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Setting

Infinite labelled tree: model of possible execution of a system where

I branching represents non-determinism in system, or
different possibilities when the environment interacts with the system;

I label describes behavior of the system.
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Setting

Let L(ϕ) denote the set of infinite trees over some fixed finite alphabet A
that satisfy some property ϕ.

Question

Given some property ϕ,
is there a “simpler” ϕ′

such that L(ϕ) = L(ϕ′)?

smaller size,
restricted set of operations,

different specification language,
...
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Let L(ϕ) denote the set of infinite trees over some fixed finite alphabet A
that satisfy some property ϕ.

Question

Given some property ϕ,
is there a “simpler” ϕ′

such that L(ϕ) = L(ϕ′)?

smaller size,
restricted set of operations,

different specification language,
...

Goal: analyze/decide questions like this for regular languages L(ϕ).
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Weakly definable languages are expressive (subsuming CTL), but still have

good computational properties (model-checking can be done in linear time).



Alternating parity automata on infinite trees

A = 〈A,Q, q0, δ,Ω〉

δ describes possible moves
for Eve and Adam

Ω : Q → P
for a finite set of

priorities P

Acceptance game A× t

I Positions in the game are Q × dom(t).

I Eve and Adam select the next position in the play based on δ.

I Eve is trying to ensure the play satisfies the parity condition:
the maximum priority occurring infinitely often in the play is even.

L(A) := {t : Eve has a winning strategy in A× t}
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Example

L1 := {t : there is some a in t with no b below it}.

Construct A1 with Q = {q0, qa, q⊥} and Ω : q0, q⊥ 7→ 1; qa 7→ 2.

I In state q0, Eve selects a path in the tree.
If she sees an a, Eve can choose to switch to state qa.

I In state qa, Adam selects a path in the tree.
If he sees a b, then he can switch to a sink state q⊥.

L2 := {t : every a in t has a b below it}.

Construct A2 with Q = {q0, qb, q>} and Ω : q0, q> 7→ 2; qb 7→ 1.

I In state q0, Adam selects a path in the tree.
If he sees an a, Adam can choose to switch to state qb.

I In state qb, Eve selects a path in the tree.
If she sees a b, then she can switch to a sink state q>.
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parity automaton using only priorities {1, 2}
(we call states of priority 2 the accepting states

and states of priority 1 the non-accepting states)

Nondeterministic Büchi automaton

alternating Büchi automaton such that
a strategy for Eve in an acceptance game
is just a labelling of the input tree with states (called a run)

Alternating weak automaton

alternating Büchi automaton such that
no cycle visits both accepting and non-accepting states
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Büchi automaton

parity automaton using only priorities {1, 2}
(we call states of priority 2 the accepting states

and states of priority 1 the non-accepting states)

Nondeterministic Büchi automaton
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Theorem [Rabin ’70, Kupferman+Vardi ’99]

A language L is weakly definable iff L and L are Büchi definable.



Weak definability problem

Weak definability decision problem

INPUT: parity automaton U
OUTPUT: YES if there exists weak automaton W with L(W) = L(U),

NO otherwise

Theorem [Niwiński+Walukiewicz ’05]

The weak definability problem is decidable if L(U) is deterministic.

Theorem
[Facchini+Murlak+Skrzypczak ’13]

The weak definability problem is
decidable if L(U) is a
game language.

Theorem
[Colcombet,Kuperberg,Löding,VB ’13]

The weak definability problem is
decidable if U is Büchi.
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Cost automata

Finite state automaton A
+ finite set of counters (initialized to 0, values range over N)
+ counter operations on transitions (increment i, reset r, no change ε)

Semantics

JAK : infinite trees→ N ∪ {∞}

JAK(t) := min{n : ∃ winning strategy for Eve in A× t

such that every play has counter values at most n}



Example

f (t) := min {n : every a has a b at most n nodes below it}.

Construct A with Q = {q0, qb, q>}, Ω : q0, q> 7→ 2; qb 7→ 1, 1 counter.

I In state q0, Adam selects a path in the tree.
The counter operation is ε.
If he sees an a, Adam can choose to switch to state qb.

I In state qb, Eve selects a path in the tree.
If she sees an a, then the counter is incremented.
If she sees a b, then she can switch to a sink state q>.



Cost automata

Finite state automaton A
+ finite set of counters (initialized to 0, values range over N)
+ counter operations on transitions (increment i, reset r, no change ε)

Semantics

JAK : infinite trees→ N ∪ {∞}

JAK(t) := min{n : ∃ winning strategy for Eve in A× t

such that every play has counter values at most n}

Boundedness with respect to language K (written JAK ≈ χK )

JAK ≈ χK if there is bound n ∈ N such that JAK(t) ≤ n if t ∈ K and
JAK(t) =∞ if t /∈ K



Decidability of boundedness for cost automata

Decidability of ≈ is known for some types of cost automata.

I cost automata over finite words
[Colcombet ’09, Bojanczyk+Colcombet ’06]

I cost automata over infinite words
[Colcombet unpublished]

I cost automata over finite trees
[Colcombet+Löding ’10]

I counter-weak automata over infinite trees
[Kuperberg+VB ’11]
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Reduction to boundedness

Many problems for a regular language L have been reduced to deciding ≈
for special types of cost automata.

I Finite power property
[Simon ’78, Hashiguchi ’79]

is there some n such that L∗ = {ε} ∪ L1 ∪ L2 ∪ · · · ∪ Ln?

I Star-height problem
[Hashiguchi ’88, Kirsten ’05, Colcombet+Löding ’08]

given n, is there a regular expression for L with at most n
nestings of Kleene star?

I Parity-index problem
[reduction in Colcombet+Löding ’08, decidability open]

given i < j , is there a nondeterministic parity automaton
for L which uses only priorities {i , i + 1, . . . , j}?
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Reduction to boundedness (example)

Finite power property decision problem

INPUT: Finite state automaton A over finite words with L = L(A)
OUTPUT: YES if there is n ∈ N with L∗ = {ε} ∪ L1 ∪ L2 ∪ · · · ∪ Ln,

NO otherwise

A
initial final

A′
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Reduction to boundedness (example)

Finite power property decision problem

INPUT: Finite state automaton A over finite words with L = L(A)
OUTPUT: YES if there is n ∈ N with L∗ = {ε} ∪ L1 ∪ L2 ∪ · · · ∪ Ln,

NO otherwise

A
initial final

A′

Finite power property holds iff JA′K ≈ χL∗



Reduction of weak definability to boundedness
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Given Büchi automaton U , construct cost automaton Q such that
JQK ≈ χL(U) iff L(U) is weakly definable.



Reduction of weak definability to boundedness

weakly definable
weak MSO

alternation-free µ-calculus
weak automata
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Block counting

Given nondeterministic Büchi automata U and V

I fix some tree t and let ρU and ρV be runs of U and V on t,
with accepting states marked with

ρU

ρV r0
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1 2 31 2 31 2 3

I divide each branch in the composed run into blocks containing
accepting state for V followed by accepting state for U

Theorem [Rabin ’70]

If there are at least m = |QU | · |QV |+ 1 blocks on every branch in the
composed run, then L(U) ∩ L(V) 6= ∅.



Block counting

Given nondeterministic Büchi automata U and V
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Weak automaton construction [Kupferman+Vardi ’99]

Given nondeterministic Büchi automata U and V with L(U) = L(V)

Construct weak automaton W such that L(W) = L(V)

I Adam selects transition from ∆U
I Eve selects transition from ∆V and direction

I Accept/reject depending on occurrences of

I Store the block number in the state, up to value m := |QU | · |QV |+ 1

once m blocks have been witnessed, stabilize in rejecting state
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Reduction of weak definability to boundedness

Given nondeterministic Büchi automaton U

Construct cost automaton Q s.t. JQK ≈ χL(U) iff L(U) is weakly definable

I Adam selects transition from ∆U
I Eve selects direction and guesses whether to output

I Accept/reject depending on occurrences of

I Store the block number in the counter

once m blocks have been witnessed, stabilize in rejecting state

Adam ρU

Eve

q0 q1 q2 q3 q4 q5 q6 q7 q8 q9

· · ·

· · ·q0 q1 q2 q4 q7 q8q3 q5 q6 q9
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Decidability of boundedness for cost automata

Decidability of ≈ for cost automata over infinite trees is open in general,
but is known in some special cases.

Theorem [Kuperberg+VB ’11]

The boundedness relation ≈ is decidable for counter-weak cost
automata over infinite trees.

Counter-weak cost automaton

alternating cost-Büchi automaton such that in any cycle with both
accepting and non-accepting states, there is a counter which is
incremented but not reset



Deciding weak definability for Büchi input

Theorem

Given Büchi automaton U , we can construct a counter-weak cost
automaton Q such that the following are equivalent:

I L(U) is weakly definable;

I JQK ≈ χL(U).

↓

Theorem [Kuperberg+VB ’11]

The boundedness relation ≈ is decidable for counter-weak cost automata.

↓

Theorem [Colcombet+Kuperberg+Löding+VB ’13]

Given Büchi automaton U , it is decidable whether L(U) is weakly definable.
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Conclusion

There are many questions related to determining whether there is
“simpler” way to define some regular language.

Cost automata can be used to help prove the decidability of some
definability problems for regular languages of infinite trees.

I The weak definability problem is decidable when the input is a
Büchi automaton.

I The co-Büchi definability problem is decidable when the input is a
parity automaton.

Open questions

Can we use cost automata to solve other questions like this?
(e.g., the nondeterministic parity index problem)

Is ≈ decidable for larger classes of cost automata over infinite trees?



Nondeterministic Mostowski hierarchy
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[1, 3]

[1, k + 1]

[1, k + 2]

Büchico-Büchi

finiteclosed

A language L has index [i , j ] if
there is some nondeterministic par-
ity automaton using priorities from
{i , i + 1, . . . , j} that recognizes L.

Hierarchy is strict over infinite trees
[Niwinski ’86]

Parity index problem
Given a parity automaton A and index
[i , j ], determine whether L(A) has
index at most [i , j ].
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Deciding co-Büchi definability

Theorem [Colcombet+Löding ’08]

Given parity automaton U and index [i , j ], we can construct a cost-parity
automaton B using priorities [i , j ] such that the following are equivalent:

I L(U) has index [i , j ];

I JBK ≈ χL(U).

↓

Theorem [VB ’11]

JBK ≈ χL is decidable for cost-parity automata using priorities {0, 1} and
regular languages L.

↓

Theorem

Given parity automaton U , it is decidable whether L(U) has index [0, 1].
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