

CHAPTER 16: ARGUING

Multiagent Systems

<http://www.csc.liv.ac.uk/~mjw/pubs/imas/>

Argumentation

- Argumentation is the process of attempting to agree about what to believe.
- Only a question when information or beliefs are contradictory.
 - If everything is consistent, just merge information from multiple agents.
- Argumentation provides principled techniques for resolving inconsistency.
- Or at least, sensible rules for deciding what to believe in the face of inconsistency.

- The difficulty is that when we are presented with p and $\neg p$ it is not at all clear what we should believe.

Gilbert's Four Modes of Argument

- *Logical mode* — akin to a proof.
“If you accept that A and that A implies B , then you must accept that B ”.
- *Emotional mode* — appeals to feelings and attitudes.
“How would you feel if it happened to you?”

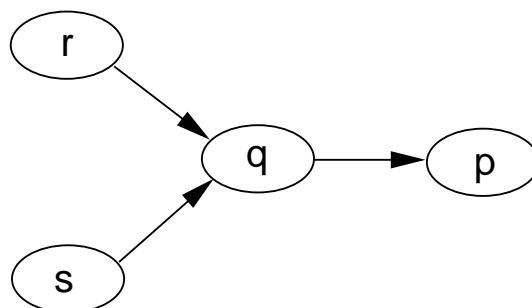
- *Visceral mode* — physical and social aspect.
“Cretin!”
- *Kisceral mode* – appeals to the mystical or religious
“This is against Christian teaching!”

Depending on circumstances, some of these might not be accepted.

Abstract Argumentation

- Concerned with the overall structure of the set of arguments
 - (rather than internals of individual arguments).
- Write $x \rightarrow y$
 - “argument x attacks argument y ”;
 - “ x is a counterexample of y ; or
 - “ x is an attacker of y ”.

(we are not actually concerned as to what x, y *are*).


An *abstract argument system* is a collection of arguments together with a relation “ \rightarrow ” saying what attacks what.

- Systems like this are called *Dung-style* after their inventor.

- A set of Dung-style arguments:

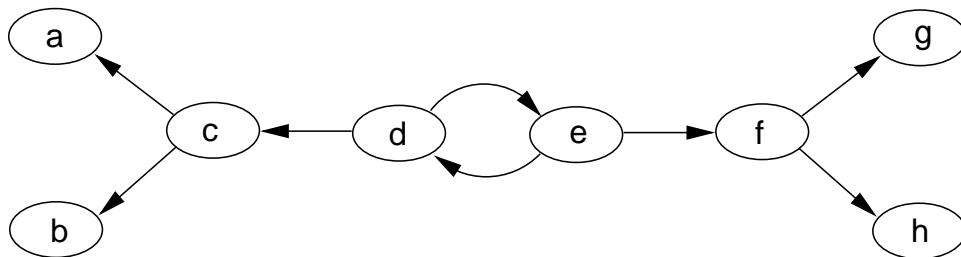
$$\langle \{p, q, r, s\}, \{(r, q), (s, q), (q, p)\} \rangle$$

meaning that r attacks q , s attacks q and q attacks p .

- The question is, given this, what should we believe?

Preferred extensions

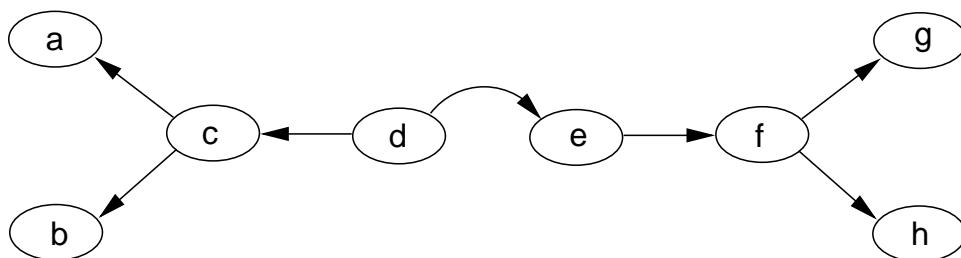
- There is no universal agreement about what to believe in a given situation, rather we have a set of criteria.
- A *position* is a set of arguments.
 - Think of it as a viewpoint
- A position S is *conflict free* if no member of S attacks another member of S .
 - Internally consistent
- The conflict-free sets in the previous system are:


$\emptyset, \{p\}, \{q\}, \{r\}, \{s\}, \{r, s\}, \{p, r\}, \{p, s\}, \{r, s, p\}$

- If an argument a is attacked by another a' , then it is *defended* by a'' if a'' attacks a' .
- Thus p is defended by r and s .

- A position S is *mutually defensive* if every element of S that is attacked is defended by some element of S .
 - Self-defence is allowed
- These positions are mutually defensive:
$$\emptyset, \{r\}, \{s\}, \{r, s\}, \{p, r\}, \{p, s\}, \{r, s, p\}$$
- A position that is conflict free and mutually defensive is *admissible*.
- All the above positions are admissible.
- Admissibility is a minimal notion of a reasonable position — it is internally consistent and defends itself against all attackers.

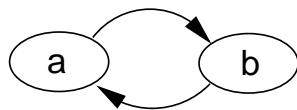
- A *preferred extension* is a maximal admissible set.
 - adding another argument will make it inadmissible.
- In other words S is a preferred extension if S is admissible and no superset of S is admissible.
- Thus \emptyset is not a preferred extension, because $\{p\}$ is admissible.
- Similarly, $\{p, r, s\}$ is admissible because adding q would make it inadmissible.
- A set of arguments always has a preferred extension, but it may be the empty set.


- With a larger set of arguments it is exponentially harder to find the preferred extension.
- n arguments have 2^n possible positions.
- This set of arguments:

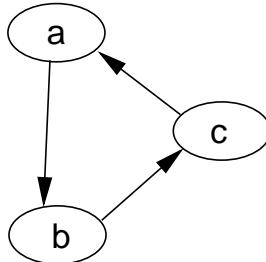
has two preferred extensions:

$$\{a, b, d, f\} \quad \{c, e, g, h\}$$

- In contrast:



has only one:


$$\{a, b, d, f\}$$

since c and e are now attacked but undefended, and so can't be in an admissible set.

- Two rather pathological cases are:

with preferred extension $\{a\}$ and $\{b\}$, and:

which has only \emptyset as a preferred extension.

Credulous and sceptical acceptance

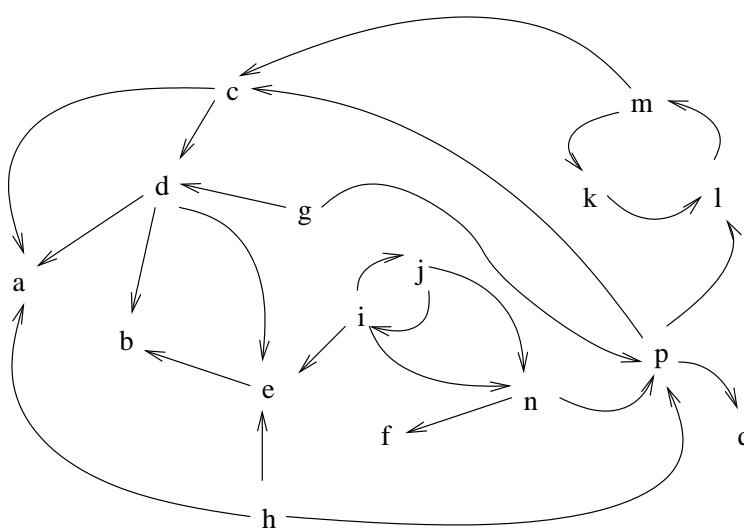
- To improve on preferred extensions we can define

An argument is sceptically accepted if it is a member of **every** preferred extension.

and

An argument is credulously accepted if it is a member of **at least one** preferred extension.

- Clearly anything that is sceptically accepted is also credulously accepted.


- On our original example, p , q and r are all sceptically accepted, and q is neither sceptically or credulously accepted.

Grounded extensions

- Another approach, perhaps better than preferred extension.
- Arguments are guaranteed to be acceptable if they aren't attacked.
 - No reason to doubt them
- They are IN
- Once we know which these are, any arguments that they attack must be unacceptable.
- They are OUT — delete them from the graph.
- Now look again for IN arguments...

- And continue until the graph doesn't change.
- The set of IN arguments — the ones left in the graph — make up the *grounded extension*.

- Consider computing the grounded extension of:

- We can say that:
 - h is not attacked, so IN.
 - h is IN and attacks a , so a is OUT.
 - h is IN and attacks p , so p is OUT.
 - p is OUT and is the only attacker of q so q is IN.
- There is always a grounded extension, and it is always unique (though it may be empty)

Deductive Argumentation

Basic form of deductive arguments is as follows:

$$\text{Database} \vdash (\text{Sentence}, \text{Grounds})$$

where:

- *Database* is a (possibly inconsistent) set of logical formulae;
- *Sentence* is a logical formula known as the *conclusion*; and
- *Grounds* is a set of logical formulae such that:
 1. $\text{Grounds} \subseteq \text{Database}$; and
 2. *Sentence* can be proved from *Grounds*.

Attack and Defeat

- Argumentation takes into account the relationship between arguments.
- Let (ϕ_1, Γ_1) and (ϕ_2, Γ_2) be arguments from some database $\Delta \dots$ Then (ϕ_2, Γ_2) can be defeated (attacked) in one of two ways:
 1. (ϕ_1, Γ_1) **rebuts** (ϕ_2, Γ_2) if $\phi_1 \equiv \neg\phi_2$.
 2. (ϕ_1, Γ_1) **undercuts** (ϕ_2, Γ_2) if $\phi_1 \equiv \neg\psi$ for some $\psi \in \Gamma_2$.
- A rebuttal or undercut is known an **attack**.

- Once we have identified attacks, we can look at preferred extensions or grounded extensions to determine what arguments to accept.

Argumentation and Communication

- We have two agents, P and C , each with some knowledge base, Σ_P and Σ_C .
- Each time one makes an assertion, it is considered to be an addition to its *commitment store*, $CS(P)$ or $CS(C)$.
- Thus P can build arguments from $\Sigma_P \cup CS(C)$, and C can use $\Sigma_C \cup CS(P)$.
- We assume that dialogues start with P making the first move.
- The outcomes, then, are:

- P generates an argument both classify as IN, or
- C makes P 's argument OUT.

- Can use this for negotiation if the language allows you to express offers.

Argumentation Protocol

- A typical persuasion dialogue would proceed as follows:
 1. P has an acceptable argument (S, p) , built from Σ_P , and wants C to accept p .
 2. P asserts p .
 3. C has an argument $(S', \neg p)$.
 4. C asserts $\neg p$.
 5. P cannot accept $\neg p$ and challenges it.
 6. C responds by asserting S' .

- 7. P has an argument $(S'', \neg q)$ where $q \in S'$, and challenges q .
- 8.

Argumentation Protocol II

- This process eventually terminates when

$$\Sigma_P \cup CS(P) \cup CS(C)$$

and

$$\Sigma_C \cup CS(C) \cup CS(P)$$

eventually provide the same set of IN arguments and the agents agree.

- Clearly here we are looking at grounded extensions.

Different dialogues

- Information seeking
 - Tell me if p is true.
- Inquiry
 - Can we prove p ?
- Persuasion
 - You're wrong to think p is true.
- Negotiation
 - How do we divide the pie?
- Deliberation

– Where shall we go for dinner?

Summary

- This lecture has looked at different mechanisms for reaching agreement between agents.
- We started by looking at negotiation, where agents make concessions and explore tradeoffs.
- Finally, we looked at argumentation, which allows for more complex interactions and can be used for a range of tasks that include negotiation.