Fixpoint logics with tree-like models

Michael Vanden Boom

University of Oxford

Oxford Information Systems Seminar
November 2015

Including joint work with
Michael Benedikt, Pierre Bourhis, Balder ten Cate, and Thomas Colcombet

1/18

Fixpoint logics

Fixpoint logics give mechanism to express
dynamic, recursive properties.

Example

binary relation R, unary relation P

“from x, it is possible to R-reach some P-element”

[Reach-P](x) := [fpy,, . 3z(Ryz A (Pz v Yz))](x)

2/18

Least fixpoint
Consider g(y, Y) positive in Y (of arity m = |y|).

For all structures I, the formula ¢ induces a monotone operation
PA") — P(AT)
Vi py(V):={acA" :,a,VE g}

= there is a unique least fixpoint [Ifpy, ,.¥(y, ¥)]a = U, Wy

Yy =@
v = vy
v = v

a<A

3/18

Least fixpoint

Consider g(y, Y) positive in Y (of arity m = |y|).

For all structures I, the formula ¢ induces a monotone operation
PA") — P(AT)
Vi py(V):={acA" :,a,VE g}

= there is a unique least fixpoint [Ifpy, ,.¥(y, ¥)]a = U, Wy

Yy =@
w3 = wa(vd)
v = v
a<A

Semantics of fixpoint operator: 2, a k [ifpy,.¢(y,V)](x) iff ael, Yy

3/18

Some decidable fragments of first-order logic

constrain
quantification

(Gxy) A p(xy))
Vx(Glxy) > w(xy))

[Andréka, van Benthem,

F O Németi '95-'98]

4/18

Some decidable fragments of first-order logic

constrain
quantification

(Gxy) A p(xy))
Vx(Glxy) > w(xy))

[Andréka, van Benthem,

F O Németi '95-'98]

constrain
negation

x(w(xy))
~$(x)

[ten Cate, Segoufin 11]

4/18

Some decidable fragments of first-order logic

constrain
quantification

(Gxy) A p(xy))
Vx(Glxy) > w(xy))

[Andréka, van Benthem,
Németi '95-'98]
constrain

negation

Ix(w(xy))
Glxy) A =(xy)

[ten Cate, Segoufin 11]
[Bérany, ten Cate, Segoufin '11]

4/18

Some decidable fragments of LFP (fixpoint extension of FO)

constrain
quantification

(Gxy) A p(xy))
Vx(Glxy) > w(xy))

[Andréka, van Benthem,
Németi '95-'98]
constrain

negation

Ix(w(xy))
Glxy) A =(xy)

[ten Cate, Segoufin 11]
[Bérany, ten Cate, Segoufin '11]

Guarded fixpoints: tuples in fixpoint are guarded by atom in original signature.
(UNFP has only monadic fixpoints, which are trivially guarded.)

5/18

Guarded negation fixpoint logic (GNFP)

Fix some signature o of relations and constants.

Syntax of GNFP[0]

pu=Rt [Yt | orng [ove | yy) | Gx)A-px) |
[prY,y . G(y) A (p(y, Y, Z)](t) where Y only occurs positively in ¢

where R and G are relations in o or =, and t is a tuple over variables and constants.

6/18

Guarded negation fixpoint logic (GNFP)

Fix some signature o of relations and constants.

Syntax of GNFP[0]

pu=Rt [Yt | orng [ove | yy) | Gx)A-px) |
[prY,y . G(y) A (p(y, Y, Z)](t) where Y only occurs positively in ¢

where R and G are relations in o or =, and t is a tuple over variables and constants.
Examples

m unions of conjunctive queries (in GNF)

m frontier-guarded tgds (in GNF):
Vxyz ((Rxy A Ryz) = 3w(Twyz)) = =3xyz (Rxy A Ryz A —=3Aw(Twyz))

6/18

Guarded negation fixpoint logic (GNFP)

Fix some signature o of relations and constants.
Syntax of GNFP[0]

pu=Rt [Yt | orng [ove | yy) | Gx)A-px) |
[prY,y . G(y) A (p(y, Y, Z)](t) where Y only occurs positively in ¢

where R and G are relations in o or =, and t is a tuple over variables and constants.

Examples
m unions of conjunctive queries (in GNF)

m frontier-guarded tgds (in GNF):
Vxyz ((Rxy A Ryz) = 3w(Twyz)) = =3xyz (Rxy A Ryz A —=3Aw(Twyz))

m description logics including ALC, ALCHIO, ELT (in GNF)

6/18

Guarded negation fixpoint logic (GNFP)

Fix some signature o of relations and constants.

Syntax of GNFP[0]

o =Rt | Yt ore | eve | Iywxy) | Gx)A-p(x) |
[prY,y . G(y) A (p(y, Y, Z)](t) where Y only occurs positively in ¢

where R and G are relations in o or =, and t is a tuple over variables and constants.

Examples
m unions of conjunctive queries (in GNF)

m frontier-guarded tgds (in GNF):
Vxyz ((Rxy A Ryz) = 3w(Twyz)) = =3xyz (Rxy A Ryz A —=3Aw(Twyz))

m description logics including ALC, ALCHIO, ELT (in GNF)

m mu-calculus, even with backwards modalities

6/18

Guarded negation fixpoint logic (GNFP)

Fix some signature o of relations and constants.
Syntax of GNFP[0]

pu=Rt [Yt | orng [ove | yy) | Gx)A-px) |
[prY,y . G(y) A (p(y, Y, Z)](t) where Y only occurs positively in ¢

where R and G are relations in o or =, and t is a tuple over variables and constants.

Examples
m unions of conjunctive queries (in GNF)

m frontier-guarded tgds (in GNF):
Vxyz ((Rxy A Ryz) = 3w(Twyz)) = =3xyz (Rxy A Ryz A —=3Aw(Twyz))

m description logics including ALC, ALCHIO, ELT (in GNF)
m mu-calculus, even with backwards modalities

m monadic Datalog

6/18

GNFP example

[Ifpz,, - Sxy A Juv(Rxu A Ryv A (Zuv v (Pu A Pv)))](xy)

A —— Oy ———5 Q3 coooeevemneeens >ak_)

b1—)b2—)b3 >bk_)

7/18

Some nice computational properties for guarded fixpoint logics

Decidable satisfiability and finite satisfiability

(2EXPTIME in general, EXPTIME for fixed-width formulas in GFP)
[Gradel, Walukiewicz '99 ; Barany, Segoufin, ten Cate '11; Barany, Bojariczyk "12]

8/18

Some nice computational properties for guarded fixpoint logics

Decidable satisfiability and finite satisfiability
(2EXPTIME in general, EXPTIME for fixed-width formulas in GFP)

[Gradel, Walukiewicz '99 ; Barany, Segoufin, ten Cate '11; Barany, Bojariczyk "12]

Decidable boundedness

. . . +1
(given (y, Y) positive in Y, is there n € N such that for all 2, tpgl = (/)g(?7)
[Blumensath, Otto, Weyer "14 ; Barany, ten Cate, Otto 12 ; Benedikt, ten Cate, Colcombet, VB. '15]

8/18

Some nice computational properties for guarded fixpoint logics

Decidable satisfiability and finite satisfiability
(2EXPTIME in general, EXPTIME for fixed-width formulas in GFP)

[Gradel, Walukiewicz '99 ; Barany, Segoufin, ten Cate '11; Barany, Bojariczyk "12]

Decidable boundedness

. . . +1
(given (y, Y) positive in Y, is there n € N such that for all 2, tpgl = (/)g(?7)
[Blumensath, Otto, Weyer "14 ; Barany, ten Cate, Otto 12 ; Benedikt, ten Cate, Colcombet, VB. '15]

Constructive interpolation for UNFP
[Benedikt, ten Cate, VB. '15]

8/18

Why so many nice properties?

These guarded logics all have tree-like models (bounded tree width).

9/18

Why so many nice properties?
These guarded logics all have tree-like models (bounded tree width).

A structure 2 has tree width k — 1if it can
be covered by (overlapping) bags of size
at most k, arranged in a tree t s.t.

m every fact appears in some bag in t;

m for each element, the set of bags with
this element is connected in t.

9/18

Why so many nice properties?
These guarded logics all have tree-like models (bounded tree width).

A structure 2 has tree width k — 1if it can

be covered by (overlapping) bags of size
at most k, arranged in a tree t s.t.

m every fact appears in some bag in t;

m for each element, the set of bags with
this element is connected in t.

There is a natural encoding of these
tree-like models (of some bounded tree
width) as trees over a finite alphabet.

9/18

Why so many nice properties?

These guarded logics all have tree-like models (bounded tree width).

A structure 2 has tree width k — 1if it can

be covered by (overlapping) bags of size
at most k, arranged in a tree t s.t.

m every fact appears in some bag in t;

m for each element, the set of bags with
this element is connected in t.

There is a natural encoding of these
tree-like models (of some bounded tree
width) as trees over a finite alphabet.

= We can reason about tree encodings rather than relational structures.

9/18

® F Y

10/18

Interpolation

interpolant

o FE 6 EFE y

only uses
relations
common to

@and y

10/18

Interpolation

interpolant

o FE 6 EFE y

only uses
relations
common to

@and y

Craig interpolation: 6 depends on ¢ and ¢

10/18

Interpolation

interpolant

o FE 6 EFE y

only uses
relations
common to

@and y

Craig interpolation: 6 depends on ¢ and ¢

Uniform interpolation: 6 depends only on ¢ and common signature
(not on a particular ¢)

10/18

Uniform interpolation example

“P holds at x, and from every position y where P holds,
there is an R-neighbor z where P holds”

@(x) :=Px AVy(Py - 3z(Ryz A Pz))
= Px A =3y(Py A =3z(Ryz A Pz))

11/18

Uniform interpolation example

“P holds at x, and from every position y where P holds,
there is an R-neighbor z where P holds”

@(x) :=Px AVy(Py - 3z(Ryz A Pz))
= Px A =3y(Py A =3z(Ryz A Pz))

Uniform interpolant of ¢ over subsignature {R}
“there is an infinite R-path from x”

=[ifpy, . Vz(Ryz - Yz)](x)
= —[fpy, . ~3z(Ryz A =¥z)](x)

11/18

Why study interpolation?

m Interpolation implies several results about going from
semantic properties to syntactic properties
(e.g., Beth definability, preservation theorems, etc.)

12/18

Why study interpolation?

m Interpolation implies several results about going from
semantic properties to syntactic properties
(e.g., Beth definability, preservation theorems, etc.)

m Interpolation is related to query rewriting over views.

12/18

Why study interpolation?

m Interpolation implies several results about going from
semantic properties to syntactic properties
(e.g., Beth definability, preservation theorems, etc.)

m Interpolation is related to query rewriting over views.

m Interpolation is related to modularity.

12/18

Why study interpolation?

m Interpolation implies several results about going from
semantic properties to syntactic properties
(e.g., Beth definability, preservation theorems, etc.)

m Interpolation is related to query rewriting over views.
m Interpolation is related to modularity.

m Very little was known about interpolation for fixpoint logics over
general relational structures, where relations can have arbitrary arity.

12/18

Interpolation for L, and UNFP

Theorem (D’Agostino, Hollenberg '00)

L, has effective uniform interpolation.

13/18

Interpolation for L, and UNFP

Theorem (D’Agostino, Hollenberg '00)

L, has effective uniform interpolation.

Let UNFP¥ denote the k-variable fragment of UNFP (in normal form...).
Theorem (Benedikt, ten Cate, VB. '15)

UNFP* has effective uniform interpolation.
UNFP has effective Craig interpolation.

13/18

Interpolation for L, and UNFP

Theorem (D’Agostino, Hollenberg '00)

L, has effective uniform interpolation.

Let UNFP¥ denote the k-variable fragment of UNFP (in normal form...).
Theorem (Benedikt, ten Cate, VB. '15)

UNFP* has effective uniform interpolation.
UNFP has effective Craig interpolation.

Proof strategy: Exploit tree-like models and ideas / results from
[Gradel, Walukiewicz '99 ; Gradel, Hirsch, Otto ‘00 ; D'Agostino, Hollenberg '00].

13/18

Uniform interpolation for UNFP*

Theorem (Benedikt, ten Cate, VB. "15)

UNFP* has effective uniform interpolation.

14/18

Uniform interpolation for UNFP*

Theorem (Benedikt, ten Cate, VB. "15)

UNFP* has effective uniform interpolation.

Proof structure:
Relational Encgdlngs of
tree-like models
structures

of width k

UNFPF g —— L, @

14/18

Uniform interpolation for UNFP*

Theorem (Benedikt, ten Cate, VB. "15)

UNFP* has effective uniform interpolation.

Proof structure:
Relational Encgdings of
structures tree-like models
of width k
k -~
UNFP ¢ —— L, @

l [D'Agostino, Hollenberg'00]

L, 8
over subsignature
encoding

14/18

Uniform interpolation for UNFP*

Theorem (Benedikt, ten Cate, VB. "15)

UNFP* has effective uniform interpolation.

Proof structure:
Relational Encgdlngs of
tree-like models
structures

of width k
UNFPF g —— L, @

l [D'Agostino, Hollenberg'00]

k f————————————— a)
UNFP* 6 L, 6
over subsignature over subsignature

encoding

14/18

Summary of interpolation results

UNFP has effective interpolation,
and the construction takes advantage
of its tree-like models.

GF UNF GNF‘ L, GFP UNFP GNFP

VXV /X /X

Craig interpolation

15/18

Can we go further?

16/18

Can we go further?

GNFPY": extend GNFP with parameters in fixpoint
(while retaining restrictions on negation).

16/18

Can we go further?

GNFPY": extend GNFP with parameters in fixpoint
(while retaining restrictions on negation).

“from y, it is possible to R-reach some P-element”

[Reach-P](y) := [Ifpy, . 3z(Ryz A (Pz v YZ))](y)

“from y, it is possible to R-reach x”

[Reach-x](y) := [Ifpy,, . 3z(Ryz A (z = x Vv Yz))](y)

16/18

Can we go further?

GNFPY": extend GNFP with parameters in fixpoint
(while retaining restrictions on negation).

“from y, it is possible to R-reach some P-element”

[Reach-P](y) := [Ifpy, . 3z(Ryz A (Pz v YZ))](y)

“from y, it is possible to R-reach x”

[Reach-x](y) := [Ifpy,, . 3z(Ryz A (z = x Vv Yz))](y)

16/18

Can we go further?

GNFPY": extend GNFP with parameters in fixpoint
(while retaining restrictions on negation).

“from y, it is possible to R-reach some P-element”

[Reach-P](y) := [Ifpy, . 3z(Ryz A (Pz v YZ))](y)

“from y, it is possible to R-reach x”

[Reach-x](y) := [Ifpy,, . 3z(Ryz A (z = x Vv Yz))](y)

Subsumes

C2RPQs (conjunctive 2-way regular path queries) and
MQs and GQs [Rudolph, Krétsch 13 ; Bourhis, Krétsch, Rudolph 15]

16/18

Can we go further?

GNFPY": extend GNFP with parameters in fixpoint
(while retaining restrictions on negation).

“from y, it is possible to R-reach some P-element”

[Reach-P](y) := [Ifpy, . 3z(Ryz A (Pz v YZ))](y)

“from y, it is possible to R-reach x”

[Reach-x](y) := [Ifpy,, . 3z(Ryz A (z = x Vv Yz))](y)

Subsumes

C2RPQs (conjunctive 2-way regular path queries) and
MQs and GQs [Rudolph, Krétsch 13 ; Bourhis, Krétsch, Rudolph 15]

But still has tree-like models!
16/18

GNFPY?

GNFP?: extend GNFP with parameters in fixpoint
(while retaining restrictions on negation).

17/18

GNFPY?

GNFP?: extend GNFP with parameters in fixpoint
(while retaining restrictions on negation).

Theorem (Benedikt, Bourhis, VB. unpublished)

Satisfiability is decidable for ¢ € GNFPY in (n + 2)-EXPTIME,
where n is “nesting depth of UCQ-shaped formulas with parameters” in ¢.

Boundedness is decidable for ¢ € GNFPY".

17/18

GNFPY?

GNFP?: extend GNFP with parameters in fixpoint
(while retaining restrictions on negation).

Theorem (Benedikt, Bourhis, VB. unpublished)

Satisfiability is decidable for @ € GNFPY in (n + 2)-EXPTIME,
where n is “nesting depth of UCQ-shaped formulas with parameters” in ¢.

Boundedness is decidable for ¢ € GNFPY".

Does GNFP' have interpolation?

Is finite satisfiability decidable for GNFPY?

17/18

Conclusion

Guarded fixpoint logics are expressive logics
with nice computational properties
coming from their tree-like models.

18/18

Expressible in GNFP

R is symmetric

Vxy(Rxy — Ryx)
= —3xy(Rxy A =Ryx)

Every element has an R-successor

¥x(3y(Rxy))
= =3x(-3y(Rxy))

Every element is on R-cycle of length 3

Vx3yz(Rxy A Ryz A Rzx)
= =3x(-3Jyz(Rxy A Ryz A Rzx))

Not expressible in GNFP

R is total

Vxy(Rxy V Ryx)
= =3xy(—Rxy A =Ryx)

Every element has a unique R-successor

Vx3Ay(Rxy A Vz(Rxz - y = 2))
= —3dx(-3Jy(Rxy A =3z(Rxz Ay # 2)))

Every element is on R-cycle

Vx[Ifpy,.32(Ryz A (z = x v Yz))](x)
=-3x [pr)f,ry.EIz(Ryz Az =xVYz))](x)

Examples, continued

Expressible in GNFP

R is well-founded:

Vyz(Ryz - [Ifpy,,.Vx(Rxy = Yx)](y))
= —.EIyz(Ryz A =[Ifpy ,.=3Ix(Rxy A —-Yx)](y))

