
Weak Cost Monadic Logic
over Infinite Trees

Michael Vanden Boom

Department of Computer Science
University of Oxford

MFCS 2011
Warsaw

Cost monadic second-order logic (cost MSO)

Syntax

First-order logic with second-order quantification over sets
+ new predicates |X | ≤ N appearing positively (N ∈ N)

Example

block(X) := ∀x , y .(x ∈ X ∧ y ∈ X ∧ x < y)→
(∀Z .(x ∈ Z ∧ Z closed under successor in X)→ y ∈ Z)

ϕ := ∃X . block(X) ∧ a(X) ∧ X surrounded by b’s ∧ |X | ≤ N

Cost monadic second-order logic (cost MSO)

Syntax

First-order logic with second-order quantification over sets
+ new predicates |X | ≤ N appearing positively (N ∈ N)

Example

block(X) := ∀x , y .(x ∈ X ∧ y ∈ X ∧ x < y)→
(∀Z .(x ∈ Z ∧ Z closed under successor in X)→ y ∈ Z)

ϕ := ∃X . block(X) ∧ a(X) ∧ X surrounded by b’s ∧ |X | ≤ N

Semantics

JϕK : structures→ N ∪ {∞}
JϕK(u) := min{n : u satisifes ϕ when N takes value n}

By convention: min ∅ =∞

Boundedness relation

“JϕK = n” : decidable
“JϕK = JψK”: undecidable [Krob 1994]

“JϕK ≈ JψK”: for all subsets U, JϕK(U) bounded iff JψK(U) bounded

Boundedness relation

“JϕK = n” : decidable
“JϕK = JψK”: undecidable [Krob 1994]

“JϕK ≈ JψK”: for all subsets U, JϕK(U) bounded iff JψK(U) bounded

JϕK ≈ JψK

Boundedness relation

“JϕK = n” : decidable
“JϕK = JψK”: undecidable [Krob 1994]

“JϕK ≈ JψK”: for all subsets U, JϕK(U) bounded iff JψK(U) bounded

JϕK 6≈ JψK

Boundedness relation

“JϕK = n” : decidable
“JϕK = JψK”: undecidable [Krob 1994]

“JϕK ≈ JψK”: for all subsets U, JϕK(U) bounded iff JψK(U) bounded

A cost function is an equivalence class of ≈.

B-automata

Nondeterministic finite-state automaton A
+ finite set of counters

(initialized to 0, values range over N)
+ counter operations on transitions

(increment I, reset R, no change ε)

Semantics

val(ρ) := max value achieved by any counter during run ρ

JAK(u) := min{val(ρ) : ρ is an accepting run of A on u}

Example

JAK(u) = min length of block of a’s surrounded by b’s in u

a,b:ε

�� b:ε //

a:I

�� b:ε //

a,b:ε

��

OO

B-automata

Nondeterministic finite-state automaton A
+ finite set of counters

(initialized to 0, values range over N)
+ counter operations on transitions

(increment I, reset R, no change ε)

Semantics

val(ρ) := max value achieved by any counter during run ρ

JAK(u) := min{val(ρ) : ρ is an accepting run of A on u}

Example

JAK(u) = min length of block of a’s surrounded by b’s in u

a,b:ε

�� b:ε //

a:I

�� b:ε //

a,b:ε

��

OO

Theory of regular cost functions over finite words

Cost MSO

min,max, πinf , πsup

��

B/S
Automata

Regular Cost
Functions

B/S
Expressions

f ≈ g decidable
over finite words
[Colcombet ’09]

Stabilization
Monoids

Theory of regular cost functions over finite trees

Cost MSO

min,max, πinf , πsup

��

B/S Tree
Automata

Regular Cost
Functions

B/S
Expressions

f ≈ g decidable
over finite trees

[Colcombet+Löding ’10]

Cost Games

Applications

Many problems for a regular language L can be reduced to deciding ≈:

I Finite power property
[Simon ’78, Hashiguchi ’79]:

is there some n such that (L + ε)n = L∗?

I Star-height problem
[Hashiguchi ’88, Kirsten ’05, Colcombet+Löding ’08]:

given n, is there a regular expression for L with at most n
nestings of Kleene star operations?

I Parity-index problem
[reduction in Colcombet+Löding ’08, decidability open]:

given i < j , is there a parity automaton for L which uses only
priorities {i , i + 1, . . . , j}?

Weak cost monadic logic over infinite trees

Cost WMSO: interpret second-order quantification over finite sets

JϕK(t) =

{
max a’s on single branch if t has infinitely many b’s

∞ otherwise

for trees t over finite alphabet Σ = {a, b, c}

ϕ := ∀X .∃x .
(
¬(x ∈ X) ∧ b(x)

)
∧

∀Z .
(
(∀z .(z ∈ Z → a(z)) ∧ chain(Z))→ |Z | ≤ N

)
where chain(Z) asserts Z is totally ordered

Weak automata and games

Alternating parity automaton with priorities {1, 2}
+ no cycle in transition function which visits both priorities

Game (A, t)

2
//

1

��

1
//

2
//

1

��

2
//· · ·

2

77

1

��

2
//

2

��

· · ·

...
...

Eve

Adam

Semantics

A strategy σ for Eve is winning if every play in σ stabilizes in priority 2

A accepts t if Eve has a winning strategy from the initial position

Weak automata and games

Alternating parity automaton with priorities {1, 2}
+ no cycle in transition function which visits both priorities

Game (A, t)

2
+3

1

��

1
//

2
+3

1

��

2
//· · ·

2

77

1

��

2
//

2

��

· · ·

...
...

Eve

Adam

Semantics

A strategy σ for Eve is winning if every play in σ stabilizes in priority 2

A accepts t if Eve has a winning strategy from the initial position

Weak B-automata and games

Alternating parity automaton with priorities {1, 2}
+ no cycle in transition function which visits both priorities
+ finite set of counters and counter actions I, R, ε on transitions

Game (A, t)

I

2
+3

ε 1

��

I

1
// I

2
+3

ε 1

��

ε

2
//· · ·

ε

2

77

ε 1

��

ε

2
//

R 2

��

· · ·

...
...

Eve (min)

Adam (max)

Semantics

val(σ) := max value of any play in strategy σ

JAK(t) := min{val(σ) : σ is a winning strategy for Eve in (A, t)}

Weak B-automata and games

Alternating parity automaton with priorities {1, 2}
+ no cycle in transition function which visits both priorities
+ finite set of counters and counter actions I, R, ε on transitions

Game (A, t)

I

2
+3

ε 1

��

I

1
// I

2
//

ε 1

��

ε

2
//· · ·

ε

2

77

ε 1

��

ε

2
//

R 2

��

· · ·

...
...

Eve (min)

Adam (max)

Semantics

val(σ) := max value of any play in strategy σ

JAK(t) := min{val(σ) : σ is a winning strategy for Eve in (A, t)}

Strategies in cost games

Do finite-memory strategies guarantee the same value? no

// 0
I1
''

I2

77 1
I1
**

I2

44 · · ·
I1
))

I2

55 M // 0
I1
''

I2

77 1
I1
**

I2

44 · · ·
I1
))

I2

55 M //

Strategies in cost games

Do finite-memory strategies guarantee the same value? no

// 0
I1
''

I2

77 1
I1
**

I2

44 · · ·
I1
))

I2

55 M // 0
I1
''

I2

77 1
I1
**

I2

44 · · ·
I1
))

I2

55 M //

Do finite-memory strategies guarantee an ≈-equivalent value?

I finite-duration B-games: yes [Colcombet + Löding ’10]

I weak B-games and B-Büchi games: yes [VB]

Strategies in cost games

G
B-Büchi game
k counters

visit priority 2
infinitely-often and
minimize cost

Strategies in cost games

G
B-Büchi game
k counters

visit priority 2
infinitely-often and
minimize cost

τ
winning strategy with
val(τ) ≤ n

Strategies in cost games

G
B-Büchi game
k counters

visit priority 2
infinitely-often and
minimize cost

τ
winning strategy with
val(τ) ≤ n

Strategies in cost games

G
B-Büchi game
k counters

visit priority 2
infinitely-often and
minimize cost

τ
winning strategy with
val(τ) ≤ n

Strategies in cost games

G → Gτ
B-Büchi game B-safety game
k counters

visit priority 2
infinitely-often and
minimize cost

visit priority 2
between di and di+1 and
minimize cost

τ
winning strategy with
val(τ) ≤ n

Strategies in cost games

G → Gτ
B-Büchi game B-safety game
k counters

visit priority 2
infinitely-often and
minimize cost

visit priority 2
between di and di+1 and
minimize cost

τ σ
winning strategy with
val(τ) ≤ n

finite-memory winning
strategy with
val(σ) ≤ (n + 1)k

Strategies in cost games

G → Gτ
B-Büchi game B-safety game
k counters

visit priority 2
infinitely-often and
minimize cost

visit priority 2
between di and di+1 and
minimize cost

σ ← σ
finite-memory winning
strategy with
val(σ) ≤ (n + 1)k

finite-memory winning
strategy with
val(σ) ≤ (n + 1)k

Strategies in cost games

Do finite-memory strategies guarantee the same value? no

// 0
I1
''

I2

77 1
I1
**

I2

44 · · ·
I1
))

I2

55 M // 0
I1
''

I2

77 1
I1
**

I2

44 · · ·
I1
))

I2

55 M //

Do finite-memory strategies guarantee an ≈-equivalent value?

I finite-duration B-games: yes [Colcombet + Löding ’10]

I weak B-games and B-Büchi games: yes [VB]

Strategies in cost games

Do finite-memory strategies guarantee the same value? no

// 0
I1
''

I2

77 1
I1
**

I2

44 · · ·
I1
))

I2

55 M // 0
I1
''

I2

77 1
I1
**

I2

44 · · ·
I1
))

I2

55 M //

Do finite-memory strategies guarantee an ≈-equivalent value?

I finite-duration B-games: yes [Colcombet + Löding ’10]

I weak B-games and B-Büchi games: yes [VB]

⇓

A weak B-automaton A can be simulated by a nondeterministic
B-Büchi automaton B such that JAK ≈ JBK.

I guess a labelling of t with a finite-memory strategy σ in (A, t)

I run a B-Büchi automaton on each branch which computes the
max value of plays from σ which stay on that branch

Theory of weak cost functions [VB]

Cost WMSO

min,max,w.πinf/πsup

��Weak B/S
Automata
⇓

Weak Cost
Functions

Nondeterministic
B/S-Büchi
Automata

f ≈ g decidable
over infinite trees

Weak Cost Games

Theory of weak cost functions [VB]

Cost WMSO

min,max,w.πinf/πsup

��Weak B/S
Automata
⇓

Weak Cost
Functions

Nondeterministic
B/S-Büchi
Automata

f ≈ g decidable
over infinite trees

Weak Cost Games

Open Questions

I Is full cost MSO decidable over infinite trees?

I Do finite-memory strategies suffice in B-parity games?

Logic to automata

Jϕ(X)K(t,V) = inf{n : t |= ϕ[n/N,V /X]}

J|X | ≤ NK(t,V) = |V |
Jϕ ∨ ψK(t) = min(JϕK(t), JψK(t))

Jϕ ∧ ψK(t) = max(JϕK(t), JψK(t))

J∃X .ϕ(X)K(t) = inf{Jϕ(X)K(t,V) : V is finite set}
J∀X .ϕ(X)K(t) = sup{Jϕ(X)K(t,V) : V is finite set}

Logic to automata

Jϕ(X)K(t,V) = inf{n : t |= ϕ[n/N,V /X]}

J|X | ≤ NK(t,V) = |V |
Jϕ ∨ ψK(t) = min(JϕK(t), JψK(t))

Jϕ ∧ ψK(t) = max(JϕK(t), JψK(t))

J∃X .ϕ(X)K(t) = inf{Jϕ(X)K(t,V) : V is finite set}
J∀X .ϕ(X)K(t) = sup{Jϕ(X)K(t,V) : V is finite set}

Lemmas

Weak B-automata are closed under min, max, weak inf-projection.

Logic to automata

Jϕ(X)K(t,V) = inf{n : t |= ϕ[n/N,V /X]}

J|X | ≤ NK(t,V) = |V |
Jϕ ∨ ψK(t) = min(JϕK(t), JψK(t))

Jϕ ∧ ψK(t) = max(JϕK(t), JψK(t))

J∃X .ϕ(X)K(t) = inf{Jϕ(X)K(t,V) : V is finite set}
J∀X .ϕ(X)K(t) = sup{Jϕ(X)K(t,V) : V is finite set}

Lemmas

Weak B-automata are closed under min, max, weak inf-projection.

Weak S-automata closed under min, max, weak sup-projection.

Logic to automata

Jϕ(X)K(t,V) = inf{n : t |= ϕ[n/N,V /X]}

J|X | ≤ NK(t,V) = |V |
Jϕ ∨ ψK(t) = min(JϕK(t), JψK(t))

Jϕ ∧ ψK(t) = max(JϕK(t), JψK(t))

J∃X .ϕ(X)K(t) = inf{Jϕ(X)K(t,V) : V is finite set}
J∀X .ϕ(X)K(t) = sup{Jϕ(X)K(t,V) : V is finite set}

Lemmas

Weak B-automata are closed under min, max, weak inf-projection.

Weak S-automata closed under min, max, weak sup-projection.

Weak B-automata and weak S-automata are effectively equivalent
(modulo ≈) over infinite trees.

