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Some decidable fragments of FO+LFP
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Why study guarded logics?

Guarded logics are expressive. For instance, UNFP captures:
m mu-calculus, even with backwards modalities;
m positive existential FO (i.e. unions of conjunctive queries);
m description logics including ALC, ALCHIO, ELT;

m monadic Datalog.
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m monadic Datalog.

Guarded logics have many nice model theoretic properties.
m GF, UNF, and GNF have finite models.

m GFP, UNFP, and GNFP have tree-like models
(models of bounded tree-width).

Some guarded logics have interpolation...
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Interpolation

interpolant

© F X F ¢

only uses
relations in
both ¢ and ¢
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Interpolation example

Axyz(Txyz A Rxy A Ryz ARzx) E  3xy(Rxy A ((Sx A Sy) v (=5x A =Sy)))

“there is a T-guarded
3-cycle using R”
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Interpolation example

Axyz(Txyz A Rxy A Ryz ARzx) E  3xy(Rxy A ((Sx A Sy) v (=5x A =Sy)))

“there is a T-guarded
3-cycle using R”

interpolant y := Axyz(Rxy A Ryz A Rzx)

“there is a 3-cycle using R”
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Why study interpolation?

m Interpolation is a benchmark property of ML and L.
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Why study interpolation?

m Interpolation is a benchmark property of ML and L.

m Interpolation implies several results about going from
semantic properties to syntactic properties
(e.g., Beth definability, preservation theorems, etc.)

m Interpolation is related to query rewriting over views.

m Interpolation is related to modularity in description logics.
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Interpolation results

Very little is known about interpolation for fixpoint logics
over general relational structures, where relations can have arbitrary arity.

| ML GF UNF GNF | L, GFP UNFP GNFP

XV /I

Craig interpolation
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Interpolation results

Very little is known about interpolation for fixpoint logics
over general relational structures, where relations can have arbitrary arity.

| ML GF UNF GNF | L, GFP UNFP GNFP

VXV VIV X /X

Craig interpolation

Contribution: bootstrapping from ML/ L, extended to interpolation
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Uniform interpolation
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Theorem (D'Agostino, Hollenberg '00)

L, has effective uniform interpolation.

A uniform interpolant y depends only on the antecedent ¢ and the
signature of the consequent (rather than a particular consequent ).

Given ¢ and a sub-signature o,
there is a formula x over o such that
for all ¢ with ¢ & ¢ and common signature o, @ E x E .

Let UNFP¥ denote the k-variable fragment of UNFP (in normal form...).
Theorem (Benedikt, ten Cate, VB. '15)

UNFP has effective uniform interpolation.
UNFP has effective Craig interpolation.
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Uniform interpolation example

“S holds at x, and from every position y where S holds,
there is an R-neighbor z where S holds”

@(x) :=Sx A Yy(Sy > 3z(Ryz A Sz))
= Sx A =3y(Sy A =3z(Ryz A Sz))
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Uniform interpolation example

“S holds at x, and from every position y where S holds,
there is an R-neighbor z where S holds”

@(x) :=Sx A Yy(Sy > 3z(Ryz A Sz))
= Sx A =3y(Sy A =3z(Ryz A Sz))

Uniform interpolant of ¢ over subsignature {R}
“there is an infinite R-path from x”

[9fpy, . 3z(Ryz A Yz)](x)
= —[ifpy, . =3z(Ryz A =Yz)](x)
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Uniform interpolation for UNFP*

Theorem (Benedikt, ten Cate, VB. '15)

UNFP¥ has effective uniform interpolation.

Proof strategy: Exploit tree-like model property and results from modal
world.

([Gradel, Walukiewicz '99], [Gradel, Hirsch, Otto '00], [D’Agostino, Hollenberg ‘00])
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Uniform interpolation for UNFP*

Theorem (Benedikt, ten Cate, VB. '15)

UNFP* has effective uniform interpolation.

Proof strategy: Exploit tree-like model property and results from modal
world.

Coded structures
(tree decompositions of
width k)

Relational
structures

~

UNFPF g —— L, @

J [D'Agostino, Hollenberg'00]

kv ~
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Conclusion

UNFP is an expressive, decidable fixpoint logic
with effective interpolation.

| ML GF UNF GNF | L, GFP UNFP GNFP

VXV I X /X

Craig interpolation
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Encoding structures of tree width k — 1

FixasetK = {1,..., k} of names for elements.

Let K,k := {€ : €is a o-structure with universe C ¢ K of size at most k}.

A K, k-treeisan
unranked infinite tree with

m arbitrary branching
(possibly infinite),

m node labels € € K, 4,

m edge labels are partial
functionsf : K > K
describing relationship
between names.
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Encoding structures of tree width k — 1

FixasetK = {1,..., k} of names for elements.

Let K,k := {€ : €is a o-structure with universe C ¢ K of size at most k}.

A K, k-treeisan
unranked infinite tree with

m arbitrary branching
(possibly infinite),

m node labels € € K, 4,

m edge labels are partial
functionsf : K > K
describing relationship
between names.

Ko k-trees are consistent if
neighboring nodes agree on
any shared names.
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