

## CHAPTER 12: MAKING GROUP DECISIONS

### An Introduction to Multiagent Systems

<http://www.csc.liv.ac.uk/~mjw/pubs/imas/>

#### Social Choice

- *Social choice theory* is concerned with *group decision making*.
- Classic example of social choice theory: *voting*.
- Formally, the issue is *combining preferences* to derive a *social outcome*.

## Components of a Social Choice Model

- Assume a set  $Ag = \{1, \dots, n\}$  of **voters**.  
These are the entities who will be expressing preferences.
- Voters make group decisions wrt a set  $\Omega = \{\omega_1, \omega_2, \dots\}$  of **outcomes**.  
Think of these as the **candidates**.
- If  $|\Omega| = 2$ , we have a **pairwise election**.

## Preferences

- Each voter has preferences over  $\Omega$ : an **ordering** over the set of possible outcomes  $\Omega$ .
- Example. Suppose

$$\Omega = \{gin, rum, brandy, whisky\}$$

then we might have agent  $mjw$  with preference order:

$$\varpi_{mjw} = (brandy, rum, gin, whisky)$$

meaning

$$brandy \succ_{mjw} rum \succ_{mjw} gin \succ_{mjw} whisky$$

## Preference Aggregation

The fundamental problem of social choice theory:

*given a collection of preference orders, one for each voter, how do we combine these to derive a group decision, that reflects as closely as possible the preferences of voters?*

Two variants of preference aggregation:

- *social welfare functions*;
- *social choice functions*.

## Social Welfare Functions

- Let  $\Pi(\Omega)$  be the set of preference orderings over  $\Omega$ .
- A *social welfare function* takes the voter preferences and produces a *social preference order*.

$$f : \underbrace{\Pi(\Omega) \times \cdots \times \Pi(\Omega)}_{n \text{ times}} \rightarrow \Pi(\Omega).$$

- We let  $\succ^*$  denote the outcome of a social welfare function
- Example: beauty contest.

## Social Choice Functions

- Sometimes, we just one to select *one* of the possible candidates, rather than a social order.
- This gives *social choice functions*:

$$f : \underbrace{\Pi(\Omega) \times \cdots \times \Pi(\Omega)}_{n \text{ times}} \rightarrow \Omega.$$

- Example: presidential election.

## Voting Procedures: Plurality

- Social choice function: selects a single outcome.
- Each voter submits preferences.
- Each candidate gets one point for every preference order that ranks them first.
- Winner is the one with largest number of points.
- Example: Political elections in UK.
- If we have only two candidates, then plurality is a *simple majority election*.

## Anomalies with Plurality

- Suppose  $|Ag| = 100$  and  $\Omega = \{\omega_1, \omega_2, \omega_3\}$  with:
  - 40% voters voting for  $\omega_1$
  - 30% of voters voting for  $\omega_2$
  - 30% of voters voting for  $\omega_3$
- With plurality,  $\omega_1$  gets elected even though a *clear majority* (60%) prefer another candidate!

## Strategic Manipulation by Tactical Voting

- Suppose your preferences are

$$\omega_1 \succ_i \omega_2 \succ_i \omega_3$$

while you believe 49% of voters have preferences

$$\omega_2 \succ_i \omega_1 \succ_i \omega_3$$

and you believe 49% have preferences

$$\omega_3 \succ_i \omega_2 \succ_i \omega_1$$

- You may do better voting for  $\omega_2$ , *even though this is not your true preference profile*.
- This is *tactical voting*: an example of *strategic manipulation* of the vote.

## Condorcet's Paradox

- Suppose  $Ag = \{1, 2, 3\}$  and  $\Omega = \{\omega_1, \omega_2, \omega_3\}$  with:

$$\omega_1 \succ_1 \omega_2 \succ_1 \omega_3$$

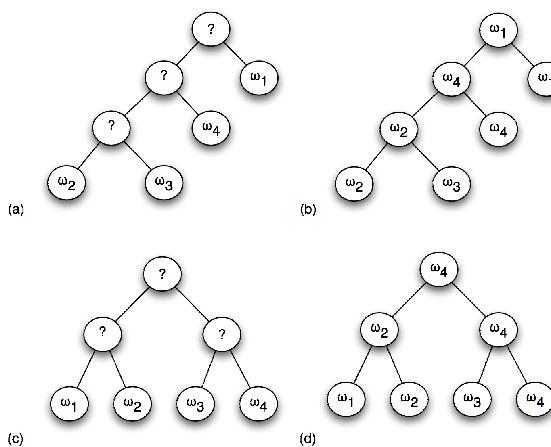
$$\omega_3 \succ_2 \omega_1 \succ_2 \omega_2$$

$$\omega_2 \succ_3 \omega_3 \succ_3 \omega_1$$

- For every possible candidate, there is another candidate that is preferred by a majority of voters!
- This is *Condorcet's paradox*: there are situations in which, *no matter which outcome we choose, a majority of voters will be unhappy with the outcome chosen*.

## Sequential Majority Elections

A variant of plurality, in which players play in a series of rounds: either a *linear* sequence or a *tree* (knockout tournament).



## Linear Sequential Pairwise Elections

- Here, we pick an ordering of the outcomes – the **agenda** – which determines who plays against who.
- For example, if the agenda is:

$$\omega_2, \omega_3, \omega_4, \omega_1.$$

then the first election is between  $\omega_2$  and  $\omega_3$ , and the winner goes on to an election with  $\omega_4$ , and the winner of this election goes in an election with  $\omega_1$ .

## Anomalies with Sequential Pairwise Elections

Suppose:

- 33 voters have preferences

$$\omega_1 \succ_i \omega_2 \succ_i \omega_3$$

- 33 voters have preferences

$$\omega_3 \succ_i \omega_1 \succ_i \omega_2$$

- 33 voters have preferences

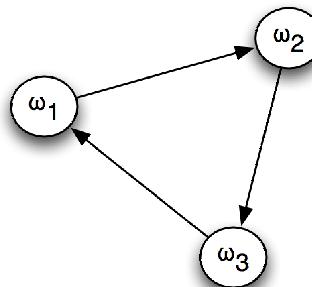
$$\omega_2 \succ_i \omega_3 \succ_i \omega_1$$

Then **for every candidate, we can fix an agenda for that candidate to win in a sequential pairwise election!**

## Majority Graphs

- This idea is easiest to illustrate by using a *majority graph*.
- A directed graph with:
  - vertices = candidates
  - an edge  $(i, j)$  if  $i$  would beat  $j$  is a simple majority election.
- A *compact representation of voter preferences*.

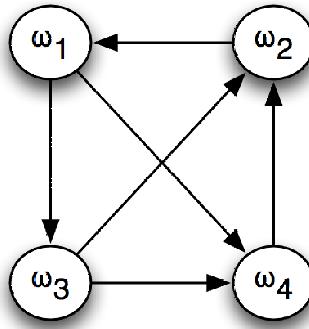
## Majority Graph for the Previous Example



with agenda  $(\omega_3, \omega_2, \omega_1)$ ,  $\omega_1$  wins  
with agenda  $(\omega_1, \omega_3, \omega_2)$ ,  $\omega_2$  wins  
with agenda  $(\omega_1, \omega_2, \omega_3)$ ,  $\omega_3$  wins

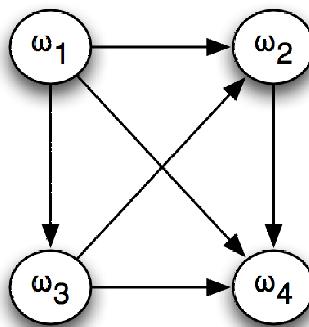
### Another Majority Graph

Give agendas for each candidate to win with the following majority graph.



### Condorcet Winners

A *Condorcet winner* is a candidate that would beat *every other candidate* in a pairwise election.  
Here,  $\omega_1$  is a Condorcet winner.



## Voting Procedures: Borda Count

- One reason plurality has so many anomalies is that it *ignores* most of a voter's preference orders: it only looks at the *top ranked candidate*.
- The *Borda* count takes *whole* preference order into account.

- For each candidate, we have a variable, counting the strength of opinion in favour of this candidate.
- If  $\omega_i$  appears first in a preference order, then we increment the count for  $\omega_i$  by  $k - 1$ ; we then increment the count for the next outcome in the preference order by  $k - 2, \dots$ , until the final candidate in the preference order has its total incremented by 0.
- After we have done this for all voters, then the totals give the ranking.

## Desirable Properties of Voting Procedures

Can we classify the properties we want of a “good” voting procedure?

Two key properties:

- *The Pareto property*,
- *Independence of Irrelevant Alternatives (IIA)*.

## The Pareto Property

*If everybody prefers  $\omega_i$  over  $\omega_j$ , then  $\omega_i$  should be ranked over  $\omega_j$  in the social outcome.*

## Independence of Irrelevant Alternatives (IIA)

*Whether  $\omega_i$  is ranked above  $\omega_j$  in the social outcome should depend only on the relative orderings of  $\omega_i$  and  $\omega_j$  in voters profiles.*

## Arrow's Theorem

*For elections with more than 2 candidates, the only voting procedure satisfying the Pareto condition and IIA is a dictatorship, in which the social outcome is in fact simply selected by one of the voters.*

This is a *negative* result: there are fundamental limits to democratic decision making!

## Strategic Manipulation

- We already saw that sometimes, voters can benefit by *strategically misrepresenting their preferences*, i.e., lying – tactical voting.
- Are there any voting methods which are *non-manipulable*, in the sense that voters can *never* benefit from misrepresenting preferences?

## The Gibbard-Satterthwaite Theorem

The answer is given by the Gibbard-Satterthwaite theorem:

*The only non-manipulable voting method satisfying the Pareto property for elections with more than 2 candidates is a dictatorship.*

In other words, every “realistic” voting method is prey to strategic manipulation . . .

## Computationally Complexity to the Rescue!

- Gibbard-Satterthwaite only tells us that manipulation is possible *in principle*.  
It does not give any indication of *how* to misrepresent preferences.
- Bartholdi, Tovey, and Trick showed that there are elections that are prone to manipulation in principle, but where manipulation was *computationally complex*.
- “Single Transferable Vote” is NP-hard to manipulate!