# Weak Cost Monadic Logic over Infinite Trees 

Michael Vanden Boom

Department of Computer Science
University of Oxford

MFCS 2011
Warsaw

## Cost monadic second-order logic (cost MSO)

## Syntax

First-order logic with second-order quantification over sets

+ new predicates $|X| \leq N$ appearing positively $(N \in \mathbb{N})$


## Example

$$
\begin{aligned}
\operatorname{block}(X):= & \forall x, y \cdot(x \in X \wedge y \in X \wedge x<y) \rightarrow \\
& (\forall Z .(x \in Z \wedge Z \text { closed under successor in } X) \rightarrow y \in Z) \\
\varphi:= & \exists X . \operatorname{block}(X) \wedge a(X) \wedge X \text { surrounded by } b^{\prime} \mathrm{s} \wedge|X| \leq N
\end{aligned}
$$

## Cost monadic second-order logic (cost MSO)

## Syntax

First-order logic with second-order quantification over sets

+ new predicates $|X| \leq N$ appearing positively $(N \in \mathbb{N})$


## Example

$$
\begin{aligned}
\operatorname{block}(X):= & \forall x, y \cdot(x \in X \wedge y \in X \wedge x<y) \rightarrow \\
& (\forall Z .(x \in Z \wedge Z \text { closed under successor in } X) \rightarrow y \in Z) \\
\varphi:= & \exists X . \operatorname{block}(X) \wedge a(X) \wedge X \text { surrounded by } b^{\prime} \mathrm{s} \wedge|X| \leq N
\end{aligned}
$$

## Semantics

$\llbracket \varphi \rrbracket:$ structures $\rightarrow \mathbb{N} \cup\{\infty\}$
$\llbracket \varphi \rrbracket(u):=\min \{n: u$ satisifes $\varphi$ when $N$ takes value $n\}$
By convention: $\min \emptyset=\infty$

## Boundedness relation

$$
\begin{aligned}
& " \llbracket \varphi \rrbracket=n " \quad: \text { decidable } \\
& " \llbracket \varphi \rrbracket=\llbracket \psi \rrbracket ": \text { undecidable [Krob 1994] }
\end{aligned}
$$

## Boundedness relation

$" \llbracket \varphi \rrbracket=n ":$ decidable
$" \llbracket \varphi \rrbracket=\llbracket \psi \rrbracket ":$ undecidable [Krob 1994]
$" \llbracket \varphi \rrbracket \approx \llbracket \psi \rrbracket$ ": for all subsets $U, \llbracket \varphi \rrbracket(U)$ bounded iff $\llbracket \psi \rrbracket(U)$ bounded


## Boundedness relation

$" \llbracket \varphi \rrbracket=n ":$ decidable
$" \llbracket \varphi \rrbracket=\llbracket \psi \rrbracket ":$ undecidable [Krob 1994]
$" \llbracket \varphi \rrbracket \approx \llbracket \psi \rrbracket$ ": for all subsets $U, \llbracket \varphi \rrbracket(U)$ bounded iff $\llbracket \psi \rrbracket(U)$ bounded


$$
\llbracket \varphi \rrbracket \not \approx \llbracket \psi \rrbracket
$$

## Boundedness relation

$" \llbracket \varphi \rrbracket=n ":$ decidable
$" \llbracket \varphi \rrbracket=\llbracket \psi \rrbracket ":$ undecidable [Krob 1994]
$" \llbracket \varphi \rrbracket \approx \llbracket \psi \rrbracket$ ": for all subsets $U, \llbracket \varphi \rrbracket(U)$ bounded iff $\llbracket \psi \rrbracket(U)$ bounded


A cost function is an equivalence class of $\approx$.

## B-automata

Nondeterministic finite-state automaton $\mathcal{A}$

+ finite set of counters
(initialized to 0 , values range over $\mathbb{N}$ )
+ counter operations on transitions (increment $I$, reset R, no change $\varepsilon$ )


## Semantics

$$
\begin{aligned}
& \operatorname{val}(\rho): \\
& \llbracket \mathcal{A} \rrbracket(u):=\min \{\text { val value achieved by any counter during run } \rho \\
&\rho \text { is an accepting run of } \mathcal{A} \text { on } u\}
\end{aligned}
$$

## B-automata

Nondeterministic finite-state automaton $\mathcal{A}$

+ finite set of counters
(initialized to 0 , values range over $\mathbb{N}$ )
+ counter operations on transitions (increment $I$, reset R, no change $\varepsilon$ )


## Semantics

$$
\begin{aligned}
\operatorname{val}(\rho) & :=\max \text { value achieved by any counter during run } \rho \\
\llbracket \mathcal{A} \rrbracket(u) & :=\min \{\operatorname{val}(\rho): \rho \text { is an accepting run of } \mathcal{A} \text { on } u\}
\end{aligned}
$$

## Example

$\llbracket \mathcal{A} \rrbracket(u)=$ min length of block of a's surrounded by b's in $u$


## Theory of regular cost functions over finite words

## Cost MSO

## $B / S$

Automata

$f \approx g$ decidable over finite words<br>[Colcombet '09]

Stabilization
Monoids

## Theory of regular cost functions over finite trees

## Cost MSO

$B / S$ Tree
Automata
$\min , \max , \pi_{\text {inf }}, \pi_{\text {sup }}$


Regular Cost Functions

Expressions
$f \approx g$ decidable
over finite trees
[Colcombet+Löding '10]

Cost Games

## Applications

Many problems for a regular language $L$ can be reduced to deciding $\approx$ :

- Finite power property
[Simon '78, Hashiguchi '79]:
is there some $n$ such that $(L+\epsilon)^{n}=L^{*}$ ?
- Star-height problem
[Hashiguchi '88, Kirsten '05, Colcombet+Löding '08]:
given $n$, is there a regular expression for $L$ with at most $n$ nestings of Kleene star operations?
- Parity-index problem
[reduction in Colcombet+Löding '08, decidability open]:
given $i<j$, is there a parity automaton for $L$ which uses only priorities $\{i, i+1, \ldots, j\}$ ?


## Weak cost monadic logic over infinite trees

Cost WMSO: interpret second-order quantification over finite sets

$$
\llbracket \varphi \rrbracket(t)= \begin{cases}\max a ' s \text { on single branch } & \text { if } t \text { has infinitely many } b ' s \\ \infty & \text { otherwise }\end{cases}
$$

for trees $t$ over finite alphabet $\Sigma=\{a, b, c\}$

$$
\begin{aligned}
\varphi:= & \forall X \cdot \exists x \cdot(\neg(x \in X) \wedge b(x)) \wedge \\
& \forall Z \cdot((\forall z \cdot(z \in Z \rightarrow a(z)) \wedge \text { chain }(Z)) \rightarrow|Z| \leq N) \\
& \text { where chain }(Z) \text { asserts } Z \text { is totally ordered }
\end{aligned}
$$

## Weak automata and games

Alternating parity automaton with priorities $\{1,2\}$ + no cycle in transition function which visits both priorities

Game $(\mathcal{A}, t)$

$\bigcirc$ Eve
$\square$ Adam

## Semantics

A strategy $\sigma$ for Eve is winning if every play in $\sigma$ stabilizes in priority 2 $\mathcal{A}$ accepts $t$ if Eve has a winning strategy from the initial position

## Weak automata and games

Alternating parity automaton with priorities $\{1,2\}$ + no cycle in transition function which visits both priorities

Game $(\mathcal{A}, t)$

$\bigcirc$ Eve
$\square$ Adam

## Semantics

A strategy $\sigma$ for Eve is winning if every play in $\sigma$ stabilizes in priority 2 $\mathcal{A}$ accepts $t$ if Eve has a winning strategy from the initial position

## Weak B-automata and games

Alternating parity automaton with priorities $\{1,2\}$

+ no cycle in transition function which visits both priorities
+ finite set of counters and counter actions I, R, $\varepsilon$ on transitions
Game $(\mathcal{A}, t)$

$\bigcirc$ Eve (min)
$\square$ Adam (max)


## Semantics

$\operatorname{val}(\sigma):=$ max value of any play in strategy $\sigma$
$\llbracket \mathcal{A} \rrbracket(t):=\min \{\operatorname{val}(\sigma): \sigma$ is a winning strategy for Eve in $(\mathcal{A}, t)\}$

## Weak B-automata and games

Alternating parity automaton with priorities $\{1,2\}$

+ no cycle in transition function which visits both priorities
+ finite set of counters and counter actions $I, R, \varepsilon$ on transitions
Game $(\mathcal{A}, t)$

$\bigcirc$ Eve (min)
$\square$ Adam (max)


## Semantics

$\operatorname{val}(\sigma):=$ max value of any play in strategy $\sigma$
$\llbracket \mathcal{A} \rrbracket(t):=\min \{\operatorname{val}(\sigma): \sigma$ is a winning strategy for Eve in $(\mathcal{A}, t)\}$

## Strategies in cost games

Do finite-memory strategies guarantee the same value? no


## Strategies in cost games

Do finite-memory strategies guarantee the same value? no


Do finite-memory strategies guarantee an $\approx$-equivalent value?

- finite-duration $B$-games: yes [Colcombet + Löding '10]
- weak $B$-games and $B$-Büchi games: yes [VB]


## Strategies in cost games

## $\mathcal{G}$ <br> $B$-Büchi game <br> $k$ counters

visit priority 2
infinitely-often and
minimize cost

## Strategies in cost games

## $\mathcal{G}$ <br> $B$-Büchi game $k$ counters

visit priority 2
infinitely-often and
minimize cost

## $\tau$

winning strategy with $\operatorname{val}(\tau) \leq n$


## Strategies in cost games

## $\mathcal{G}$ <br> $B$-Büchi game <br> $k$ counters

visit priority 2
infinitely-often and
minimize cost

## $\tau$

winning strategy with $\operatorname{val}(\tau) \leq n$


## Strategies in cost games

## $\mathcal{G}$ <br> $B$-Büchi game $k$ counters

visit priority 2
infinitely-often and
minimize cost

## $\tau$

winning strategy with $\operatorname{val}(\tau) \leq n$


## Strategies in cost games

$$
\underset{\substack{\text { B-Büchi game } \\ k \text { counters }}}{\boldsymbol{G}}
$$

visit priority 2
infinitely-often and minimize cost

## $\tau$

winning strategy with $\operatorname{val}(\tau) \leq n$

visit priority 2
between $d_{i}$ and $d_{i+1}$ and minimize cost

## Strategies in cost games

$$
\underset{\substack{\text { B-Büchi game } \\ k \text { counters }}}{\mathcal{G}}
$$

visit priority 2
infinitely-often and minimize cost

## $\tau$

winning strategy with $\operatorname{val}(\tau) \leq n$
visit priority 2
between $d_{i}$ and $d_{i+1}$ and minimize cost
$\sigma$
finite-memory winning
strategy with

$$
\operatorname{val}(\sigma) \leq(n+1)^{k}
$$

## Strategies in cost games

$$
\underset{\substack{\text { B-Büchi game } \\ k \text { counters }}}{\boldsymbol{G}}
$$

visit priority 2
infinitely-often and minimize cost

## $\sigma$

finite-memory winning strategy with $\operatorname{val}(\sigma) \leq(n+1)^{k}$

$$
\underset{B \text {-safety game }}{\mathcal{G}_{\tau}}
$$

visit priority 2
between $d_{i}$ and $d_{i+1}$ and minimize cost

## $\sigma$

finite-memory winning
strategy with
$\operatorname{val}(\sigma) \leq(n+1)^{k}$

## Strategies in cost games

Do finite-memory strategies guarantee the same value? no


Do finite-memory strategies guarantee an $\approx$-equivalent value?

- finite-duration $B$-games: yes [Colcombet + Löding '10]
- weak $B$-games and $B$-Büchi games: yes [VB]


## Strategies in cost games

Do finite-memory strategies guarantee the same value? no


Do finite-memory strategies guarantee an $\approx$-equivalent value?

- finite-duration $B$-games: yes [Colcombet + Löding '10]
- weak $B$-games and $B$-Büchi games: yes [VB]

$$
\Downarrow
$$

A weak $B$-automaton $\mathcal{A}$ can be simulated by a nondeterministic $B$-Büchi automaton $\mathcal{B}$ such that $\llbracket \mathcal{A} \rrbracket \approx \llbracket \mathcal{B} \rrbracket$.

- guess a labelling of $t$ with a finite-memory strategy $\sigma$ in $(\mathcal{A}, t)$
- run a $B$-Büchi automaton on each branch which computes the max value of plays from $\sigma$ which stay on that branch


## Theory of weak cost functions [VB]

## Cost WMSO

## $\min , \max , w \cdot \pi_{\text {inf }} / \pi_{\text {sup }}$

## Weak Cost Functions

Nondeterministic
$B / S$-Büchi
Automata

Cost MSO

Weak Cost Games

## Theory of weak cost functions [VB]

## Cost WMSO

## $\min , \max , w \cdot \pi_{\text {inf }} / \pi_{\text {sup }}$

## Weak Cost Functions



Weak Cost Games

## Open Questions

- Is full cost MSO decidable over infinite trees?
- Do finite-memory strategies suffice in B-parity games?


## Logic to automata

$$
\begin{aligned}
\llbracket \varphi(X) \rrbracket(t, V)= & \inf \{n: t
\end{aligned} \begin{aligned}
&\llbracket \mid n / N, V / X \rrbracket\} \\
& \llbracket|X| \leq N \rrbracket(t, V)=|V| \\
& \llbracket \varphi \vee \psi \rrbracket(t)=\min (\llbracket \varphi \rrbracket(t), \llbracket \psi \rrbracket(t)) \\
& \llbracket \varphi \wedge \psi \rrbracket(t)=\max (\llbracket \varphi \rrbracket(t), \llbracket \psi \rrbracket(t)) \\
& \llbracket \exists X \cdot \varphi(X) \rrbracket(t)=\inf \{\llbracket \varphi(X) \rrbracket(t, V): V \text { is finite set }\} \\
& \llbracket \forall X \cdot \varphi(X) \rrbracket(t)=\sup \{\llbracket \varphi(X) \rrbracket(t, V): V \text { is finite set }\}
\end{aligned}
$$

## Logic to automata

$\llbracket \varphi(X) \rrbracket(t, V)=\inf \{n: t \models \varphi[n / N, V / X]\}$

$$
\begin{aligned}
\llbracket|X| \leq N \rrbracket(t, V) & =|V| \\
\llbracket \varphi \vee \psi \rrbracket(t) & =\min (\llbracket \varphi \rrbracket(t), \llbracket \psi \rrbracket(t)) \\
\llbracket \varphi \wedge \psi \rrbracket(t) & =\max (\llbracket \varphi \rrbracket(t), \llbracket \psi \rrbracket(t)) \\
\llbracket \exists X \cdot \varphi(X) \rrbracket(t) & =\inf \{\llbracket \varphi(X) \rrbracket(t, V): V \text { is finite set }\} \\
\llbracket \forall X . \varphi(X) \rrbracket(t) & =\sup \{\llbracket \varphi(X) \rrbracket(t, V): V \text { is finite set }\}
\end{aligned}
$$

## Lemmas

Weak $B$-automata are closed under min, max, weak inf-projection.

## Logic to automata

$\llbracket \varphi(X) \rrbracket(t, V)=\inf \{n: t \vDash \varphi[n / N, V / X]\}$

$$
\begin{aligned}
\llbracket|X| \leq N \rrbracket(t, V) & =|V| \\
\llbracket \varphi \vee \psi \rrbracket(t) & =\min (\llbracket \varphi \rrbracket(t), \llbracket \psi \rrbracket(t)) \\
\llbracket \varphi \wedge \psi \rrbracket(t) & =\max (\llbracket \varphi \rrbracket(t), \llbracket \psi \rrbracket(t)) \\
\llbracket \exists X \cdot \varphi(X) \rrbracket(t) & =\inf \{\llbracket \varphi(X) \rrbracket(t, V): V \text { is finite set }\} \\
\llbracket \forall X . \varphi(X) \rrbracket(t) & =\sup \{\llbracket \varphi(X) \rrbracket(t, V): V \text { is finite set }\}
\end{aligned}
$$

## Lemmas

Weak $B$-automata are closed under min, max, weak inf-projection.
Weak $S$-automata closed under min, max, weak sup-projection.

## Logic to automata

$\llbracket \varphi(X) \rrbracket(t, V)=\inf \{n: t \models \varphi[n / N, V / X]\}$

$$
\begin{aligned}
\llbracket|X| \leq N \rrbracket(t, V) & =|V| \\
\llbracket \varphi \vee \psi \rrbracket(t) & =\min (\llbracket \varphi \rrbracket(t), \llbracket \psi \rrbracket(t)) \\
\llbracket \varphi \wedge \psi \rrbracket(t) & =\max (\llbracket \varphi \rrbracket(t), \llbracket \psi \rrbracket(t)) \\
\llbracket \exists X \cdot \varphi(X) \rrbracket(t) & =\inf \{\llbracket \varphi(X) \rrbracket(t, V): V \text { is finite set }\} \\
\llbracket \forall X . \varphi(X) \rrbracket(t) & =\sup \{\llbracket \varphi(X) \rrbracket(t, V): V \text { is finite set }\}
\end{aligned}
$$

## Lemmas

Weak $B$-automata are closed under min, max, weak inf-projection.
Weak $S$-automata closed under min, max, weak sup-projection.
Weak $B$-automata and weak $S$-automata are effectively equivalent (modulo $\approx$ ) over infinite trees.

