Interpolation with decidable fixpoint logics

Michael Benedikt1, Balder ten Cate2, Michael Vanden Boom1

1University of Oxford 2LogicBlox and UC Santa Cruz

LICS 2015
Kyoto, Japan
Some decidable fragments of first-order logic

\[\exists x (G(xy) \land \psi(xy)) \]
\[\forall x (G(xy) \rightarrow \psi(xy)) \]

[Andréka, van Benthem, Németi ’95-’98]
Some decidable fragments of first-order logic

\[\exists x (G(xy) \land \psi(xy)) \]
\[\forall x (G(xy) \rightarrow \psi(xy)) \]

[Andréka, van Benthem, Németi '95-'98]

\[\exists x (\psi(xy)) \]
\[\neg \psi(x) \]

[ten Cate, Segoufin '11]
Some decidable fragments of first-order logic

constrain quantification
\[\exists x (G(xy) \land \psi(xy)) \]
\[\forall x (G(xy) \rightarrow \psi(xy)) \]

[Andréka, van Benthem, Németi ‘95–’98]

constrain negation
\[\exists x (\psi(xy)) \]
\[G(xy) \land \neg \psi(xy) \]

[ten Cate, Segoufin ‘11]
[Barány, ten Cate, Segoufin ‘11]
Some decidable fragments of FO+LFP

- Constrain quantification
 \[\exists x(G(xy) \land \psi(xy)) \]
 \[\forall x(G(xy) \rightarrow \psi(xy)) \]
 [Andréka, van Bentham, Németi ‘95-'98]

- Constrain negation
 \[\exists x(\psi(xy)) \]
 \[G(xy) \land \neg \psi(xy) \]
 [ten Cate, Segoufin ‘11]
 [Bárány, ten Cate, Segoufin ‘11]
Why study guarded logics?

Guarded logics are expressive. For instance, UNFP captures:

- mu-calculus, even with backwards modalities;
- positive existential FO (i.e. unions of conjunctive queries);
- description logics including $\mathcal{ALC}, \mathcal{ALCHIO}, \mathcal{ELI}$;
- monadic Datalog.
Why study guarded logics?

Guarded logics are **expressive**. For instance, UNFP captures:

- mu-calculus, even with backwards modalities;
- positive existential FO (i.e. unions of conjunctive queries);
- description logics including $\mathcal{ALC}, \mathcal{ALCHIO}, \mathcal{ELI}$;
- monadic Datalog.

Guarded logics have many nice model theoretic properties.

- GF, UNF, and GNF have **finite models**.
- GFP, UNFP, and GNFP have **tree-like models** (models of bounded tree-width).
Why study guarded logics?

Guarded logics are **expressive**. For instance, UNFP captures:

- mu-calculus, even with backwards modalities;
- positive existential FO (i.e. unions of conjunctive queries);
- description logics including \(\text{ALC}, \text{ALCHIO}, \text{ELI} \);
- monadic Datalog.

Guarded logics have many nice model theoretic properties.

- GF, UNF, and GNF have **finite models**.
- GFP, UNFP, and GNFP have **tree-like models**
 (models of bounded tree-width).

Some guarded logics have **interpolation**...
\[\phi \models \psi \]
Interpolation

\[\varphi \models \chi \models \psi \]

\[\uparrow \text{interpolant} \]

only uses relations in both \(\varphi \) and \(\psi \)
Interpolation example

\[\exists xyz (T_{xyz} \land R_{xy} \land R_{yz} \land R_{zx}) \models \exists xy (R_{xy} \land (S_x \land S_y) \lor (\neg S_x \land \neg S_y)) \]

“there is a \(T \)-guarded
3-cycle using \(R \)”
Interpolation example

\[\exists xyz(T_{xyz} \land R_{xy} \land R_{yz} \land R_{zx}) \vdash \exists xy(R_{xy} \land ((S_x \land S_y) \lor (\neg S_x \land \neg S_y))) \]

“there is a \(T\)-guarded 3-cycle using \(R\)”
Interpolation example

\[\exists xyz (Txyz \land Rxy \land Ryz \land Rzx) \vdash \exists xy (Rxy \land ((Sx \land Sy) \lor (\neg Sx \land \neg Sy))) \]

“there is a T-guarded 3-cycle using R”
Interpolation example

\[\exists xyz(T_{xyz} \land R_{xy} \land R_{yz} \land R_{zx}) \models \exists xy(R_{xy} \land ((S_x \land S_y) \lor (\neg S_x \land \neg S_y))) \]

“there is a \(T \)-guarded 3-cycle using \(R \)”

interpolant \(\chi \) := \(\exists xyz(R_{xy} \land R_{yz} \land R_{zx}) \)

“there is a 3-cycle using \(R \)”
Why study interpolation?

- Interpolation is a **benchmark** property of ML and L_μ.
Why study interpolation?

- Interpolation is a **benchmark** property of ML and L_μ.

- Interpolation implies several results about going from **semantic properties to syntactic properties** (e.g., Beth definability, preservation theorems, etc.)
Why study interpolation?

- Interpolation is a **benchmark** property of ML and L_μ.

- Interpolation implies several results about going from **semantic properties to syntactic properties** (e.g., Beth definability, preservation theorems, etc.)

- Interpolation is related to **query rewriting** over views.

- Interpolation is related to **modularity** in description logics.
Interpolation results

Very little is known about interpolation for fixpoint logics over general relational structures, where relations can have arbitrary arity.

<table>
<thead>
<tr>
<th></th>
<th>ML</th>
<th>GF</th>
<th>UNF</th>
<th>GNF</th>
<th>L_μ</th>
<th>GFP</th>
<th>UNFP</th>
<th>GNFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Craig interpolation</td>
<td>✔️</td>
<td>X</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Very little is known about interpolation for fixpoint logics over general relational structures, where relations can have arbitrary arity.

<table>
<thead>
<tr>
<th></th>
<th>ML</th>
<th>GF</th>
<th>UNF</th>
<th>GNF</th>
<th>L_μ</th>
<th>GFP</th>
<th>UNFP</th>
<th>GNFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Craig interpolation</td>
<td>✔️</td>
<td>✗</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✗</td>
<td>✔️</td>
<td>✗</td>
</tr>
</tbody>
</table>
Interpolation results

Very little is known about interpolation for fixpoint logics over general relational structures, where relations can have arbitrary arity.

<table>
<thead>
<tr>
<th></th>
<th>ML</th>
<th>GF</th>
<th>UNF</th>
<th>GNF</th>
<th>L_{μ}</th>
<th>GFP</th>
<th>UNFP</th>
<th>GNFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Craig interpolation</td>
<td>✔</td>
<td>✗</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
<td>✔</td>
<td>✗</td>
</tr>
</tbody>
</table>

Contribution: bootstrapping from ML / L_{μ} extended to interpolation
Uniform interpolation

Theorem (D’Agostino, Hollenberg ‘00)

L_μ has effective uniform interpolation.
Uniform interpolation

Theorem (D’Agostino, Hollenberg ‘00)

L_μ has effective uniform interpolation.

A uniform interpolant χ depends only on the antecedent φ and the signature of the consequent (rather than a particular consequent ψ).

*Given φ and a sub-signature σ, there is a formula χ over σ such that for all ψ with $\varphi \models \psi$ and common signature σ, $\varphi \models \chi \models \psi$.***
Theorem (D’Agostino, Hollenberg ’00)

L_μ has effective uniform interpolation.

A **uniform interpolant** χ depends only on the antecedent φ and the signature of the consequent (rather than a particular consequent ψ).

Given φ and a sub-signature σ, there is a formula χ over σ such that for all ψ with $\varphi \models \psi$ and common signature σ, $\varphi \models \chi \models \psi$.

Let UNFPk denote the k-variable fragment of UNFP (in normal form...).

Theorem (Benedikt, ten Cate, VB. ’15)

UNFPk has effective uniform interpolation.

UNFP has effective Craig interpolation.
Uniform interpolation example

“S holds at x, and from every position y where S holds, there is an R-neighbor z where S holds”

$$\varphi(x) := Sx \land \forall y(Sy \rightarrow \exists z(Ryz \land Sz))$$
$$\equiv Sx \land \neg \exists y(Sy \land \neg \exists z(Ryz \land Sz))$$
Uniform interpolation example

“S holds at x, and from every position y where S holds, there is an R-neighbor z where S holds”

$$\varphi(x) := Sx \land \forall y(Sy \rightarrow \exists z(Ryz \land Sz))$$
$$\equiv Sx \land \lnot \exists y(Sy \land \lnot \exists z(Ryz \land Sz))$$

Uniform interpolant of φ over subsignature $\{R\}$

“there is an infinite R-path from x”

$$[\text{gfp}_{Y,y} . \exists z(Ryz \land Yz)](x)$$
$$\equiv \lnot [\text{lfp}_{Y,y} . \lnot \exists z(Ryz \land \lnot Yz)](x)$$
Uniform interpolation for UNFP\(^k\)

Theorem (Benedikt, ten Cate, VB. ’15)

UNFP\(^k\) has effective uniform interpolation.

Proof strategy: Exploit tree-like model property and results from modal world.

([Grädel, Walukiewicz ’99], [Grädel, Hirsch, Otto ’00], [D’Agostino, Hollenberg ’00])
Uniform interpolation for UNFP^k

Theorem (Benedikt, ten Cate, VB. '15)

UNFP^k has effective uniform interpolation.

Proof strategy: Exploit tree-like model property and results from modal world.
Uniform interpolation for UNFPk

Theorem (Benedikt, ten Cate, VB. '15)

UNFPk has effective uniform interpolation.

Proof strategy: Exploit tree-like model property and results from modal world.

\[
\text{Relational structures} \quad \xrightarrow{\text{Coded structures}} \quad \text{(tree decompositions of width } k) \\
\text{UNFP}^k \varphi \quad \rightarrow \quad \mathcal{L}_\mu \hat{\varphi}
\]
Uniform interpolation for UNFP^k

Theorem (Benedikt, ten Cate, VB. ’15)

UNFP^k has effective uniform interpolation.

Proof strategy: Exploit **tree-like model property** and results from modal world.

- **Relational structures**
- **Coded structures**
 - (tree decompositions of width k)

\[
\begin{align*}
\text{UNFP}^k \varphi & \rightarrow L_\mu \hat{\varphi} \\
& \downarrow \text{[D'Agostino, Hollenberg'00]} \\
& L_\mu \hat{\chi} \\
& \text{over subsignature encoding}
\end{align*}
\]
Uniform interpolation for UNFPk

Theorem (Benedikt, ten Cate, VB. ’15)

UNFPk has effective uniform interpolation.

Proof strategy: Exploit tree-like model property and results from modal world.

\[
\begin{align*}
\text{UNFP}^k \varphi & \rightarrow L_\mu \hat{\varphi} \\
\text{UNFP}^k \chi & \leftarrow L_\mu \hat{\chi}
\end{align*}
\]

Relational structures

Coded structures (tree decompositions of width k)

[D’Agostino, Hollenberg’00]
Conclusion

UNFP is an expressive, decidable fixpoint logic with effective interpolation.

<table>
<thead>
<tr>
<th></th>
<th>ML</th>
<th>GF</th>
<th>UNF</th>
<th>GNF</th>
<th>L_μ</th>
<th>GFP</th>
<th>UNFP</th>
<th>GNFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Craig interpolation</td>
<td>✔️</td>
<td>✗</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✗</td>
<td>✔️</td>
<td>✗</td>
</tr>
</tbody>
</table>
Fix a set $K = \{1, \ldots, k\}$ of names for elements. Let $\mathcal{K}_{\sigma,k} := \{\mathcal{C} : \mathcal{C} \text{ is a σ-structure with universe } C \subseteq K \text{ of size at most } k\}$.

A $\mathcal{K}_{\sigma,k}$-tree is an unranked infinite tree with

- arbitrary branching (possibly infinite),
- node labels $\mathcal{C} \in \mathcal{K}_{\sigma,k}$,
- edge labels are partial functions $f : K \to K$ describing relationship between names.
Fix a set $K = \{1, \ldots, k\}$ of names for elements.

Let $\mathcal{K}_{\sigma,k} := \{\mathcal{C} : \mathcal{C} \text{ is a } \sigma\text{-structure with universe } C \subseteq K \text{ of size at most } k\}$.

A $\mathcal{K}_{\sigma,k}$-tree is an unranked infinite tree with

- arbitrary branching (possibly infinite),
- node labels $\mathcal{C} \in \mathcal{K}_{\sigma,k}$,
- edge labels are partial functions $f : K \to K$ describing relationship between names.
Fix a set \(K = \{1, \ldots, k\} \) of names for elements.

Let \(K_{\sigma,k} := \{\mathcal{C} : \mathcal{C} \text{ is a } \sigma\text{-structure with universe } C \subseteq K \text{ of size at most } k\} \).

A \(K_{\sigma,k}\)-tree is an unranked infinite tree with

- arbitrary branching (possibly infinite),
- node labels \(\mathcal{C} \in K_{\sigma,k} \),
- edge labels are partial functions \(f : K \to K \) describing relationship between names.

\(K_{\sigma,k}\)-trees are consistent if neighboring nodes agree on any shared names.