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Least Bxpoint

Consider ψ(y, Y) positive in Y (of aritym = ∣y∣).

For all structures A, the formula ψ induces amonotone operation

P(Am)⟶ P(Am)
V⟼ ψA(V) ∶= {a ∈ Am ∶ A, a, V ⊧ ψ}

⇒ there is a unique least Bxpoint [lfpY ,y .ψ(y, Y)]A ∶= ⋃
α
ψ
α

A

ψ
0

A ∶= ∅

ψ
α+1

A ∶= ψA(ψαA)
ψ
λ

A ∶= ⋃
α<λ

ψ
α

A

2 / 12



Boundedness problem

Boundedness problem for L

Input: ψ(y, Y) ∈ L positive in Y

Question: is there n ∈ N s.t. for all structures A, ψ
n

A = ψ
n+1

A ?

(i.e. the least Bxpoint is always reached within n iterations)

ψ1(xy, Y) ∶= Rxy ∨ ∃z (Rxz ∧ Yzy) unbounded

[lfpY ,xy .ψ1] ≡ transitive closure of R

ψ2(xy, Y) ∶= Rxy ∨ ∃z (Yzy) bounded

[lfpY ,xy .ψ2](xy) ≡ Rxy ∨ ∃z (Rzy)
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Some prior results

Boundedness is undecidable for

binary predicate in positive

existential FO (i.e. Datalog)

[Hillebrand, Kanellakis,Mairson, Vardi ’95]

monadic predicate in existential FO

with inequalities

[Gaifman,Mairson, Sagiv, Vardi ’87]

monadic predicate in FO
2

[Kolaitis, Otto ’98]

Boundedness is decidable for

monadic predicate in positive

existential FO (i.e. monadic Datalog)

[Cosmadakis, Gaifman, Kanellakis, Vardi ’88]

2EXPTIME

monadic predicate in modal logic

[Otto ’99]

EXPTIME

predicates in

“guarded logics”

[Blumensath, Otto,Weyer ’14]

[Bárány, ten Cate, Otto ’12]

non-elementary upper bound

our contribution:

elementary upper bound

(or better)
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Guarded logics

FOML

GF

GNF

UNF

constrain

quantiBcation

∃x(G(xy) ∧ ψ(xy))
∀x(G(xy) → ψ(xy))

[Andréka, van Benthem,

Németi ’95-’98]

constrain

negation

∃x(ψ(xy))
¬ψ(x)

constrain

negation

∃x(ψ(xy))
G(xy) ∧ ¬ψ(xy)
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[Bárány, ten Cate, SegouBn ’11]

5 / 12



Guarded logics

FO

+

LFP

Lµ

GFP

GNFP

UNFP

constrain

quantiBcation

∃x(G(xy) ∧ ψ(xy))
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Guarded logics

Guarded logics are expressive. For instance, GNFP captures:

mu-calculus, even with backwards modalities;

positive existential FO (i.e. unions of conjunctive queries);

description logics including ALC, ALCHIO, ELI;

monadic Datalog.

Guarded logics have many nice model theoretic properties.

GF, UNF, and GNF have Bnite models.

GFP, UNFP, and GNFP have tree-like models

(models of bounded tree-width).

Guarded logics have nice computational properties.

SatisBability is decidable, and is 2EXPTIME-complete

(even EXPTIME-complete for Bxed-width GFP).
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Boundedness for guarded logics

(We say ψ(x) is answer-guarded if it is of the form G(x) ∧ ψ
′(x).)

Corollary to tree-like model property

For ψ in GFP or answer-guarded GNFP:

ψ is bounded over all structures i> ψ is bounded over tree-like structures.

⇒ amenable to techniques using tree automata

Logic-automata connection utilized in Blumensath et al. ’14

but only yields non-elementary complexity since their proof goes via MSO.

Our strategy: construct automata for boundedness problem directly.
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Cost automata

Cost automaton A

classical automaton + Bnite set of counters with operations i, r, and ε

Semantics [[A]] ∶ trees → N ∪ {∞}

[[A]](t) ∶= min {n ∶ ∃ run ρ of A on t such that

ρ satisBes the acceptance condition and

keeps counters below n}

Theorem

For all ψ ∈ GNFP[σ], we can construct a 2-way cost automaton Aψ such that

ψ is bounded

i> ∃ n ∈ N such that ∀ trees t, [[Aψ]](t) ≤ n.
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Boundedness for cost automata

Boundedness problem for cost automata

Input: cost automaton B

Question: is there n ∈ N such that for all trees t, [[B]](t) ≤ n?

Decidability of boundedness is not known in general for cost automata

over inBnite trees...

...but we are interested in special types of cost automata:

1 counter that is only incremented or left unchanged (never reset).

Theorem

For some special types of 2-way cost automata, the boundedness problem

is decidable in elementary time.
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Summary of results

Theorem

Boundedness is decidable in elementary time for answer-guarded GNF

and GF.

Using unpublished results of Colcombet, this can be improved to 2EXPTIME,

and elementary bound can be extended to answer-guarded GNFP and GFP.

This yields elementary time algorithms for:

deciding boundedness for some Datalog-like languages

deciding FO-rewritability of [lfpY ,y .ψ](y) for ψ in answer-guarded GNF or GF

(using [Bárány, ten Cate, Otto ’12])

deciding FO-rewritability of CQs over guarded and frontier-guarded TGDs

(using [Bárány, Benedikt, ten Cate ’13])
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Conclusion

Boundedness is decidable

in elementary time for guarded logics.

Contributions

General translation from GNFP to automata that can be used for

satisBability testing and boundedness questions.

Finer analysis of complexity of some cost automata constructions.
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Bringing cost capabilities to guarded logics

Syntax of cGNFP[σ]

φ ∶∶= ⋯ ∣ [lfpNY ,y .G(y) ∧ φ(y, Y , Z)](x) for φ positive in Y

where lfp
N

operators only appear positively in the formula.

Semantics [[φ]] ∶ σ-structures → N ∪ {∞}

[[φ]](A) ∶= min {n ∈ N ∶ A satisBes φ when [lfpNY ,y .ψ] replaced by ψ
n}

where ψ
0
∶= ⊥ and ψ

n
∶= ψ[ψn−1/Y]

Example

φ(y) ∶= [lfpNY ,y .Sy ∨ ∃z(Ryz ∧ Yz)](y)
[[φ]](A, a) ∶= minimum length of R-chain to reach S from a
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