The Complexity of Boundedness for Guarded Logics

Michael Benedikt1, Balder ten Cate2, Thomas Colcombet3, Michael Vanden Boom1

1University of Oxford \hspace{1cm} 2LogicBlox and UC Santa Cruz \hspace{1cm} 3Université Paris Diderot

LICS 2015
Kyoto, Japan
Least fixpoint

Consider $\psi(y, Y)$ positive in Y (of arity $m = |y|$).

For all structures \mathfrak{A}, the formula ψ induces a monotone operation

$$
\mathcal{P}(A^m) \longrightarrow \mathcal{P}(A^m)
$$

$$
V \longmapsto \psi_{\mathfrak{A}}(V) := \{ a \in A^m : \mathfrak{A}, a, V \models \psi \}
$$

\Rightarrow there is a unique least fixpoint $[\text{Lfp}_{Y,y}.\psi(y, Y)]_{\mathfrak{A}} := \bigcup_{\alpha} \psi_{\mathfrak{A}}^{\alpha}

\psi_{\mathfrak{A}}^0 := \emptyset

\psi_{\mathfrak{A}}^{\alpha+1} := \psi_{\mathfrak{A}}(\psi_{\mathfrak{A}}^\alpha)

\psi_{\mathfrak{A}}^\lambda := \bigcup_{\alpha<\lambda} \psi_{\mathfrak{A}}^{\alpha}$
Boundedness problem

Boundedness problem for \mathcal{L}

Input: $\psi(y, Y) \in \mathcal{L}$ positive in Y

Question: is there $n \in \mathbb{N}$ s.t. for all structures \mathcal{A}, $\psi^*_n(\mathcal{A}) = \psi^{n+1}(\mathcal{A})$? (i.e. the least fixpoint is always reached within n iterations)
Boundedness problem

Boundedness problem for \(\mathcal{L} \)

Input: \(\psi(y, Y) \in \mathcal{L} \) positive in \(Y \)

Question: is there \(n \in \mathbb{N} \) s.t. for all structures \(\mathfrak{A} \), \(\psi_{\mathfrak{A}}^n = \psi_{\mathfrak{A}}^{n+1} \)?
(i.e. the least fixpoint is always reached within \(n \) iterations)

\[
\psi_1(xy, Y) := Rxy \lor \exists z (Rxz \land Yzy)
\]
Boundedness problem

Boundedness problem for \mathcal{L}

Input: $\psi(y, Y) \in \mathcal{L}$ positive in Y

Question: is there $n \in \mathbb{N}$ s.t. for all structures \mathcal{A}, $\psi^n_{\mathcal{A}} = \psi^{n+1}_{\mathcal{A}}$? (i.e. the least fixpoint is always reached within n iterations)

\[
\psi_1(xy, Y) := Rxy \lor \exists z (Rxz \land Yzy)
\] unbounded
Boundedness problem

Boundedness problem for \mathcal{L}

Input: $\psi(y, Y) \in \mathcal{L}$ positive in Y

Question: is there $n \in \mathbb{N}$ s.t. for all structures \mathcal{A}, $\psi^n_{\mathcal{A}} = \psi^{n+1}_{\mathcal{A}}$? (i.e. the least fixpoint is always reached within n iterations)

$$\psi_1(xy, Y) := Rxy \lor \exists z (Rxz \land Yzy)$$

$[\text{lfp}_{Y,xy}.\psi_1] \equiv \text{transitive closure of } R$

unbounded
Boundedness problem

Boundedness problem for \(\mathcal{L} \)

Input: \(\psi(y, Y) \in \mathcal{L} \) positive in \(Y \)

Question: is there \(n \in \mathbb{N} \) s.t. for all structures \(\mathcal{A} \), \(\psi^n_{\mathcal{A}} = \psi^{n+1}_{\mathcal{A}} \)?

(i.e. the least fixpoint is always reached within \(n \) iterations)

\[
\psi_1(xy, Y) := Rxy \lor \exists z (Rxz \land Yzy)
\]

unbounded

\[
[\text{Ifp}_{y,xy} \cdot \psi_1] \equiv \text{transitive closure of } R
\]

\[
\psi_2(xy, Y) := Rxy \lor \exists z (Yzy)
\]
Boundedness problem

Boundedness problem for \mathcal{L}

Input: $\psi(y, Y) \in \mathcal{L}$ positive in Y

Question: is there $n \in \mathbb{N}$ s.t. for all structures \mathcal{A}, $\psi_\mathcal{A}^n = \psi_\mathcal{A}^{n+1}$? (i.e. the least fixpoint is always reached within n iterations)

\[
\psi_1(xy, Y) := Rxy \lor \exists z (Rxz \land Yzy)
\]

\[
[lfp_{Y,xy} \cdot \psi_1] \equiv \text{transitive closure of } R
\]

\[
\psi_2(xy, Y) := Rxy \lor \exists z (Yzy)
\]

\[
[lfp_{Y,xy} \cdot \psi_2](xy) \equiv Rxy \lor \exists z (Rzy)
\]
Boundedness problem

Boundedness problem for \mathcal{L}

Input: $\psi(y, Y) \in \mathcal{L}$ positive in Y

Question: is there $n \in \mathbb{N}$ s.t. for all structures \mathcal{A}, $\psi_{\mathcal{A}}^n = \psi_{\mathcal{A}}^{n+1}$?

(i.e. the least fixpoint is always reached within n iterations)

\[
\psi_1(xy, Y) := Rxy \lor \exists z (Rxz \land Yzy)
\]

$[\text{Ifp}_{Y,xy}\psi_1] \equiv \text{transitive closure of } R$

\[
\psi_2(xy, Y) := Rxy \lor \exists z (Yzy)
\]

$[\text{Ifp}_{Y,xy}\psi_2](xy) \equiv Rxy \lor \exists z (Rzy)$
Some prior results

Boundedness is **undecidable** for

- binary predicate in positive existential FO (i.e. Datalog)
 [Hillebrand, Kanellakis, Mairson, Vardi ’95]

- monadic predicate in existential FO with inequalities
 [Gaifman, Mairson, Sagiv, Vardi ’87]

- monadic predicate in FO²
 [Kolaitis, Otto ’98]
Some prior results

Boundedness is **undecidable** for

- binary predicate in positive existential FO (i.e. Datalog)
 [Hillebrand, Kanellakis, Mairson, Vardi '95]
- monadic predicate in existential FO with inequalities
 [Gaifman, Mairson, Sagiv, Vardi '87]
- monadic predicate in FO^2
 [Kolaitis, Otto '98]

Boundedness is **decidable** for

- monadic predicate in positive existential FO (i.e. monadic Datalog)
 [Cosmadakis, Gaifman, Kanellakis, Vardi '88]
 2EXPTIME
- monadic predicate in modal logic
 [Otto '99]
 EXPTIME
- predicates in “guarded logics”
 [Blumensath, Otto, Weyer '14]
 [Bárány, ten Cate, Otto '12]
 non-elementary upper bound
Some prior results

Boundedness is **undecidable** for

- binary predicate in positive existential FO (i.e. Datalog)
 [Hillebrand, Kanellakis, Mairson, Vardi ‘95]

- monadic predicate in existential FO with inequalities
 [Gaifman, Mairson, Sagiv, Vardi ‘87]

- monadic predicate in FO2
 [Kolaitis, Otto ‘98]

Boundedness is **decidable** for

- monadic predicate in positive existential FO (i.e. monadic Datalog)
 [Cosmadakis, Gaifman, Kanellakis, Vardi ‘88]
 \[2\text{EXPTIME}\]

- monadic predicate in modal logic
 [Otto ‘99]
 \[\text{EXPTIME}\]

- predicates in “guarded logics”
 [Blumensath, Otto, Weyer ‘14]
 [Bárány, ten Cate, Otto ‘12]
 non-elementary upper bound

our contribution:

elementary upper bound
(or better)
Guarded logics

\[\exists x(\text{GF}(xy) \land \psi(xy)) \]
\[\forall x(\text{GF}(xy) \rightarrow \psi(xy)) \]

[Andréka, van Benthem, Németi ’95-’98]

constrain quantification
Guarded logics

constrain quantification

\[\exists x(G(xy) \land \psi(xy)) \]
\[\forall x(G(xy) \rightarrow \psi(xy)) \]

[Andréka, van Benthem, Németi ‘95–’98]

constrain negation

\[\exists x(\psi(xy)) \]
\[\neg \psi(x) \]

[ten Cate, Segoufin ‘11]
Guarded logics

- Constrain quantification
 \[\exists x (G(xy) \land \psi(xy)) \]
 \[\forall x (G(xy) \rightarrow \psi(xy)) \]
 [Andréka, van Benthem, Németi ‘95-’98]

- Constrain negation
 \[\exists x (\psi(xy)) \]
 \[G(xy) \land \neg \psi(xy) \]
 [ten Cate, Segoufin ‘11]
 [Bárány, ten Cate, Segoufin ‘11]
Guarded logics

constrain quantification

\[\exists x (G(xy) \land \psi(xy)) \]
\[\forall x (G(xy) \rightarrow \psi(xy)) \]

[Andréka, van Benthen, Németi ’95–’98]

constrain negation

\[\exists x (\psi(xy)) \]
\[G(xy) \land \neg \psi(xy) \]

[ten Cate, Segoufin ’11]
[Bárány, ten Cate, Segoufin ’11]
Guarded logics

Guarded logics are **expressive**. For instance, GNFP captures:

- mu-calculus, even with backwards modalities;
- positive existential FO (i.e. unions of conjunctive queries);
- description logics including $\text{ALC}, \text{ALCHIO}, \text{ELI}$;
- monadic Datalog.
Guarded logics

Guarded logics are **expressive**. For instance, GNFP captures:

- mu-calculus, even with backwards modalities;
- positive existential FO (i.e. unions of conjunctive queries);
- description logics including \(\mathcal{ALC}, \mathcal{ALCHIO}, \mathcal{ELI}\);
- monadic Datalog.

Guarded logics have many nice model theoretic properties.

- GF, UNF, and GNF have **finite models**.
- GFP, UNFP, and GNFP have **tree-like models**
 (models of bounded tree-width).
Guarded logics

Guarded logics are **expressive**. For instance, GNFP captures:

- mu-calculus, even with backwards modalities;
- positive existential FO (i.e. unions of conjunctive queries);
- description logics including $\mathcal{ALC}, \mathcal{ALCHIO}, \mathcal{ELI}$;
- monadic Datalog.

Guarded logics have many nice model theoretic properties.

- GF, UNF, and GNF have **finite models**.
- GFP, UNFP, and GNFP have **tree-like models** (models of bounded tree-width).

Guarded logics have nice **computational properties**.

- Satisfiability is decidable, and is 2EXPTIME-complete (even EXPTIME-complete for fixed-width GFP).
Boundedness for guarded logics

(We say $\psi(x)$ is answer-guarded if it is of the form $G(x) \land \psi'(x)$.)

Corollary to tree-like model property

For ψ in GFP or answer-guarded GNFP:
ψ is bounded over all structures iff ψ is bounded over **tree-like structures**.
Boundedness for guarded logics

(We say $\psi(x)$ is **answer-guarded** if it is of the form $G(x) \land \psi'(x)$.)

Corollary to tree-like model property

For ψ in GFP or answer-guarded GNFP:
ψ is bounded over all structures iff ψ is bounded over **tree-like structures**.

\Rightarrow amenable to techniques using **tree automata**
Boundedness for guarded logics

(We say $\psi(x)$ is **answer-guarded** if it is of the form $G(x) \land \psi'(x)$.)

Corollary to tree-like model property

For ψ in GFP or answer-guarded GNFP:

ψ is bounded over all structures iff ψ is bounded over **tree-like structures**.

\Rightarrow amenable to techniques using **tree automata**

Logic-automata connection utilized in Blumensath et al. ’14 but only yields non-elementary complexity since their proof goes via MSO.
Boundedness for guarded logics

(We say $\psi(x)$ is **answer-guarded** if it is of the form $G(x) \land \psi'(x)$.)

Corollary to tree-like model property

For ψ in GFP or answer-guarded GNFP:
ψ is bounded over all structures iff ψ is bounded over **tree-like structures**.

\Rightarrow amenable to techniques using **tree automata**

Logic-automata connection utilized in Blumensath et al. ’14 but only yields non-elementary complexity since their proof goes via MSO.

Our strategy: construct automata for boundedness problem directly.
Boundedness for guarded logics

(We say $\psi(x)$ is answer-guarded if it is of the form $G(x) \land \psi'(x)$.)

Corollary to tree-like model property

For ψ in GFP or answer-guarded GNFP:
ψ is bounded over all structures iff ψ is bounded over tree-like structures.

\Rightarrow amenable to techniques using tree automata

Logic-automata connection utilized in Blumensath et al. ’14 but only yields non-elementary complexity since their proof goes via MSO.

Our strategy: construct cost automata for boundedness problem directly.
Cost automata

Cost automaton \mathcal{A}
classical automaton + finite set of counters with operations i, r, and ε
Cost automata

Cost automaton \mathcal{A}
classical automaton + finite set of counters with operations $i, r, \text{ and } \varepsilon$

Semantics $\llbracket \mathcal{A} \rrbracket : \text{trees} \rightarrow \mathbb{N} \cup \{\infty\}$

$\llbracket \mathcal{A} \rrbracket(t) := \min \{n : \exists \text{ run } \rho \text{ of } \mathcal{A} \text{ on } t \text{ such that}$
\hspace{1cm} ρ satisfies the acceptance condition and keeps counters below $n\}$
Cost automata

Cost automaton \mathcal{A}
classical automaton + finite set of counters with operations $\top, \cdot, \text{ and } \varepsilon$

Semantics $\llbracket \mathcal{A} \rrbracket : \text{trees} \rightarrow \mathbb{N} \cup \{\infty\}$

$\llbracket \mathcal{A} \rrbracket (t) := \min \{n : \exists \text{ run } \rho \text{ of } \mathcal{A} \text{ on } t \text{ such that }$

$\rho \text{ satisfies the acceptance condition and}$

keeps counters below $n\}$

Theorem

For all $\psi \in \text{GNFP}[\sigma]$, we can construct a 2-way cost automaton \mathcal{A}_ψ such that

ψ is bounded

iff $\exists \ n \in \mathbb{N}$ such that \forall trees t, $\llbracket \mathcal{A}_\psi \rrbracket (t) \leq n$.
Boundedness problem for cost automata

Input: cost automaton \mathcal{B}

Question: is there $n \in \mathbb{N}$ such that for all trees t, $\|\mathcal{B}\|(t) \leq n$?
Boundedness problem for cost automata

Input: cost automaton \mathcal{B}

Question: is there $n \in \mathbb{N}$ such that for all trees t, $\llbracket \mathcal{B} \rrbracket(t) \leq n$?

Decidability of boundedness is not known in general for cost automata over infinite trees...
Boundedness for cost automata

Boundedness problem for cost automata

Input: cost automaton \(\mathcal{B} \)

Question: is there \(n \in \mathbb{N} \) such that for all trees \(t \), \(\left\lfloor \mathcal{B} \right\rfloor(t) \leq n \)?

Decidability of boundedness is not known in general for cost automata over infinite trees...

...but we are interested in special types of cost automata:
1 counter that is only incremented or left unchanged (never reset).

Theorem

For some special types of 2-way cost automata, the boundedness problem is decidable in elementary time.
<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boundedness is decidable in elementary time for answer-guarded GNF and GF.</td>
</tr>
</tbody>
</table>
Summary of results

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boundedness is decidable in elementary time for answer-guarded GNF and GF.</td>
</tr>
</tbody>
</table>

Using unpublished results of Colcombet, this can be improved to **2EXPTIME**, and elementary bound can be extended to answer-guarded GNFP and GFP.
Summary of results

Theorem

Boundedness is decidable in *elementary time* for answer-guarded GNF and GF.

Using unpublished results of Colcombet, this can be improved to 2EXPTIME, and elementary bound can be extended to answer-guarded GNFP and GFP.

This yields elementary time algorithms for:

- deciding boundedness for some Datalog-like languages
Theorem

Boundedness is decidable in **elementary time** for answer-guarded GNF and GF.

Using unpublished results of Colcombet, this can be improved to **2EXPTIME**, and elementary bound can be extended to answer-guarded GNFP and GFP.

This yields elementary time algorithms for:

- deciding boundedness for some Datalog-like languages
- deciding FO-rewritability of $[\text{Lfp}_y, y \cdot \psi](y)$ for ψ in answer-guarded GNF or GF (using [Bárány, ten Cate, Otto ’12])
Summary of results

Theorem

Boundedness is decidable in **elementary time** for answer-guarded GNF and GF.

Using unpublished results of Colcombet, this can be improved to **2EXPTIME**, and elementary bound can be extended to answer-guarded GNFP and GFP.

This yields elementary time algorithms for:

- deciding boundedness for some Datalog-like languages
- deciding FO-rewritability of $[\text{Ifp}_y, y \cdot \psi](y)$ for ψ in answer-guarded GNF or GF (using [Bárány, ten Cate, Otto ’12])
- deciding FO-rewritability of CQs over guarded and frontier-guarded TGDs (using [Bárány, Benedikt, ten Cate ’13])
Boundedness is decidable in **elementary time** for guarded logics.

Contributions

- General translation from GNFP to automata that can be used for satisfiability testing and boundedness questions.
- Finer analysis of complexity of some cost automata constructions.
Syntax of $\text{cGNFP}[\sigma]$

$$
\varphi ::= \cdots \mid [\text{lfp}^N_{Y,y} G(y) \land \varphi(y, Y, Z)](x) \quad \text{for } \varphi \text{ positive in } Y
$$

where lfp^N operators only appear positively in the formula.
Syntax of cGNFP[σ]

φ ::= · · · | [\text{lfp}_N^Y.y.G(y) \land \varphi(y, Y, Z)](x) \quad \text{for } \varphi \text{ positive in } Y

where \text{lfp}_N operations only appear positively in the formula.

Semantics \llbracket \varphi \rrbracket : \sigma\text{-structures } \rightarrow \mathbb{N} \cup \{\infty\}

\llbracket \varphi \rrbracket(\mathcal{A}) := \min \left\{ n \in \mathbb{N} : \mathcal{A} \text{ satisfies } \varphi \text{ when } [\text{lfp}_N^Y.y.\psi] \text{ replaced by } \psi^n \right\}

where \quad \psi^0 := \bot \quad \text{and} \quad \psi^n := \psi[\psi^{n-1}/Y]
Bringing cost capabilities to guarded logics

Syntax of $\text{cGNFP}[\sigma]\n
\[\phi ::= \cdots \mid [\text{lfp}^N_{Y,y}.G(y) \land \phi(y, Y, Z)](x) \quad \text{for } \phi \text{ positive in } Y \]

where lfp^N operators only appear positively in the formula.

Semantics $\llbracket \phi \rrbracket : \sigma$-structures $\rightarrow \mathbb{N} \cup \{\infty\}$

$\llbracket \phi \rrbracket(\mathcal{A}) := \min\{n \in \mathbb{N} : \mathcal{A} \text{ satisfies } \phi \text{ when } [\text{lfp}^N_{Y,y}.\psi] \text{ replaced by } \psi^n\}$

where $\psi^0 := \bot$ and $\psi^n := \psi[\psi^{n-1}/Y]\n
Example

$\phi(y) := [\text{lfp}^N_{Y,y}.S y \lor \exists z(Ryz \land Yz)](y)$

$\llbracket \phi \rrbracket(\mathcal{A}, a) := \text{minimum length of } R\text{-chain to reach } S \text{ from } a$