant 6, 06
to each eliminated mosaic 1 [E

such thatt, E 6, and 6; E —13.

6,
Mosaic interpolants 6, describe [E
1

why the mosaic T was eliminated.

An interpolant x for ¢ F ¢y of at most doubly exponential DAG-size can be
constructed from the mosaic interpolants.
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Shape of interpolants

Mosaic interpolants 6, satisfy 7;, E 8;and 0; E —t3.
They describe why the mosaic T was eliminated.

Stage 1:
L:Rab L:-Rab = 0;:=1
Internal R:Rab R:=Rab = 0,:=T
inconsistency L:Rab R:—-Rab = 0;:=Rab
R:Rab L:-Rab = 0;:=-Rab
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Shape of interpolants

Mosaic interpolants 6, satisfy 7;, E 8;and 0; E —t3.
They describe why the mosaic T was eliminated.

Stage 1:
L:Rab L:-Rab = 0;:=1
Internal R:Rab R:-Rab = 06.:=T
inconsistency L:Rab R:-Rab = 0,:=Rab
R:Rab L:-Rab = 0,:=-Rab
Stagei+1:
Unfulfiled L:3z[G(bz) A g(bz)] = 6.:= \/ Elz[ A Gru(bz)}
7'(bc) 27

“there is a mosaic T' that can be linked to T to fulfil the requirement,
but no matter what R-formulas are added, the resulting mosaic T
has already been eliminated”
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Mosaics for interpolation

Challenge: ensure interpolant  is in GNF

13/20



Mosaics for interpolation

Challenge: ensure interpolant  is in GNF
Solution: place further restrictions on the formulas in the mosaics

13/20



Mosaics for interpolation

Challenge: ensure interpolant  is in GNF
Solution: place further restrictions on the formulas in the mosaics

Idea: in an L-mosaic, only allow R-formulas that are guarded by some
L-atom in the common signature.

L:t

full info about
L-formulas

R:T
full info about
R-formulas

partial info about
R-formulas

partial info about
L-formulas

This makes it harder to prove completeness of mosaic method,
but makes it easier to prove properties about the mosaic interpolants.
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Stronger interpolation theorems for GNF

Lyndon interpolation: y respects polarity of relations

A relation R occurs positively (respectively, negatively) in x iff R occurs
positively (respectively, negatively) in both ¢; and 5.

Relativized interpolation: y respects quantification pattern

If the quantification in ¢ and ¢y, is relativized to a distinguished set of
unary predicates U, then y is U-relativized.

i.e. quantification is of the form 3x (Ux A ¢(xy)) for U € U
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Bonus: effective preservation theorems

¢ is preserved under extensions if 2 F ¢ and 2 € B implies B F ¢.

@ is in existential GNF if no quantifier is in the scope of a negation.

Corollary (Analog of Los-Tarski)

If ¢ is preserved under extensions and in GNF, then we can construct an
equivalent existential GNF formula ¢’ of doubly exponential DAG-size.
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Uniform interpolation

The modal mu-calculus (L) has uniform interpolation
[D'Agostino+Hollenberg '00]...

Uniform interpolation: y depends only on antecedent and the signature of
the consequent

Given ¢, and a sub-signature o,
there is an interpolant y over o such that
for all gy with ¢, E @z and common signature o,

@ F xand xy F @g
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Uniform interpolation for UNFP*

Let UNFP¥ denote the k-variable fragment of UNFP
(when written in a normal form...)

Theorem (Benedikt+ten Cate+VB. unpublished)

UNFP* has effective uniform interpolation. UNFP has Craig interpolation.
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Uniform interpolation for UNFP*

Let UNFP¥ denote the k-variable fragment of UNFP
(when written in a normal form...)

Theorem (Benedikt+ten Cate+VB. unpublished)

UNFP* has effective uniform interpolation. UNFP has Craig interpolation.

Coded structures

Relational i
truct (tree decompositions of
structures width k)

UNFP¥ g ——— L, §
J [D'Agostino+Hollenberg'00]
UNFP* y —— L, X
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encoding 19720



Guarded logics have attractive computational
and model-theoretic properties, including interpolation.

| ML GF UNF GNF

X v/

—
adapted

mosaic method
from ML
[Benedikt,ten Cate,VB.14]

Craig interpolation
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Guarded logics have attractive computational
and model-theoretic properties, including interpolation.

| ML GF UNF GNF | L, GFP UNFP GNFP

VXV VIV X /X

Craig interpolation

—
adapted used
mosaic method uniform interpolation
from ML forL,
[Benedikt,ten Cate,VB!14] [Benedikt,ten Cate,VB.

unpublished]
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Effective preservation theorems

@ is monotone if 2L E @ implies that 2 E ¢ for any 2 obtained from 2l by
adding tuples to the interpretation of some relation.

@ is positive if every relation appears within the scope of an even number
of negations.

Corollary (Monotone = Positive)

If ¢ is monotone and in GNF, then we can construct an equivalent positive
GNF formula ¢’ of doubly exponential DAG-size.



Effective preservation theorems

@ is monotone if 2L E @ implies that 2 E ¢ for any 2 obtained from 2l by
adding tuples to the interpretation of some relation.

@ is positive if every relation appears within the scope of an even number
of negations.

Corollary (Monotone = Positive)

If ¢ is monotone and in GNF, then we can construct an equivalent positive
GNF formula ¢’ of doubly exponential DAG-size.

Let (pi be the result of replacing every relation R with a copy R.
The Lyndon interpolant x for

/\ -3y (R1y A —|R2y) A (,o1 E (p2
R

can only use relations of the form R’, and these must all be positive.
Replacing every R with Rin x yields positive ¢’ equivalent to ¢.
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Los-Tarski preservation theorem

¢ is preserved under extensions if 2 F ¢ and 2 € B implies B F ¢.

@ is in existential GNF if no quantifier is in the scope of a negation.

Corollary (Analog of Los-Tarski)

If ¢ is preserved under extensions and in GNF, then we can construct an
equivalent existential GNF formula ¢’ of doubly exponential DAG-size.

LetU := {U1, Uz} be a set of fresh unary predicates.

Let ¢’ be the result of relativizing every quantification to U.

The relativized Lyndon interpolant y for
1 2 1, 2
—.EIy(Uy/\—.Uy)Mp Fo

is an existential GNF formula.
Replacing every U'zin x with T yields the desired existential GNF ¢'.
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