A step up in expressiveness of decidable fixpoint logics

Michael Benedikt1, Pierre Bourhis2, and Michael Vanden Boom1

1University of Oxford
2CNRS CRIStAL, Université Lille 1, INRIA Lille

LICS 2016
New York, USA
Fixpoint logics can express dynamic, recursive properties.

Example

binary relation R, unary relation P

“from w, it is possible to R-reach some P-element”

$[\text{Reach}-P](w)$
Fixpoint logics can express dynamic, recursive properties.

Example

binary relation R, unary relation P

“from w, it is possible to R-reach some P-element”

$\[\text{lfp}_{y,y} . \exists z (Ryz \land (Pz \lor Yz)) \](w) \]
LFP

LFP: extension of first-order logic with fixpoint formulas \([\text{lfp}_{y,Y}.\psi(y,Y)](w)\) for \(\psi(y,Y)\) positive in \(Y\) (of arity \(m = |y|\)).

For all structures \(\mathcal{A}\), the formula \(\psi\) induces a monotone operation

\[
P(A^m) \longrightarrow P(A^m)
\]

\[
V \longmapsto \psi_{\mathcal{A}}(V) := \{a \in A^m : \mathcal{A}, a, V \models \psi\}
\]

⇒ there is a unique **least fixpoint** \([\text{lfp}_{y,Y}.\psi(y,Y)]_{\mathcal{A}} := \bigcup_a \psi_{\mathcal{A}}^a\)

\[
\psi_{\mathcal{A}}^0 := \emptyset
\]

\[
\psi_{\mathcal{A}}^{a+1} := \psi_{\mathcal{A}}(\psi_{\mathcal{A}}^a)
\]

\[
\psi_{\mathcal{A}}^\lambda := \bigcup_{a<\lambda} \psi_{\mathcal{A}}^a
\]
LFP: extension of first-order logic with fixpoint formulas \([\text{lfp}_{y,y} \cdot \psi(y, Y)](w)\) for \(\psi(y, Y)\) positive in \(Y\) (of arity \(m = |y|\)).

For all structures \(\mathfrak{A}\), the formula \(\psi\) induces a monotone operation

\[
P(A^m) \rightarrow P(A^m)
\]

\[
V \mapsto \psi_{\mathfrak{A}}(V) := \{a \in A^m : \mathfrak{A}, a, V \models \psi\}
\]

⇒ there is a unique least fixpoint \([\text{lfp}_{y,y} \cdot \psi(y, Y)]_{\mathfrak{A}} := \bigcup_a \psi^a_{\mathfrak{A}}\)

\[
\begin{align*}
\psi^0_{\mathfrak{A}} & := \emptyset \\
\psi^{a+1}_{\mathfrak{A}} & := \psi_{\mathfrak{A}}(\psi^a_{\mathfrak{A}}) \\
\psi^\lambda_{\mathfrak{A}} & := \bigcup_{a < \lambda} \psi^a_{\mathfrak{A}}
\end{align*}
\]

Semantics of fixpoint operator: \(\mathfrak{A}, a \models [\text{lfp}_{y,y} \cdot \psi(y, Y)](w)\) iff \(a \in \bigcup_a \psi^a_{\mathfrak{A}}\)
Examples

“from w, it is possible to R-reach some P-element”

$$\left[\text{lfp}_{Y,y} . \exists z (Ryz \land (Pz \lor Yz)) \right](w)$$

$\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}$
Examples

“from \(w \), it is possible to \(R \)-reach some \(P \)-element”

\[
[lfp_{y,y} \cdot \exists z (Ryz \land (Pz \lor Yz))] (w)
\]

\[
\xymatrix{a_1 \ar[r] & a_2 \ar[r] & a_3 \ar[r] & \cdots \ar[r] & a_k \ar[r] & a_{k+1}}
\]

“from \(w \), it is possible to \(R \)-reach \(x \)”, i.e. “\((w, x)\) is in the transitive closure of \(R \)”

\[
[lfp_{y,y} \cdot \exists z (Ryz \land (z = x \lor Yz))] (w)
\]

(Free first-order variable \(x \) in the fixpoint predicate is called a parameter.)
The family of “guarded” fixpoint logics has decidable satisfiability.

Guarded fixpoint logic (GFP): Andréka, van Benthem, Németi ’95-’98; Grädel, Walukiewicz ’99
Unary negation fixpoint logic (UNFP): ten Cate, Segoufin ’11
Guarded negation fixpoint logic (GNFP): Bárány, ten Cate, Segoufin ’11
Guarded negation fixpoint logic (GNFP)

Let \(\sigma \) be a signature of relations and constants.

Syntax of GNFP[\(\sigma \)]

\[
\phi ::= R t \mid Y t \mid \phi \land \phi \mid \phi \lor \phi \mid \exists y(\psi(x)) \mid G(x) \land \neg\psi(x) \mid \\
\left[\text{lfp}_{Y,y} . G(y) \land \phi(y, Y, Z) \right](t) \quad \text{where } Y \text{ only occurs positively in } \phi
\]

where \(R \) and \(G \) are relations in \(\sigma \) or =, and \(t \) is a tuple over variables and constants.
Guarded negation fixpoint logic (GNFP)

Let σ be a signature of relations and constants.

Syntax of GNFP[\sigma]

$$
\varphi ::= R \, t \mid Y \, t \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \exists y (\psi(x)) \mid G(x) \land \neg \psi(x) \mid \\
[\text{lfp}_{Y,y} . G(y) \land \varphi(y, Y, Z)](t) \quad \text{where } Y \text{ only occurs positively in } \varphi
$$

where R and G are relations in σ or $=$, and t is a tuple over variables and constants.

Restrictions on fixpoint operator:

- must define a guarded relation
 (tuples in the fixpoint must be guarded by an atom from σ or $=$)
- cannot use parameters
These guarded fixpoint logics all have the **tree-like model property** (models with tree decompositions of bounded tree-width)

⇒ amenable to **tree automata techniques**
Satisfiability

These guarded fixpoint logics all have the tree-like model property (models with tree decompositions of bounded tree-width)

⇒ amenable to tree automata techniques

Theorem (Grädel, Walukiewicz ’99; Bárány, Segoufin, ten Cate ’11; Bárány, Bojańczyk ’12)

Satisfiability and finite satisfiability are decidable for guarded fixpoint logics (2EXPTIME in general, EXPTIME for fixed-width formulas in GFP).

Idea: Reduce to tree automaton emptiness test.
Examples

In GNFP:

\[\text{lfp}_{Y,y} \cdot \exists z (Ryz \land (Pz \lor Yz)) \](w)
Examples

In GNFP:

$$\left[\text{Ifp}_{y,y} \cdot y = y \land \exists z (Ryz \land (Pz \lor Yz)) \right](w)$$
Examples

In GNFP:

$$[\text{lfp}_{Y,y} \cdot y = y \land \exists z (Ryz \land (Pz \lor Yz))] (w)$$

Not in GNFP:

$$[\text{lfp}_{Y,y} \cdot y = y \land \exists z (Ryz \land (z = x \lor Yz))] (w)$$
Can we go further?

Recall the restrictions on the fixpoint operators in GNFP:

- must define a guarded relation
- cannot use parameters

Which of these restrictions are essential for decidability?
Can we go further?

Recall the restrictions on the fixpoint operators in GNFP:

- must define a guarded relation
- cannot use parameters

Which of these restrictions are essential for decidability?

Answer: only first one!
GNFP^UP: extend GNFP with *unguarded parameters in fixpoint*
GNFPUP

GNFPUP: extend GNFP with unguarded parameters in fixpoint

Syntax of GNFPUP[\sigma]

\[
\varphi ::= R t \mid Y t \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \exists y (\psi (x y)) \mid G (x) \land \neg \psi (x) \mid \\
[\text{Ifp}_{Y, y} . G (y) \land \varphi (x, y, Y, Z)](t) \text{ where } Y \text{ only occurs positively in } \varphi
\]

where \(R \) and \(G \) are relations in \(\sigma \) or \(= \), and \(t \) is a tuple over variables and constants.
GNFP^{UP} : extend GNFP with unguarded parameters in fixpoint

Syntax of GNFP^{UP}[σ]

\[
\varphi ::= R t \mid Y t \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \exists y(\psi(x y)) \mid G(x) \land \neg \psi(x) \mid \\
\left[\text{lfp}_{Y,y} \cdot G(y) \land \varphi(x, y, Y, Z)(t)\right] (t) \quad \text{where } Y \text{ only occurs positively in } \varphi
\]

where \(R \) and \(G \) are relations in \(\sigma \) or \(= \), and \(t \) is a tuple over variables and constants.

Example

GNFP^{UP} can express the transitive closure of a binary relation \(R \) using

\[
\left[\text{lfp}_{Y,y} \cdot \exists z (Ryz \land (z = x \lor Yz))\right](w)
\]
Expressivity of GNFP$^\text{UP}$

$\exists xyz \left(\left[R^* S \right](x, y) \land \left[S \mid R \right](y, z) \land P(z) \right)$

GNFP$^\text{UP}$ also subsumes

C2RPQs (conjunctive 2-way regular path queries)

MQs and GQs [Rudolph, Krötzsch ‘13 ; Bourhis, Krötzsch, Rudolph ‘15]
Satisfiability for GNFP^{Up}

GNFP^{Up} still has tree-like models
\Rightarrow still amenable to tree automata techniques

Unlike other guarded logics, satisfiability testing for $\varphi \in \text{GNFP}^{\text{Up}}$ is non-elementary, with running time

$$2^{2^{f(|\varphi|)}}$$

where the height of the tower depends only on the parameter depth: the number of nested parameter changes in the formula.
Satisfiability for GNFP^{UP}

GNFP^{UP} still has tree-like models
⇒ still amenable to tree automata techniques

Unlike other guarded logics, satisfiability testing for $\varphi \in \text{GNFP}^{\text{UP}}$ is non-elementary, with running time

$$2^{2^{\cdots 2^{f(|\varphi|)}}}$$

where the height of the tower depends only on the parameter depth: the number of nested parameter changes in the formula.

Theorem

Satisfiability is decidable for $\varphi \in \text{GNFP}^{\text{UP}}$ in $(n + 2)$-EXPTIME, where n is the parameter depth of φ.
It is known that satisfiability is undecidable for GFP (even without fixpoints) when certain relations are required to be transitive.

[Grädel ‘99, Ganzinger et al. ‘99]
Skirting undecidability

It is known that satisfiability is undecidable for GFP (even without fixpoints) when certain relations are required to be transitive. [Grädel ‘99, Ganzinger et al. ‘99]

GNFP^{UP} can express the transitive closure of a binary relation R using

$$[\text{Ifp}_{y,y}. \exists z (Ryz \land (z = x \lor Yz))] (w).$$

But it cannot enforce that R is transitive.
FO-definability

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>It is decidable whether $\text{Ifp}_{y,y} . G(y) \land \psi(x, y, Y) \in \text{GNFP}^{\text{UP}}$ can be expressed in FO (when ψ does not use any additional fixpoints).</td>
</tr>
</tbody>
</table>

It is decidable whether a C2RPQ can be expressed in FO.

Idea: Adapt automata for GNFP^{UP}, and reduce to a boundedness question for cost automata (automata with counters).
Conclusion

We can allow unguarded parameters in guarded fixpoint logics.

Contributions

We showed that:

- tree automata techniques can be used to analyze GNFP^UP
- satisfiability is decidable for GNFP^UP, and the key factor impacting the complexity is the parameter depth
- some boundedness and FO-definability problems are decidable for GNFP^UP
Conclusion

We can allow unguarded parameters in guarded fixpoint logics.

Contributions

We showed that:

- tree automata techniques can be used to analyze GNFPUP
- satisfiability is decidable for GNFPUP, and the key factor impacting the complexity is the parameter depth
- some boundedness and FO-definability problems are decidable for GNFPUP

Open question

Is finite satisfiability decidable for GNFPUP?