Deciding the weak definability of Büchi definable tree languages

Michael Vanden Boom

Department of Computer Science
University of Oxford

Queen Mary
Theory Group Seminar

13 November 2013

Joint work with Thomas Colcombet, Denis Kuperberg, and Christof Löding
Infinite labelled tree: model of possible execution of a system where

- branching represents non-determinism in system, or different possibilities when the environment interacts with the system;
- label describes behavior of the system.
Setting

Let $L(\varphi)$ denote the set of infinite trees over some fixed finite alphabet A that satisfy some property φ.

Question

Given some property φ, is there a “simpler” φ' such that $L(\varphi) = L(\varphi')$?
Let $L(\varphi)$ denote the set of infinite trees over some fixed finite alphabet \mathbb{A} that satisfy some property φ.

Question

Given some property φ, is there a “simpler” φ' such that $L(\varphi) = L(\varphi')$?

- smaller size,
- restricted set of operations,
- different specification language,
- ...
Let $L(\varphi)$ denote the set of infinite trees over some fixed finite alphabet \mathbb{A} that satisfy some property φ.

Question

Given some property φ, is there a “simpler” φ' such that $L(\varphi) = L(\varphi')$?

Goal: analyze/decide questions like this for regular languages $L(\varphi)$.
Regular languages of infinite trees

Regular Languages

monadic second-order logic (MSO)
μ-calculus
parity automata
Regular languages of infinite trees

Regular Languages

- monadic second-order logic (MSO)
- \(\mu \)-calculus
- parity automata

weakly definable

- weak MSO
- alternation-free \(\mu \)-calculus
- weak automata
Weakly definable languages are expressive (subsuming CTL), but still have good computational properties (model-checking can be done in linear time).
Alternating parity automata on infinite trees

$$\mathcal{A} = \langle A, Q, q_0, \delta, \Omega \rangle$$

- δ describes possible moves for Eve and Adam
- $\Omega : Q \rightarrow P$ for a finite set of priorities P

Acceptance game $\mathcal{A} \times t$

- Positions in the game are $Q \times \text{dom}(t)$.
- Eve and Adam select the next position in the play based on δ.
- Eve is trying to ensure the play satisfies the **parity condition**: the maximum priority occurring infinitely often in the play is even.
Alternating parity automata on infinite trees

\[\mathcal{A} = \langle \mathbb{A}, Q, q_0, \delta, \Omega \rangle \]

- \(\delta \) describes possible moves for Eve and Adam
- \(\Omega : Q \rightarrow P \) for a finite set of priorities \(P \)

Acceptance game \(\mathcal{A} \times t \)

- Positions in the game are \(Q \times \text{dom}(t) \).
- Eve and Adam select the next position in the play based on \(\delta \).
- Eve is trying to ensure the play satisfies the \textbf{parity condition}: the maximum priority occurring infinitely often in the play is even.

\[L(\mathcal{A}) := \{ t : \text{Eve has a winning strategy in } \mathcal{A} \times t \} \]
Example

L₁ := \{ t : there is some a in t with no b below it \}.

Construct \(A₁ \) with \(Q = \{ q₀, qₐ, q⊥ \} \) and \(Ω : q₀, q⊥ \mapsto 1 ; qₐ \mapsto 2 \).

- In state \(q₀ \), Eve selects a path in the tree.
 If she sees an \(a \), Eve can choose to switch to state \(qₐ \).

- In state \(qₐ \), Adam selects a path in the tree.
 If he sees a \(b \), then he can switch to a sink state \(q⊥ \).
Example

$L_1 := \{ t : \text{there is some } a \text{ in } t \text{ with no } b \text{ below it}\}$.

Construct A_1 with $Q = \{q_0, q_a, q_\bot\}$ and $\Omega : q_0, q_\bot \mapsto 1; q_a \mapsto 2$.

- In state q_0, Eve selects a path in the tree.
 - If she sees an a, Eve can choose to switch to state q_a.
- In state q_a, Adam selects a path in the tree.
 - If he sees a b, then he can switch to a sink state q_\bot.

$L_2 := \{ t : \text{every } a \text{ in } t \text{ has a } b \text{ below it}\}$.

Construct A_2 with $Q = \{q_0, q_b, q_T\}$ and $\Omega : q_0, q_T \mapsto 2; q_b \mapsto 1$.

- In state q_0, Adam selects a path in the tree.
 - If he sees an a, Adam can choose to switch to state q_b.
- In state q_b, Eve selects a path in the tree.
 - If she sees a b, then she can switch to a sink state q_T.
Special types of alternating parity automata

Büchi automaton

parity automaton using only priorities \{1, 2\}
(we call states of priority 2 the accepting states
 and states of priority 1 the non-accepting states)
Special types of alternating parity automata

Büchi automaton

parity automaton using only priorities \{1, 2\}
(we call states of **priority 2** the **accepting states**
and states of **priority 1** the **non-accepting states**)

Nondeterministic Büchi automaton

alternating Büchi automaton such that
a strategy for Eve in an acceptance game
is just a labelling of the input tree with states (called a **run**).
Special types of alternating parity automata

Büchi automaton

parity automaton using only priorities \{1, 2\} (we call states of priority 2 the accepting states and states of priority 1 the non-accepting states)

Nondeterministic Büchi automaton

alternating Büchi automaton such that a strategy for Eve in an acceptance game is just a labelling of the input tree with states (called a run)

Alternating weak automaton

alternating Büchi automaton such that no cycle visits both accepting and non-accepting states
Theorem [Rabin ’70, Kupferman+Vardi ’99]

A language L is weakly definable iff L and \overline{L} are Büchi definable.
Weak definability problem

Weak definability decision problem

INPUT: parity automaton \mathcal{U}

OUTPUT: YES if there exists weak automaton \mathcal{W} with $L(\mathcal{W}) = L(\mathcal{U})$, NO otherwise
Weak definability problem

Weak definability decision problem

INPUT: parity automaton \mathcal{U}

OUTPUT: YES if there exists weak automaton \mathcal{W} with $L(\mathcal{W}) = L(\mathcal{U})$,
NO otherwise

Theorem [Niwiński+Walukiewicz ’05]

The weak definability problem is decidable if $L(\mathcal{U})$ is deterministic.
Weak definability problem

Weak definability decision problem

INPUT: parity automaton \mathcal{U}

OUTPUT: YES if there exists weak automaton \mathcal{W} with $L(\mathcal{W}) = L(\mathcal{U})$, NO otherwise

Theorem [Niwiński+Walukiewicz ’05]

The weak definability problem is decidable if $L(\mathcal{U})$ is deterministic.

Theorem [Facchini+Murlak+Skrzypczak ’13]

The weak definability problem is decidable if $L(\mathcal{U})$ is a game language.
Weak definability problem

Weak definability decision problem

INPUT: parity automaton \mathcal{U}

OUTPUT: YES if there exists weak automaton \mathcal{W} with $L(\mathcal{W}) = L(\mathcal{U})$, NO otherwise

Theorem [Niwiński+Walukiewicz ’05]

The weak definability problem is decidable if $L(\mathcal{U})$ is deterministic.

Theorem [Facchini+Murlak+Skrzypczak ’13]

The weak definability problem is decidable if $L(\mathcal{U})$ is a game language.

Theorem [Colcombet,Kuperberg,Löding,VB ’13]

The weak definability problem is decidable if \mathcal{U} is Büchi.
Cost automata

Finite state automaton \(\mathcal{A} \)
+ finite set of counters (initialized to 0, values range over \(\mathbb{N} \))
+ counter operations on transitions (increment \(i \), reset \(r \), no change \(\varepsilon \))

Semantics
\[[\mathcal{A}] : \text{infinite trees} \rightarrow \mathbb{N} \cup \{\infty\} \]
\[[\mathcal{A}](t) := \min\{ n : \exists \text{ winning strategy for Eve in } \mathcal{A} \times t \text{ such that every play has counter values at most } n \} \]
Example

\[f(t) := \min \{ n : \text{every } a \text{ has a } b \text{ at most } n \text{ nodes below it} \}. \]

Construct \(\mathcal{A} \) with \(Q = \{ q_0, q_b, q_T \} \), \(\Omega : q_0, q_T \mapsto 2; q_b \mapsto 1, 1 \) counter.

- In state \(q_0 \), Adam selects a path in the tree. The counter operation is \(\varepsilon \). If he sees an \(a \), Adam can choose to switch to state \(q_b \).
- In state \(q_b \), Eve selects a path in the tree. If she sees an \(a \), then the counter is incremented. If she sees a \(b \), then she can switch to a sink state \(q_T \).
Cost automata

Finite state automaton \mathcal{A}
+ finite set of counters (initialized to 0, values range over \mathbb{N})
+ counter operations on transitions (increment i, reset r, no change ε)

Semantics

\mathcal{A} : infinite trees $\rightarrow \mathbb{N} \cup \{\infty\}$

$\mathcal{A}(t) := \min\{n : \exists$ winning strategy for Eve in $\mathcal{A} \times t$

such that every play has counter values at most $n\}$

Boundedness with respect to language K (written $\mathcal{A} \approx \chi_K$)

$\mathcal{A} \approx \chi_K$ if there is bound $n \in \mathbb{N}$ such that $\mathcal{A}(t) \leq n$ if $t \in K$ and

$\mathcal{A}(t) = \infty$ if $t \notin K$
Decidability of boundedness for cost automata

Decidability of \(\approx \) is known for some types of cost automata.

- cost automata over **finite words**
 [Colcombet '09, Bojanczyk+Colcombet '06]

- cost automata over **infinite words**
 [Colcombet unpublished]

- cost automata over **finite trees**
 [Colcombet+Löding '10]
Decidability of boundedness for cost automata

Decidability of \approx is known for some types of cost automata.

- cost automata over **finite words**
 [Colcombet ’09, Bojanczyk+Colcombet ’06]

- cost automata over **infinite words**
 [Colcombet unpublished]

- cost automata over **finite trees**
 [Colcombet+Löding ’10]

- counter-weak automata over **infinite trees**
 [Kuperberg+VB ’11]
Reduction to boundedness

Many problems for a regular language L have been reduced to deciding \approx for special types of cost automata.

- **Finite power property**
 [Simon ’78, Hashiguchi ’79]

 is there some n such that $L^* = \{\epsilon\} \cup L^1 \cup L^2 \cup \cdots \cup L^n$?

- **Star-height problem**
 [Hashiguchi ’88, Kirsten ’05, Colcombet+Löding ’08]

 given n, is there a regular expression for L with at most n nestings of Kleene star?

- **Parity-index problem**
 [reduction in Colcombet+Löding ’08, decidability open]

 given $i < j$, is there a nondeterministic parity automaton for L which uses only priorities $\{i, i+1, \ldots, j\}$?
Reduction to boundedness

Many problems for a regular language L have been reduced to deciding \approx for special types of cost automata.

- **Finite power property**
 [Simon '78, Hashiguchi '79]
 is there some n such that $L^* = \{\epsilon\} \cup L^1 \cup L^2 \cup \ldots \cup L^n$?

- **Star-height problem**
 [Hashiguchi '88, Kirsten '05, Colcombet+Löding '08]
 given n, is there a regular expression for L with at most n nestings of Kleene star?

- **Parity-index problem**
 [reduction in Colcombet+Löding '08, decidability open]
 given $i < j$, is there a nondeterministic parity automaton for L which uses only priorities $\{i, i + 1, \ldots, j\}$?
Finite power property decision problem

INPUT: Finite state automaton \mathcal{A} over finite words with $L = L(\mathcal{A})$

OUTPUT: YES if there is $n \in \mathbb{N}$ with $L^* = \{\epsilon\} \cup L^1 \cup L^2 \cup \cdots \cup L^n$, NO otherwise

![Diagram of an automaton with initial and final states](image)
Finite power property decision problem

INPUT: Finite state automaton \mathcal{A} over finite words with $L = L(\mathcal{A})$

OUTPUT: YES if there is $n \in \mathbb{N}$ with $L^* = \{\epsilon\} \cup L_1 \cup L_2 \cup \cdots \cup L_n$, NO otherwise
Finite power property decision problem

INPUT: Finite state automaton \(A\) over finite words with \(L = L(A)\)

OUTPUT: YES if there is \(n \in \mathbb{N}\) with \(L^* = \{\varepsilon\} \cup L^1 \cup L^2 \cup \cdots \cup L^n\), NO otherwise

Finite power property holds iff \([A'] \approx \chi_{L^*}\)
Reduction of weak definability to boundedness

Regular Languages
- monadic second-order logic (MSO)
- \(\mu\)-calculus
- parity automata

- Büchi definable
- weakly definable
 - weak MSO
 - alternation-free \(\mu\)-calculus
 - weak automata

- complement is Büchi definable

Goal
Given Büchi automaton \(U\), construct cost automaton \(Q\) such that \(J^Q K \approx \chi(L(U))\) iff \(L(U)\) is weakly definable.
Reduction of weak definability to boundedness

Regular Languages
- monadic second-order logic (MSO)
- μ-calculus
- parity automata

Büchi definable
- weakly definable
- weak MSO
- alternation-free μ-calculus
- weak automata

complement is Büchi definable

Goal

Given Büchi automaton \mathcal{U}, construct cost automaton \mathcal{Q} such that $[\mathcal{Q}] \approx \chi_{L(\mathcal{U})}$ iff $L(\mathcal{U})$ is weakly definable.
Block counting

Given nondeterministic Büchi automata \mathcal{U} and \mathcal{V}

- fix some tree t and let $\rho_\mathcal{U}$ and $\rho_\mathcal{V}$ be runs of \mathcal{U} and \mathcal{V} on t, with accepting states marked with \circleq

 $\rho_\mathcal{U}: q_0 \quad q_1 \quad q_2 \quad q_3 \quad q_4 \quad q_5 \quad q_6 \quad q_7 \quad q_8 \quad q_9 \quad \cdots$

 $\rho_\mathcal{V}: r_0 \quad r_1 \quad r_2 \quad r_3 \quad r_4 \quad r_5 \quad r_6 \quad r_7 \quad r_8 \quad r_9 \quad \cdots$

- divide each branch in the composed run into blocks containing accepting state for \mathcal{V} followed by accepting state for \mathcal{U}

Theorem [Rabin '70]

If there are at least $m = |Q_\mathcal{U}| \cdot |Q_\mathcal{V}| + 1$ blocks on every branch in the composed run, then $L(\mathcal{U}) \cap L(\mathcal{V}) \neq \emptyset$.
Block counting

Given nondeterministic Büchi automata \mathcal{U} and \mathcal{V}

- fix some tree t and let $\rho_\mathcal{U}$ and $\rho_\mathcal{V}$ be runs of \mathcal{U} and \mathcal{V} on t, with accepting states marked with \bigcirc

\[
\begin{array}{ccccccccc}
\rho_\mathcal{U} & q_0 & q_1 & q_2 & q_3 & q_4 & q_5 & q_6 & q_7 & q_8 & q_9 & \cdots \\
\rho_\mathcal{V} & r_0 & r_1 & r_2 & r_3 & r_4 & r_5 & r_6 & r_7 & r_8 & r_9 & \cdots \\
\end{array}
\]

- divide each branch in the composed run into blocks containing accepting state for \mathcal{V} followed by accepting state for \mathcal{U}

Theorem [Rabin '70]
If there are at least $m = |Q_\mathcal{U}| \cdot |Q_\mathcal{V}| + 1$ blocks on every branch in the composed run, then $L(\mathcal{U}) \cap L(\mathcal{V}) \neq \emptyset$.
Block counting

Given nondeterministic Büchi automata \mathcal{U} and \mathcal{V}

- fix some tree t and let $\rho_\mathcal{U}$ and $\rho_\mathcal{V}$ be runs of \mathcal{U} and \mathcal{V} on t, with accepting states marked with \bigcirc

\[
\begin{array}{cccc|c|cccc|c|c|c|c}
\rho_\mathcal{U} & q_0 & q_1 & q_2 & q_3 & q_4 & q_5 & q_6 & q_7 & q_8 & q_9 & \cdots \\
\rho_\mathcal{V} & r_0 & r_1 & r_2 & r_3 & r_4 & r_5 & r_6 & r_7 & r_8 & r_9 & \cdots \\
\hline
1 & & & & & & & & & & & \\
2 & & & & & & & & & & & \\
3 & & & & & & & & & & & \\
\end{array}
\]

- divide each branch in the composed run into **blocks** containing accepting state for \mathcal{V} followed by accepting state for \mathcal{U}

Theorem [Rabin ’70]

If there are at least $m = |Q_\mathcal{U}| \cdot |Q_\mathcal{V}| + 1$ blocks on every branch in the composed run, then $L(\mathcal{U}) \cap L(\mathcal{V}) \neq \emptyset$.
Weak automaton construction [Kupferman+Vardi ’99]

Given nondeterministic Büchi automata \mathcal{U} and \mathcal{V} with $L(\mathcal{U}) = \overline{L(\mathcal{V})}$

Construct weak automaton \mathcal{W} such that $L(\mathcal{W}) = L(\mathcal{V})$

- Adam selects transition from $\Delta \mathcal{U}$
- Eve selects transition from $\Delta \mathcal{V}$ and direction

\[
\begin{align*}
\text{Adam } \rho_\mathcal{U} & \quad q_0 \quad q_1 \quad q_2 \quad q_3 \quad q_4 \quad q_5 \quad q_6 \quad q_7 \quad q_8 \quad q_9 \quad \cdots \\
\text{Eve } \rho_\mathcal{V} & \quad r_0 \quad r_1 \quad r_2 \quad r_3 \quad r_4 \quad r_5 \quad r_6 \quad r_7 \quad r_8 \quad r_9 \quad \cdots
\end{align*}
\]
Given nondeterministic Büchi automata \mathcal{U} and \mathcal{V} with $L(\mathcal{U}) = \overline{L(\mathcal{V})}$

Construct weak automaton \mathcal{W} such that $L(\mathcal{W}) = L(\mathcal{V})$

- Adam selects transition from $\Delta_{\mathcal{U}}$
- Eve selects transition from $\Delta_{\mathcal{V}}$ and direction
- Accept/reject depending on occurrences of \bigcirc

\[\begin{array}{ccccccccccccc}
& & & & q_0 & q_1 & q_2 & q_3 & q_4 & q_5 & q_6 & q_7 & q_8 & q_9 & \cdots \\
Adam \ \rho_{\mathcal{U}} & & & & r_0 & r_1 & r_2 & r_3 & r_4 & r_5 & r_6 & r_7 & r_8 & r_9 & \cdots
\end{array}\]
Weak automaton construction \cite{Kupferman+Vardi '99}

Given nondeterministic Büchi automata \mathcal{U} and \mathcal{V} with $L(\mathcal{U}) = \overline{L(\mathcal{V})}$

Construct weak automaton \mathcal{W} such that $L(\mathcal{W}) = L(\mathcal{V})$

- Adam selects transition from $\Delta_{\mathcal{U}}$
- Eve selects transition from $\Delta_{\mathcal{V}}$ and direction
- Accept/reject depending on occurrences of \bigcirc
- Store the block number in the state, up to value $m := |Q_{\mathcal{U}}| \cdot |Q_{\mathcal{V}}| + 1$
 once m blocks have been witnessed, stabilize in rejecting state

```
Adam $\rho_{\mathcal{U}}$  q_0  q_1  q_2  q_3  q_4  q_5  q_6  q_7  q_8  q_9  \cdots

Eve $\rho_{\mathcal{V}}$  r_0  r_1  r_2  r_3  r_4  r_5  r_6  r_7  r_8  r_9  \cdots
```

1 2 3
Reduction of weak definability to boundedness

Given nondeterministic Büchi automaton \(\mathcal{U} \)

Construct cost automaton \(\mathcal{Q} \) s.t. \([\mathcal{Q}] \approx \chi_{L(\mathcal{U})}\) iff \(L(\mathcal{U})\) is weakly definable

- Adam selects transition from \(\Delta_\mathcal{U} \)
- Eve selects direction and guesses whether to output \(\bigcirc \)
- Accept/reject depending on occurrences of \(\bigcirc \)

\[
\begin{array}{cccccccccc}
\text{Adam} & \rho_\mathcal{U} & q_0 & q_1 & q_2 & q_3 & q_4 & q_5 & q_6 & q_7 & q_8 & q_9 & \cdots \\
\text{Eve} & \bigcirc & \cdots \\
\end{array}
\]
Reduction of weak definability to boundedness

Given nondeterministic Büchi automaton \mathcal{U}

Construct cost automaton \mathcal{Q} s.t. $[\mathcal{Q}] \approx \chi_{L(\mathcal{U})}$ iff $L(\mathcal{U})$ is weakly definable

- Adam selects transition from $\Delta_\mathcal{U}$
- Eve selects direction and guesses whether to output \bigcirc
- Accept/reject depending on occurrences of \bigcirc
- Store the block number in the counter

![Automaton Diagram]
Decidability of boundedness for cost automata

Decidability of \approx for cost automata over infinite trees is open in general, but is known in some special cases.

Theorem [Kuperberg+VB '11]

The boundedness relation \approx is decidable for counter-weak cost automata over infinite trees.

Counter-weak cost automaton

alternating cost-Büchi automaton such that in any cycle with both accepting and non-accepting states, there is a counter which is incremented but not reset.
Deciding weak definability for Büchi input

Theorem

Given Büchi automaton U, we can construct a counter-weak cost automaton Q such that the following are equivalent:

- $L(U)$ is weakly definable;
- $[Q] \approx \chi_{L(U)}$.

Theorem [Kuperberg+VB ’11]

The boundedness relation \approx is decidable for counter-weak cost automata.

Theorem [Colcombet+Kuperberg+Löding+VB ’13]

Given Büchi automaton U, it is decidable whether $L(U)$ is weakly definable.
Regular languages of infinite trees

Regular Languages
- monadic second-order logic (MSO)
- μ-calculus
- parity automata

Büchi definable
- weakly definable
 - weak MSO
 - alternation-free μ-calculus
 - weak automata
- complement is Büchi definable
Conclusion

There are many questions related to determining whether there is “simpler” way to define some regular language.

Cost automata can be used to help prove the decidability of some definability problems for regular languages of infinite trees.

- The **weak definability problem** is decidable when the input is a Büchi automaton.
- The **co-Büchi definability problem** is decidable when the input is a parity automaton.

Open questions

Can we use cost automata to solve other questions like this? (e.g., the nondeterministic parity index problem)

Is \approx decidable for larger classes of cost automata over infinite trees?
A language L has **index** $[i, j]$ if there is some nondeterministic parity automaton using priorities from \(\{i, i+1, \ldots, j\} \) that recognizes L.
A language L has **index** $[i, j]$ if there is some nondeterministic parity automaton using priorities from $\{i, i+1, \ldots, j\}$ that recognizes L.

Hierarchy is **strict** over infinite trees [Niwinski '86]
Nondeterministic Mostowski hierarchy

A language L has **index** $[i, j]$ if there is some nondeterministic parity automaton using priorities from \{\(i, i+1, \ldots, j\}\} that recognizes L.

Hierarchy is **strict** over infinite trees [Niwinski '86]

Parity index problem
Given a parity automaton \mathcal{A} and index $[i, j]$, determine whether $L(\mathcal{A})$ has index at most $[i, j]$.

Deciding co-Büchi definability

Theorem [Colcombet+Löding ’08]

Given parity automaton U and index $[i, j]$, we can construct a cost-parity automaton B using priorities $[i, j]$ such that the following are equivalent:

- $L(U)$ has index $[i, j]$;
- $[B] \approx \chi_{L(U)}$.

Theorem [VB ’11]

$J^B K \approx \chi_{L(U)}$ is decidable for cost-parity automata using priorities $\{0, 1\}$ and regular languages L.

Theorem

Given parity automaton U, it is decidable whether $L(U)$ has index $[0, 1]$.
Deciding co-Büchi definability

Theorem [Colcombet+Löding ’08]

Given parity automaton U and index $[i, j]$, we can construct a cost-parity automaton B using priorities $[i, j]$ such that the following are equivalent:

- $L(U)$ has index $[i, j]$;
- $\lfloor B \rfloor \approx \chi_{L(U)}$.

Theorem [VB ’11]

$\lfloor B \rfloor \approx \chi_{L}$ is decidable for cost-parity automata using priorities $\{0, 1\}$ and regular languages L.

Theorem

Given parity automaton U, it is decidable whether $L(U)$ has index $[0, 1]$.