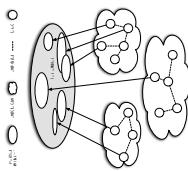


CHAPTER 11: MULTIAGENT INTERACTIONS

An Introduction to Multiagent Systems

<http://www.csc.liv.ac.uk/~mjw/pubs/imas/>



<http://www.csc.liv.ac.uk/~mjw/pubs/imas/>

1 What are Multiagent Systems?

Thus a multiagent system contains a number of agents

...

- ... which interact through communication ...
- ... are able to act in an environment ...
- ... have different “spheres of influence” (which may coincide) ...
- ... will be linked by other (organisational) relationships.

2 Utilities and Preferences

- Assume we have just two agents: $Ag = \{i, j\}$.
- Agents are assumed to be **self-interested**: they **have preferences over how the environment is**.
- Assume $\Omega = \{\omega_1, \omega_2, \dots\}$ is the set of “outcomes” that agents have preferences over.
- We capture preferences by **utility functions**:

$$\begin{aligned} u_i : \Omega &\rightarrow \mathbb{R} \\ u_j : \Omega &\rightarrow \mathbb{R} \end{aligned}$$

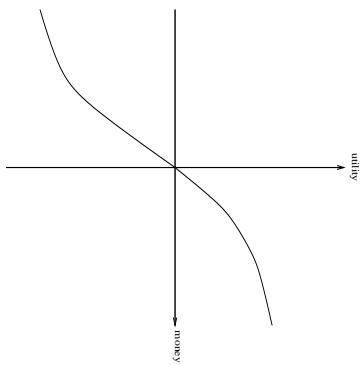
- Utility functions lead to *preference orderings* over outcomes:

$$\omega \succeq_i \omega' \text{ means } u_i(\omega) \geq u_i(\omega')$$

$$\omega \succ_i \omega' \text{ means } u_i(\omega) > u_i(\omega')$$

<http://www.csc.liv.ac.uk/~mjt/pubs/jamas/>

4



3 Multiagent Encounters

- We need a model of the environment in which these agents will act...

- agents simultaneously choose an action to perform, and as a result of the actions they select, an outcome in Ω will result;
- the *actual* outcome depends on the *combination* of actions;
- assume each agent has just two possible actions that it can perform C ("cooperate") and " D " ("defect").

<http://www.csc.liv.ac.uk/~mjt/pubs/jamas/>

6

What is Utility?

- Utility is *not* money (but it is a useful analogy).
- Typical relationship between utility & money:

<http://www.csc.liv.ac.uk/~mjt/pubs/jamas/>

5

Payoff Matrices

- We can characterise the previous scenario in a *payoff matrix*

		<i>i</i>	
		defect	coop
<i>j</i>	defect	1	4
	coop	1	4

- Agent *i* is the *column player*.
- Agent *j* is the *row player*.

<http://www.csc.liv.ac.uk/~mjt/pubs/jimas/>

12

Solution Concepts

- How will a rational agent will behave in any given scenario?
- Answered in *solution concepts*:
 - dominant strategy;
 - Nash equilibrium strategy;
 - Pareto optimal strategies;
 - strategies that maximise social welfare.

<http://www.csc.liv.ac.uk/~mjt/pubs/jimas/>

13

(Pure Strategy) Nash Equilibrium

- In general, we will say that two strategies s_1 and s_2 are in Nash equilibrium if:

1. under the assumption that agent *i* plays s_1 , agent *j* can do no better than play s_2 ; and
2. under the assumption that agent *j* plays s_2 , agent *i* can do no better than play s_1 .

- *Neither agent has any incentive to deviate from a Nash equilibrium.*
- Unfortunately:

<http://www.csc.liv.ac.uk/~mjt/pubs/jimas/>

14

1. Not every *interaction scenario* has a Nash equilibrium.
2. Some interaction scenarios have more than one Nash equilibrium.

Matching Pennies

Players i and j simultaneously choose the face of a coin, either “heads” or “tails”. If they show the same face, then i wins, while if they show different faces, then j wins.

<http://www.csc.liv.ac.uk/~mjt/pubs/jmas/>

16

Matching Pennies: The Payoff Matrix

	i heads	i tails
j heads	1	-1
j tails	-1	1

Mixed Strategies for Matching Pennies

- NO pair of strategies forms a pure strategy NE: whatever pair of strategies is chosen, somebody will wish they had done something else.
- The solution is to allow *mixed strategies*:
 - play “heads” with probability 0.5
 - play “tails” with probability 0.5.
- This is a NE strategy.

<http://www.csc.liv.ac.uk/~mjt/pubs/jmas/>

17

- A mixed strategy has the form

- play α_1 with probability p_1
- play α_2 with probability p_2
- \dots
- play α_k with probability p_k .

such that $p_1 + p_2 + \dots + p_k = 1$.

- Nash proved that ***every finite game has a Nash equilibrium in mixed strategies.***

<http://www.csc.liv.ac.uk/~mjt/pubs/jmas/>

20

Mixed Strategies

Nash's Theorem

- Nash proved that ***every finite game has a Nash equilibrium in mixed strategies.*** (Unlike the case for ***pure strategies.***)

- So this result overcomes the lack of solutions; but there still may be more than one Nash equilibrium...

<http://www.csc.liv.ac.uk/~mjt/pubs/jmas/>

21

- If an outcome ω is ***not*** Pareto optimal, then there is another outcome ω' that makes ***everyone*** as happy, if not happier, than ω .

- “Reasonable” agents would agree to move to ω' in this case. (Even if I don’t directly benefit from ω' , you can benefit without me suffering.)

- An outcome is said to be ***Pareto optimal*** (or ***Pareto efficient***) if there is no other outcome that makes one agent ***better off*** without making another agent ***worse off***.

- If an outcome is Pareto optimal, then at least one agent will be reluctant to move away from it (because this agent will be worse off).

<http://www.csc.liv.ac.uk/~mjt/pubs/jmas/>

22

<http://www.csc.liv.ac.uk/~mjt/pubs/jmas/>

23

Social Welfare

- The social welfare of an outcome ω is the sum of the utilities that each agent gets from ω :

$$\sum_{i \in A_g} u_i(\omega)$$

- Think of it as the “total amount of money in the system”.
- As a solution concept, may be appropriate when the whole system (all agents) has a single owner (then overall benefit of the system is important, not individuals).

<http://www.csc.liv.ac.uk/~mjw/pubs/jmas/>

24

Competitive and Zero-Sum Interactions

- Where preferences of agents are diametrically opposed we have **strictly competitive** scenarios.
- Zero-sum encounters are those where utilities sum to zero:

$$u_i(\omega) + u_j(\omega) = 0 \quad \text{for all } \omega \in \Omega.$$

- Zero sum encounters are bad news: for me to get +ve utility **you have to get negative utility!** The best outcome for me is the **worst** for you!

<http://www.csc.liv.ac.uk/~mjw/pubs/jmas/>

25

- Zero sum encounters in real life are very rare ... but people frequently act as if they were in a zero sum game.

4 The Prisoner's Dilemma

Two men are collectively charged with a crime and held in separate cells, with no way of meeting or communicating.

They are told that:

- if one confesses and the other does not, the confessor will be freed, and the other will be jailed for three years;
- if both confess, then each will be jailed for two years.

Both prisoners know that if neither confesses, then they will each be jailed for one year.

<http://www.csc.liv.ac.uk/~mjw/pubs/jmas/>

26

- Payoff matrix for prisoner's dilemma:

		<i>i</i>	
		defect	coop
<i>j</i>	defect	2	1
	coop	4	3

- Top left: If both defect, then both get punishment for mutual defection.

- Top right: If *i* cooperates and *j* defects, *i* gets sucker's payoff of 1, while *j* gets 4.

<http://www.csc.liv.ac.uk/~mjw/pubs/jimass/>

28

What Should You Do?

- The *individual rational* action is **defect**.

This guarantees a payoff of no worse than 2, whereas cooperating guarantees a payoff of at most 1.

- So defection is the best response to all possible strategies: both agents defect, and get payoff = 2.
- But *intuition* says this is **not** the best outcome: Surely they should both cooperate and each get payoff of 3!

<http://www.csc.liv.ac.uk/~mjw/pubs/jimass/>

30

- Bottom left: If *j* cooperates and *i* defects, *j* gets sucker's payoff of 1, while *i* gets 4.
- Bottom right: Reward for mutual cooperation.

<http://www.csc.liv.ac.uk/~mjw/pubs/jimass/>

29

Solution Concepts

- *D* is a dominant strategy.
- (D, D) is the only Nash equilibrium.
- All outcomes **except** (D, D) are Pareto optimal.
- (C, C) maximises social welfare.

<http://www.csc.liv.ac.uk/~mjw/pubs/jimass/>

31

- This apparent paradox is *the fundamental problem of multi-agent interactions*.

It appears to imply that *cooperation will not occur in societies of self-interested agents*.

- Real world examples:
 - nuclear arms reduction (“why don’t I keep mine. . . ”)
 - free rider systems — public transport;
 - in the UK — television licenses.
- The prisoner’s dilemma is *ubiquitous*.
- Can we recover cooperation?

<http://www.csc.liv.ac.uk/~mjt/pubs/jimas/>

32

Arguments for Recovering Cooperation

- Conclusions that some have drawn from this analysis:
 - the game theory notion of rational action is wrong!
 - somehow the dilemma is being formulated wrongly
- Arguments to recover cooperation:
 - We are not all machiavelli!
 - The other prisoner is my twin!
 - Program equilibria and mediators
 - The shadow of the future...

<http://www.csc.liv.ac.uk/~mjt/pubs/jimas/>

33

4.1 Program Equilibria

- The strategy you *really* want to play in the prisoner’s dilemma is:

I’ll cooperate if he will

- Program equilibria provide one way of enabling this.
- Each agent submits a *program strategy* to a *mediator* which *jointly executes* the strategies.

Crucially, strategies can be *conditioned on the strategies of the others*.

Here == is *textual comparison*.

- The best response to this program is to *submit the same program*, giving an outcome of (C, C) !

<http://www.csc.liv.ac.uk/~mjt/pubs/jimas/>

34

- You **can't** get the sucker's payoff by submitting this program.

4.3 The Iterated Prisoner's Dilemma

- One answer: *play the game more than once*.
If you know you will be meeting your opponent again, then the incentive to defect appears to evaporate.
- *Cooperation is the rational choice in the infinitely repeated prisoner's dilemma.*

(Hurrah!)

<http://www.csc.liv.ac.uk/~mjt/pubs/jmas/>

36

4.4 Backwards Induction

- But... suppose you both know that you will play the game exactly n times.
- On round $n - 1$, you have an incentive to defect, to gain that extra bit of payoff...
- But this makes round $n - 2$ the last "real", and so you have an incentive to defect there, too.
- This is the **backwards induction** problem.
- Playing the prisoner's dilemma with a fixed, finite, pre-determined, commonly known number of rounds, defection is the best strategy.

<http://www.csc.liv.ac.uk/~mjt/pubs/jmas/>

38

4.5 Axelrod's Tournament

- Suppose you play iterated prisoner's dilemma against a **range** of opponents ...
- What strategy should you choose, so as to maximise your overall payoff?
- Axelrod (1984) investigated this problem, with a computer tournament for programs playing the prisoner's dilemma.

<http://www.csc.liv.ac.uk/~mjt/pubs/jmas/>

39

• **JOSS:**

As TIT-FOR-TAT, except periodically defect.

Strategies in Axelrod's Tournament

• **ALLD:**

“Always defect” — the *hawk* strategy;

• **TIT-FOR-TAT:**

1. On round $u = 0$, cooperate.
2. On round $u > 0$, do what your opponent did on round $u - 1$.

• **TESTER:**

On 1st round, defect. If the opponent retaliated, then play TIT-FOR-TAT. Otherwise intersperse cooperation & defection.

<http://www.csc.liv.ac.uk/~mjt/pubs/jmas/>

40

• **JOSS:**

As TIT-FOR-TAT, except periodically defect.

Strategies in Axelrod's Tournament

• **ALLD:**

“Always defect” — the *hawk* strategy;

• **TIT-FOR-TAT:**

1. On round $u = 0$, cooperate.
2. On round $u > 0$, do what your opponent did on round $u - 1$.

• **TESTER:**

On 1st round, defect. If the opponent retaliated, then play TIT-FOR-TAT. Otherwise intersperse cooperation & defection.

<http://www.csc.liv.ac.uk/~mjt/pubs/jmas/>

41

• **JOSS:**

Always reciprocate cooperation immediately.

Recipes for Success in Axelrod's Tournament

Axelrod suggests the following rules for succeeding in his tournament:

• **Don't be envious:**

Don't play as if it were zero sum!

• **Be nice:**

Start by cooperating, and reciprocate cooperation.

• **Retaliate appropriately:**

Always punish defection immediately, but use “measured” force — don't overdo it.

<http://www.csc.liv.ac.uk/~mjt/pubs/jmas/>

42

• **JOSS:**

Always reciprocate cooperation immediately.

Recipes for Success in Axelrod's Tournament

Axelrod suggests the following rules for succeeding in his tournament:

• **Don't be envious:**

Don't play as if it were zero sum!

• **Be nice:**

Start by cooperating, and reciprocate cooperation.

• **Retaliate appropriately:**

Always punish defection immediately, but use “measured” force — don't overdo it.

<http://www.csc.liv.ac.uk/~mjt/pubs/jmas/>

43

Mutual defection is most feared outcome.

- Consider another type of encounter — the *game of chicken*:

		<i>i</i>	
		defect	coop
<i>j</i>	defect	1	2
	coop	4	3

(Think of James Dean in *Rebel without a Cause*: swerving = coop, driving straight = defect.)

- Difference to prisoner's dilemma:

<http://www.csc.liv.ac.uk/~mjt/pubs/jimass/>

44

6 Other Symmetric 2 x 2 Games

- Given the 4 possible outcomes of (symmetric) cooperate/defect games, there are 24 possible orderings on outcomes.
 - $CC \succ_i CD \succ_i DC \succ_i DD$ **Cooperation dominates.**
 - $DC \succ_i DD \succ_i CC \succ_i CD$ **Deadlock.** You will always do best by defecting.
 - $DC \succ_i CC \succ_i DD \succ_i CD$ **Prisoner's dilemma.**
 - $DC \succ_i CC \succ_i CD \succ_i DD$ **Chicken.**
- All outcomes except (D, D) are Pareto optimal.
- All outcomes except (D, D) maximise social welfare.

<http://www.csc.liv.ac.uk/~mjt/pubs/jimass/>

45

- $CC \succ_i DC \succ_i DD \succ_i CD$

Stag hunt.