A step up in expressiveness

of decidable fixpoint logics

Michael Vanden Boom

University of Oxford

Oxford OASIS Seminar
April 2016

Based on joint work with
Michael Benedikt and Pierre Bourhis

1/20



Fixpoint logics

Fixpoint logics can express dynamic, recursive properties.

Example

binary relation R, unary relation P

“from w, it is possible to R-reach some P-element”

[Reach-P](w)
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LFP

LFP: extension of first-order logic with fixpoint formulas [Ifpy ,.¢(y, Y)](w)
for Y(y, Y) positive in Y (of arity m = |y|).

For all structures I, the formula  induces a monotone operation
PA™) — P(A m)
Vi gy(V):={acA” :2,aVE g}

= there is a unique least fixpoint [Ifpy ,.¥(y, ¥)]a = U, Yy

0

Yo =2
vy = pa(vd)
W = U Yo

a<A
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Vi gy(V):={acA” :2,aVE g}

= there is a unique least fixpoint [Ifpy ,.¥(y, ¥)]a = U, Yy

0

Yo =0
vy = YY)
W = U Yo

a<A

Semantics of fixpoint operator: 2, a k [Ifpy,.¢(y,V)](w) iff ael], Yy
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“from w, it is possible to R-reach some P-element”

[fpy, . 3z(Ryz A (Pz Vv YZ))](w)

A —— Ay ———3 (3 - oeeevmeeenns >ak_)
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“from w, it is possible to R-reach some P-element”

[fpy, . 3z(Ryz A (Pz Vv YZ))](w)

A —— Ay ———3 (3 - oeeevmeeenns >ak_)

“from w, it is possible to R-reach x’; i.e. “(w, x) is in the transitive closure of R”

[Hpy, . 3z(Ryz A (z = x v Yz))](w)

(Free first-order variable x in the fixpoint predicate is called a parameter.)
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Some decidable fragments of first-order logic

constrain
quantification

3x(Glxy) A Y(xy))
Vx(G(xy) - p(xy))
[Andréka, van Benthem,

F O Németi '95-'98]
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constrain
negation

x(w(xy))
G(x) A =(x)

[ten Cate, Segoufin 11]
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Guarded negation fragment of first-order logic

Let o be a signature of relations and constants.

Syntax of GNF[o]
e =Rt | Yt onre | ove | Iypixy)) | Gx)A-px)
where R and G are relations in o or =, and t is a tuple over variables and constants.
“There is an R-cycle of length 3"

Axyz(Rxy A Ryz A Rzx)
“Ris symmetric”

Vxy(Rxy = Ryx) = =3xy(Rxy A =Ryx)
“Every element has an R-successor ”

Vx(Jy(Rxy)) = =3x(=3y(Rxy)) = —=3x(x = x A =3y(Rxy))
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Some decidable fragments of LFP (fixpoint extension of FO)

constrain
quantification

3x(Glxy) A Y(xy))
Vx(G(xy) - p(xy))
[Andréka, van Benthem,
Németi '95-'98]
[Gradel, Walukiewicz '99]

constrain
negation

x(w(xy))
G(x) A =(x)

[ten Cate, Segoufin 11]
[Bérany, ten Cate, Segoufin '11]

7/20



Guarded negation fixpoint logic (GNFP)

Let o be a signature of relations and constants.

Syntax of GNFP[ o]

pu=Rt | Yt|ore | ove | Fywixy)) | Gix)A-p(x) |
[prY,y ° G(y) A (p(y, Y, Z)](t) where Y only occurs positively in ¢

where R and G are relations in o or =, and t is a tuple over variables and constants.
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Guarded negation fixpoint logic (GNFP)

Let o be a signature of relations and constants.

Syntax of GNFP[ o]

pu=Rt | Yt|ore | ove | Fywixy)) | Gix)A-p(x) |
[prY,y ° G(y) A (p(y, Y, Z)](t) where Y only occurs positively in ¢

where R and G are relations in o or =, and t is a tuple over variables and constants.

Restrictions on fixpoint operator:

m must define a guarded relation
(tuples in the fixpoint must be guarded by an atom from o)

B cannot use parameters
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In GNFP:

[Pz, - Sxy A 3uv(Rxu A Ryv A (Zuv V (Pu A Pv)))](xy)

o YNy, PN, P >ak_)
b1—)b2—)b3 ................ >bk_)
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In GNFP:

[Pz, - Sxy A 3uv(Rxu A Ryv A (Zuv V (Pu A Pv)))](xy)

o YNy, PN, P >ak_)
b1—)b2—)b3 ................ >bk_)

[ifpy, . 3z(Ryz A (Pz v Yz))](w)

Not in GNFP:

[fpy, . 3z(Ryz A (z = x v Yz))](w)
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Some nice computational properties for guarded fixpoint logics

Decidable satisfiability and finite satisfiability

(2EXPTIME in general, EXPTIME for fixed-width formulas in GFP)
[Gradel, Walukiewicz '99 ; Barany, Segoufin, ten Cate '11; Barany, Bojariczyk "12]
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Some nice computational properties for guarded fixpoint logics

Decidable satisfiability and finite satisfiability
(2EXPTIME in general, EXPTIME for fixed-width formulas in GFP)

[Gradel, Walukiewicz '99 ; Barany, Segoufin, ten Cate '11; Barany, Bojariczyk "12]

Decidable boundedness

. . . +1
(given (y, Y) positive in Y, is there n € N such that for all 2, tpgl = (/)g( ?7)
[Blumensath, Otto, Weyer "14 ; Barany, ten Cate, Otto 12 ; Benedikt, ten Cate, Colcombet, VB. '15]

Constructive interpolation for UNFP
[Benedikt, ten Cate, VB. '15]
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Why so many nice properties?

These guarded logics all have tree-like models (bounded tree width).
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A structure 2 has tree width k — 1if it can
be covered by (overlapping) bags of size
at most k, arranged in a tree t s.t.

m every fact appears in some bag in t;

m for each element, the set of bags with
this element is connected in t.
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Why so many nice properties?

These guarded logics all have tree-like models (bounded tree width).

A structure 2 has tree width k — 1if it can

be covered by (overlapping) bags of size
at most k, arranged in a tree t s.t.

m every fact appears in some bag in t;

m for each element, the set of bags with
this element is connected in t.

There is a natural encoding of these
tree-like models (of some bounded tree
width) as trees over a finite alphabet.

= We can reason about tree encodings rather than relational structures.
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Automata for satisfiability

We can use tree automata to analyze these tree encodings.

GNFP 2-way alternating
parity tree automaton
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Automata for satisfiability

We can use tree automata to analyze these tree encodings.

GNFP 2-way alternating
parity tree automaton

¢ satisfiable? € L(A,) empty?
[Vardi '98]

Theorem (Barany, ten Cate, Segoufin "11)

Satisfiability is decidable for ¢ € GNFP in 2EXPTIME.
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Game for least fixpoint

Game for testing if
A, a F [ifpy,.Gly) A gly, Y)](x).

Initial position y := a.

Game from position y:

m Eve chooses Y such that
AFEG(y) Aly, Y)
(if it is not possible, she loses).
m Adam chooses some new y' € Y \ )

m /

(if it is not possible, he loses).

m Game continues in next round from
position y := y'.

Adam wins if the game continues forever.

13/20



Game for least fixpoint

Game for testing if
A, a F [ifpy,.Gly) A gly, Y)](x).

Initial position y := a.
Game from position y:

m Eve chooses Y such that
AFEG(y) Aly, Y)
(if it is not possible, she loses).

m Adam chooses some new y' € Y
(if it is not possible, he loses).

m Game continues in next round from
position y := y'.

Adam wins if the game continues forever.

13/20



Game for least fixpoint

Game for testing if
A, a F [ifpy,.Gly) A gly, Y)](x).

Initial position y := a.
Game from position y:

m Eve chooses Y such that
AFEG(y) Aly, Y)
(if it is not possible, she loses).

m Adam chooses some new y' € Y
(if it is not possible, he loses).

m Game continues in next round from
position y := y'.

Adam wins if the game continues forever.

13/20



Game for least fixpoint

Game for testing if
A, a F [ifpy,.Gly) A gly, Y)](x).

Initial position y := a.
Game from position y:

m Eve chooses Y such that
AFEG(y) Aly, Y)
(if it is not possible, she loses).

m Adam chooses some new y' € Y )
(if it is not possible, he loses).

m Game continues in next round from
position y := y'.

Adam wins if the game continues forever.

13/20



Game for least fixpoint

Game for testing if
A, a F [ifpy,.Gly) A gly, Y)](x).

Initial position y := a.
Game from position y:

m Eve chooses Y such that
AFEG(y) Aly, Y)
(if it is not possible, she loses).

m Adam chooses some new y' € Y )
(if it is not possible, he loses).

m Game continues in next round from
position y := y'.

Adam wins if the game continues forever.

13/20



Game for least fixpoint

Game for testing if
A, a F [ifpy,.Gly) A gly, Y)](x).

Initial position y := a.
Game from position y:

m Eve chooses Y such that
AFEG(y) Aly, Y)
(if it is not possible, she loses).

m Adam chooses some new y' € Y \
(if it is not possible, he loses).

m Game continues in next round from
position y := y'.

Adam wins if the game continues forever.

Game can be implemented by a 2-way alternating parity tree automaton.
13/20



Can we go further?

Recall the restrictions on the fixpoint operators in GNFP:

m must define a guarded relation
B cannot use parameters

Which of these restrictions are essential for decidability?
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Can we go further?

Recall the restrictions on the fixpoint operators in GNFP:

m must define a guarded relation
B cannot use parameters

Which of these restrictions are essential for decidability?
Answer: only first one!
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GNFP'?

GNFPY": extend GNFP with unguarded parameters in fixpoint
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GNFPY?

GNFPY": extend GNFP with unguarded parameters in fixpoint

Syntax of GNFP'"[0]

¢ =Rt [ Yt org | ove | Fyuky) | Gx)A-wx) |
[|fpy,y o G(y) A (,D(X, y,Y, Z)](t) where Y only occurs positively in ¢

where R and G are relations in o or =, and t is a tuple over variables and constants.
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GNFPY?

GNFPY": extend GNFP with unguarded parameters in fixpoint

Syntax of GNFP'"[0]

¢ =Rt [ Yt org | ove | Fyuky) | Gx)A-wx) |
[|fpy,y o G(y) A (,D(X, y,Y, Z)](t) where Y only occurs positively in ¢

where R and G are relations in o or =, and t is a tuple over variables and constants.

Example

GNFPY? can express the transitive closure of a binary relation R using

[ifpy, . 3z(Ryz A (z = x v Yz))](w)
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Expressivity of GNFP""

GNFPY" also subsumes

C2RPQs (conjunctive 2-way regular path queries)
xyz([R*S1x.y) ALS IRy, 2) A P(2))
MQs and GQs [Rudolph, Krétsch 13 ; Bourhis, Krétsch, Rudolph 15]
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Satisfiability for GNFP""

GNFPY still has tree-like models
= amenable to tree automata techniques

Unlike other guarded logics, satisfiability testing for ¢ € GNFP'" is
non-elementary, with running time

o)

2*

where the polynomial f and the height of the tower depend only on the
parameter depth: the number of nested parameter changes in the formula.
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Satisfiability for GNFPY

GNFPY still has tree-like models
= amenable to tree automata techniques

Unlike other guarded logics, satisfiability testing for ¢ € GNFP'" is
non-elementary, with running time

o)

2*

where the polynomial f and the height of the tower depend only on the
parameter depth: the number of nested parameter changes in the formula.

Theorem (Benedikt, Bourhis, VB. '16)

Satisfiability is decidable for ¢ € GNFPY in (n + 2)-EXPTIME, where n is the
parameter depth of ¢.
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Skirting undecidability

It is known that satisfiability is undecidable for GF when certain relations
are required to be transitive. [Gradel '99, Ganzinger et al. "99]
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Skirting undecidability

It is known that satisfiability is undecidable for GF when certain relations
are required to be transitive. [Gradel '99, Ganzinger et al. "99]

GNFPY" can express the transitive closure of a binary relation R using

[Hpy, . 3z(Ryz A (z = x Vv Yz))](w).

But it cannot enforce that R is transitive.
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Boundedness for GNFP""

Theorem (Benedikt, Bourhis, VB. '16)

The following boundedness problem is decidable:
Instance: G(y) A ¢(x,y, Y) € GNF, positive in Y

Question: is there n € N s.t. for all structures 2, the least fixpoint
[ifpy, . Gly) A @(x,y, Y)]a is always reached within n iterations?
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Boundedness for GNFP""

Theorem (Benedikt, Bourhis, VB. '16)

The following boundedness problem is decidable:
Instance: G(y) A ¢(x,y, Y) € GNF, positive in Y

Question: is there n € N s.t. for all structures 2, the least fixpoint
[ifpy, . Gly) A @(x,y, Y)]a is always reached within n iterations?

= For Y(x, y, Y) € GNF positive in Y, it is decidable whether
[ifpy, - Gly) A ¢(x,y, Y)](w) can be expressed in FO.
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Conclusion

We can allow unguarded parameters
in guarded fixpoint logics while still retaining
nice model theoretic and computational properties.

Theorem (Benedikt, Bourhis, VB. "16)

Satisfiability is decidable for ¢ € GNFPY in (n + 2)-EXPTIME, where n is the
parameter depth of ¢.

Some boundedness problems are decidable for GNFPY".
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Conclusion

We can allow unguarded parameters
in guarded fixpoint logics while still retaining
nice model theoretic and computational properties.

Theorem (Benedikt, Bourhis, VB. “16)

Satisfiability is decidable for ¢ € GNFPY in (n + 2)-EXPTIME, where n is the
parameter depth of ¢.

Some boundedness problems are decidable for GNFPY".

Is finite satisfiability decidable for GNFP'"?

Does GNFPY* have interpolation?
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