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Cost monadic second-order logic (cost MSO)

Syntax

First-order logic with second-order quantification over sets
+ new predicates | X| < N appearing positively (N € N)

Example

block(X) := Vx,y (x e XAy e XAx<y)—
(VZ.(x € Z AN Z closed under successor in X) — y € Z)

w:=  3X. block(X) A a(X) A X surrounded by b's A | X| < N



Cost monadic second-order logic (cost MSO)

Syntax

First-order logic with second-order quantification over sets
+ new predicates | X| < N appearing positively (N € N)

Example

block(X) := Vx,y (x e XAy e XAx<y)—
(VZ.(x € Z AN Z closed under successor in X) — y € Z)

w:=  3X. block(X) A a(X) A X surrounded by b's A | X| < N

Semantics

[¢] : structures — N U {oo}
[¢](u) :== min{n : u satisifes ¢ when N takes value n}

By convention: min() = co
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Boundedness relation

“l[¢] = n" : decidable
“le]l = [¥]": undecidable [Krob 1994]

“[¢] = [¥]": for all subsets U, [¢](U) bounded iff [¢](U) bounded

structures

A cost function is an equivalence class of ~.



Nondeterministic finite-state automaton A
+ finite set of counters
(initialized to 0, values range over N)
4+ counter operations on transitions
(increment I, reset R, no change ¢)

Semantics
val(p) := max value achieved by any counter during run p

[A](u) := min{val(p) : p is an accepting run of A on u}



Nondeterministic finite-state automaton A
+ finite set of counters
(initialized to 0, values range over N)
4+ counter operations on transitions
(increment I, reset R, no change ¢)

Semantics
val(p) := max value achieved by any counter during run p

[A](u) := min{val(p) : p is an accepting run of A on u}

Example

[A](u) = min length of block of a's surrounded by b's in u

a,b:e a:I a,b:e

b:e g b:e ®




Theory of regular cost functions over finite words

Cost MSO
min, Max, Minf, Tsup

B/S Regular Cost B/S
Automata Functions Expressions

f ~ g decidable
over finite words
[Colcombet '09]
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Theory of regular cost functions over finite trees

Cost MSO
min, Max, Minf, Tsup

B/S Tree Regular Cost B/S
Automata Functions Expressions

f ~ g decidable
over finite trees
[Colcombet+Lading '10]

Cost Games



Applications

Many problems for a regular language L can be reduced to deciding ~:

» Finite power property
[Simon '78, Hashiguchi '79]:

is there some n such that (L + ¢€)" = L*?

» Star-height problem
[Hashiguchi '88, Kirsten '05, Colcombet+Lading '08]:

given n, is there a regular expression for L with at most n
nestings of Kleene star operations?

» Parity-index problem
[reduction in Colcombet+Ldding '08, decidability open]:

given i < j, is there a parity automaton for L which uses only
priorities {i,i +1,...,j}?



Weak cost monadic logic over infinite trees

Cost WMSO: interpret second-order quantification over finite sets

max a's on single branch if t has infinitely many b’'s
[](2) = .
otherwise
for trees t over finite alphabet ¥ = {a, b, ¢}
@ = VX .3x.(-(x € X)Ab(x)) A

VZ.((Vz.(z € Z — a(z)) A chain(Z)) — | Z| < N)

where chain(Z) asserts Z is totally ordered



Weak automata and games

Alternating parity automaton with priorities {1,2}
=+ no cycle in transition function which visits both priorities

Game (A, t)

]
)
]

2
1 O Eve
j 2 [ ] Adam

Semantics

A strategy o for Eve is winning if every play in o stabilizes in priority 2
A accepts t if Eve has a winning strategy from the initial position
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() Eve (min)

[ ] Adam (max)
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Do finite-memory strategies guarantee an ~-equivalent value?

» finite-duration B-games: yes [Colcombet + Loding '10]
» weak B-games and B-Biichi games: vyes [VB]
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Strategies in cost games
g - g7-

B-Biichi game B-safety game
k counters
visit priority 2 visit priority 2
infinitely-often and between d; and d; 1 and

minimize cost minimize cost

o — O
finite-memory winning finite-memory winning
strategy with strategy with
val(o) < (n+ 1)k val(c) < (n+ 1)k
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Strategies in cost games

Do finite-memory strategies guarantee the same value? no
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Do finite-memory strategies guarantee an ~-equivalent value?

» finite-duration B-games: yes [Colcombet + Loding '10]
» weak B-games and B-Biichi games: vyes [VB]

4

A weak B-automaton A can be simulated by a nondeterministic
B-Biichi automaton B such that [A] ~ [B].

» guess a labelling of t with a finite-memory strategy o in (A, t)

» run a B-Biichi automaton on each branch which computes the
max value of plays from o which stay on that branch



Theory of weak cost functions [VB]

Cost WMSO

min, max, W.Tinf / Tsup

Cost MSO

VXE?E@{E Weak Cost
I Functions

Nondeterministic f ~ g decidable
B/S-Biichi over infinite trees

Automata

Weak Cost Games



Theory of weak cost functions [VB]

Cost WMSO

min, max, W.Tinf / Tsup

Weak B/S

Automata Weak Cost
I Functions
Nondeterministic f ~ g decidable
B/S-Biichi over infinite trees
Automata

Weak Cost Games

Open Questions
» |s full cost MSO decidable over infinite trees?

» Do finite-memory strategies suffice in B-parity games?



Logic to automata

[(X)](t, V) = inf{n:t |= o[n/N, V/X]}

[IX] < NJ(t, V) = V]
[ v 9](t) = min([¢](2), [¢](2))
[ A1(8) = max([e] (2), [¢](2))
[3X.o(X)](t) = inf{[(X)](t, V) : V is finite set}
[VX.o(X)](t) = sup{[e(X)](t, V) : V is finite set}
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Logic to automata

[(X)](t, V) = inf{n:t |= o[n/N, V/X]}

[IX] < Nz, V) = |V|
[ v 9](t) = min([¢](2), [¢](2))
[ A1(8) = max([e] (2), [¢](2))
[BX.o(X)](t) = inf{[(X)](t, V) : V is finite set}
[VX.o(X)](t) = sup{[e(X)](t, V) : V is finite set}

Lemmas
Weak B-automata are closed under min, max, weak inf-projection.

Weak S-automata closed under min, max, weak sup-projection.

Weak B-automata and weak S-automata are effectively equivalent
(modulo =) over infinite trees.



