CHAPTER 9: METHODOLOGIES

An Introduction to Multiagent Systems

http://www.csc. liv.ac.uk/ mjw/pubs/imas/




Chapter 9 An Introduction to Multiagent Systems 2e

1 Pitfalls of Agent Development

e |ots of (single and multi-) agent projects ... but
agent-oriented development recvd little attention.

® \We now consider pragmatics of AO software projects.
e |dentifies key pitfalls.
® Seven categories:

— political;

— management;

— conceptual;

—analysis and design;

— micro (agent) level,

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 1




Chapter 9 An Introduction to Multiagent Systems 2e

— macro (society) level;
— implementation.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 2




Chapter 9 An Introduction to Multiagent Systems 2e

1.1 You Oversell Agents

e Agents are not magic!

e |f you can’t do it with ordinary software, you probably
can’t do it with agents.

® No evidence that any system developed using agent
technology could not have been built just as easily
using non-agent technigues.

e Agents may make it easier to solve certain classes of
problems ... but they do not make the impossible
possible.

e Agents are not Al by a back door.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 3




Chapter 9 An Introduction to Multiagent Systems 2e

e Don’t equate agents and Al.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 4




Chapter 9 An Introduction to Multiagent Systems 2e

1.2 You Get Religious

e Agents have been used in a wide range of
applications, but they are not a universal solution.

e For many applications, conventional software
paradigms (e.g., OO) are more appropriate.

e Given a problem for which an agent and a non-agent
approach appear equally good, prefer non-agent
solution!

e In summary: danger of believing that agents are the
right solution to every problem.

e Other form of dogma: believing in your agent
definition.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 5




Chapter 9 An Introduction to Multiagent Systems 2e

1.3 Don’'t Know Why You Want Agents

e Agents = new technology = lots of hype!

“Agents will generate US$2.6 billion in revenue by the
year 2000”

e Managerial reaction:
“we can get 10% of that”.

e Managers often propose agent projects without having
clear idea about what “having agents” will buy them.

® No business plan for the project:

— pure research?
— technology vendor?

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 6




Chapter 9 An Introduction to Multiagent Systems 2e

— solutions vendor?

e Often, projects appear to be going well. (“We have
agents!”) But no vision about where to go with them.

e The lesson: understand your reasons for attempting
an agent development project, and what you expect to
gain from it.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 7




Chapter 9 An Introduction to Multiagent Systems 2e

1.4 Don’'t Know What Agents Are Good For

¢ Having developed some agent technology, you search
for an application to use them.

e Putting the cart before the horse!
e | eads to mismatches/dissatisfaction

® The lesson: be sure you understand how and where
your new technology may be most usefully applied.

Do not attempt to apply it to arbitrary problems &
resist temptation to apply it to every problem.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 8




Chapter 9 An Introduction to Multiagent Systems 2e

1.5 Generic Solutions to 1-Off Problems

e The “yet another agent testbed” syndrome.

e Devising an architecture or testbed that supposedly
enables a range agent systems to be built, when you
really need a one-off system.

e Re-use Is difficult to attain unless development is
undertaken for a close knit range of problems with
similar characteristics.

e General solutions are more difficult and more costly to
develop, often need tailoring to different applications.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 9




Chapter 9 An Introduction to Multiagent Systems 2e

1.6 Confuse Prototypes with Systems

e Prototypes are easy (particularly with nice GUI
builders!)

¢ Field tested production systems are hard.

® Process of scaling up from single-machine
multi-threaded Java app to multi-user system much
harder than it appears.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 10




Chapter 9 An Introduction to Multiagent Systems 2e

1.7 Believe Agents = Silver Bullet

e Holy grail of software engineering is a “silver bullet™: a
order of magnitude improvement in software
development.

e Technologies promoted as the silver bullet:

— COBOL :-)

— automatic programming;
— expert systems;

— graphical programming;
— formal methods (!)

e Agent technology is not a silver bullet.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 11




Chapter 9 An Introduction to Multiagent Systems 2e

e Good reasons to believe that agents are useful way of
tackling some problems.

e But these arguments largely untested in practice.

e Useful developments in software engineering:
abstractions.

Agents are another abstraction.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 12




Chapter 9 An Introduction to Multiagent Systems 2e

1.8 Confuse Buzzwords & Concepts

® The idea of an agent is extremely intuitive.

® Encourages developers to believe that they
understand concepts when they do not.
(The Al & party syndrome: everyone has an opinion.
However uninformed.)

e Good example: the belief-desire-intention (BDI)
model.

—theory of human practical reasoning (Bratman et
al);
—agent architectures (PRS, dMARS, . ..);

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 13




Chapter 9 An Introduction to Multiagent Systems 2e

— serious applications (NASA, ...);
— logic of practical reasoning (Rao & Georgeff).

e | abel “BDI” now been applied to WWW pages/perl|
scripts.

e “Our system is a BDI system” ... implication that this
IS like being a computer with 64MB memory: a
guantifiable property, with measurable associated
benefits.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 14




Chapter 9 An Introduction to Multiagent Systems 2e

1.9 Forget it's Software

e Developing any agent system is essentially
experimentation.

No tried and trusted technigues

® This encourages developers to forget they are
developing software!

® Project plans focus on the agenty bits.

e Mundane software engineering (requirements
analysis, specification, design, verification, testing) is
forgotten.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 15




Chapter 9 An Introduction to Multiagent Systems 2e

e Result a foregone conclusion: project flounders, not
because agent problems, but because basic software
engineering ignored.

e Fequent justification: software engineering for agent
systems Is none-existent.

e But almost any principled software development
technique is better than none.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 16




Chapter 9 An Introduction to Multiagent Systems 2e

Forget its distributed

e Distributed systems = one of the most complex
classes of computer system to design and implement.

e Multi-agent systems tend to be distributed!

e Problems of distribution do not go away, just because
a system is agent-based.

¢ Typical multi-agent system will be more complex than
a typical distributed system.

e Recognise distributed systems problems.
e Make use of DS expertise.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 17




Chapter 9 An Introduction to Multiagent Systems 2e

1.10 Don’t Exploit Related Technology

® |[n any agent system, percentage of the system that is
agent-specific iIs comparatively small.

® The raising bread model of Winston.

e Therefore important that conventional technologies
and techniques are exploited wherever possible.

e Don’t reinvent the wheel. (Yet another communication
framework.)

e Exploitation of related technology:

— Speeds up development;
— avolds re-inventing wheel;

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 18




Chapter 9 An Introduction to Multiagent Systems 2e

— focusses effort on agent component.

e Example: CORBA.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/

19




Chapter 9 An Introduction to Multiagent Systems 2e

1.11 Don’t exploit concurrency

e Many ways of cutting up any problem.

Examples: decompose along functional,
organisational, physical, or resource related lines.

® One of the most obvious features of a poor
multi-agent design is that the amount of concurrent
problem solving is comparatively small or even in
extreme cases non-existent.

e Serial processing in distributed system!

e Only ever a single thread of control. concurrency, one
of the most important potential advantages of
multi-agent solutions not exploited.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 20




Chapter 9 An Introduction to Multiagent Systems 2e

e |f you don’t exploit concurrency, why have an agent
solution?

http://www.csc. liv.ac.uk/“mjw/pubs/imas/

21




Chapter 9 An Introduction to Multiagent Systems 2e

1.12 Want Your Own Architecture

e Agent architectures: designs for building agents.

e Many agent architectures have been proposed over
the years.

e Great temptation to imagine you need your own.
e Driving forces behind this belief:

—“not designed here” mindset;
— intellectual property.

e Problems:

— architecture development takes years;

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 22




Chapter 9 An Introduction to Multiagent Systems 2e

— no clear payback.

e Recommendation: buy one, take one off the shelf, or
do without.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/

23




Chapter 9 An Introduction to Multiagent Systems 2e

1.13 Think Your Architecture i1s Generic

e |f you do develop an architecture, resist temptation to
believe it is generic.

¢ | eads one to apply an architecture to problem for
which it is patently unsuited.

e Different architectures good for different problems.

e Any architecture that is truly generic is by definition
not an architecture ...

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 24




Chapter 9 An Introduction to Multiagent Systems 2e

e |f you have developed an architecture that has
successfully been applied to some particular problem,
understand why it succeeded with that particular
problem.

e Only apply the architecture to problems with similar
characteristics.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 25




Chapter 9 An Introduction to Multiagent Systems 2e

1.14 Use Too Much Al

e Temptation to focus on the agent specific aspects of
the application.

e Result: an agent framework too overburdened with
experimental Al techniques to be usable.

e Fuelled by “feature envy”, where one reads about
agents that have the abillity to learn, plan, talk, sing,
dance...

¢ Resist the temptation to believe such features are
essential in your agent system.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 26




Chapter 9 An Introduction to Multiagent Systems 2e

® The lesson: build agents with a minimum of Al; as
success Is obtained with such systems, progressively
evolve them into richer systems.

e \What Etzioni calls “useful first” strategy.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 27




Chapter 9 An Introduction to Multiagent Systems 2e

1.15 Not Enough Al

e Don’t call your on-off switch an agent!

e Be realistic: it is becoming common to find everyday
distributed systems referred to as multi-agent
systems.

e Another common example: referring to WWW pages
that have any behind the scenes processing as
‘agents’.

e Problems:

— lead to the term “agent” losing any meaning;
— raises expectations of software recipients

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 28




Chapter 9 An Introduction to Multiagent Systems 2e

— leads to cynicism on the part of software developers

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 29




Chapter 9 An Introduction to Multiagent Systems 2e

1.16 See agents everywhere

e “Pure” A-O system = everything is an agent!
Agents for addition, subtraction, ...

e Naively viewing everything as an agent is
iInappropiate.

e Choose the right grain size.
e More than 10 agents = big system.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 30




Chapter 9 An Introduction to Multiagent Systems 2e

1.17 Too Many Agents

e Agents don’t have to be complex to generate complex

behaviour.
e | arge number of agents:

— emergent functionality;
— chaotic behaviour.

® | essons:

— keep interactions to a minimum;
— keep protocols simple;

http://www.csc. liv.ac.uk/“mjw/pubs/imas/

31




Chapter 9 An Introduction to Multiagent Systems 2e

1.18 Too few agents

e Some designers imagine a separate agent for every
possible task.

e Others don’t recognise value of a multi-agent
approach at all.

® One “all powerful” agent.
e Result is like OO program with 1 class.
e Fails software engineering test of coherence.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 32




Chapter 9 An Introduction to Multiagent Systems 2e

1.19 Implementing infrastructure

e There are no widely-used software platforms for
developing agent systems.

e Such platforms would provide all the basic
Infrastructure required to create a multi-agent system.

® The result: everyone builds there own.
¢ By the time this is developed, project resources gone!
e No effort devoted to agent-specifics.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 33




Chapter 9 An Introduction to Multiagent Systems 2e

1.20 System is anarchic

e Cannot simply bundle a group of agents together.
e Most agent systems require system-level engineering.

e [For large systems, or for systems in which the society
IS supposed to act with some commonality of
purpose, this is particularly true.

e Organisation structure (even in the form of formal
communication channels) is essential.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 34




Chapter 9 An Introduction to Multiagent Systems 2e

1.21 Confuse simulated with real parallelism

e Every multi-agent system starts life on a single
computer.

Agents are often implemented as UNIX processes,
lightweight processes in C, or JAVA threads.

e A tendency to assume that results obtained with
simulated distribution will immediately scale up to real
distribution.

e A dangerous fallacy: distributed systems are an order
of magnitude more difficult to design, implement, test,
debug, and manage.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 35




Chapter 9 An Introduction to Multiagent Systems 2e

e Many practical problems in building distributed
systems, from mundane to research level.

e With simulated distribution, there is the possibility of
centralised control; in truly distributed systems, such
centralised control is not possible.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 36




Chapter 9 An Introduction to Multiagent Systems 2e

1.22 The tabula rasa

¢ When building systems using new technology, often
an assumption that it is necessary to start from a
“blank slate”.

e Often, most important components of a software
system will be legacy:
functionally essential, but technologically obsolete
software components, which cannot readily be rebuilt.
® Such systems often mission critical.

e \When proposing a new software solution, essential to
work with such components

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 37




Chapter 9 An Introduction to Multiagent Systems 2e

e They can be incorporated into an agent system by
wrapping them with an agent layer.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/

38




Chapter 9 An Introduction to Multiagent Systems 2e

1.23 Ignore de facto standards

e There are no established agent standards.

e Developers often believe they have no choice but to
design and build all agent-specific components from
scratch.

e But here are some de facto standards.
e Examples:

— CORBA;
— HTML;
— KQML;

— FIPA.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 39




Chapter 9 An Introduction to Multiagent Systems 2e

2 Mobile Agents

e Remote procedure calls (a) versus mobile agents (b):

ol

‘

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 40




Chapter 9 An Introduction to Multiagent Systems 2e

e Why mobile agents?
— low-bandwidth networks (hand-held PDAs, such as

NEWTON);
— efficient use of network resources.

e There are many issues that need to be addressed
when building software tools that can support mobile
agents. ..

— security for hosts and agents;
— heterogeneity of hosts;
— dynamic linking.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 41




Chapter 9 An Introduction to Multiagent Systems 2e

Security for Hosts

We do not want to execute foreign programs on our
machine, as this would present enormous security
risks:

e |f the agent programming language supports pointers,
then there is the danger of agents corrupting the
address space of the host = many agent languages
don’t have pointers!

® UNIX-like access rights on host;

e safe libraries for access to filestore, process space,
etc;

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 42




Chapter 9 An Introduction to Multiagent Systems 2e

® some actions (e.g., sending mail) are harmless in

some circumstances, but dangerous in others — how

to tell?

http://www.csc. liv.ac.uk/“mjw/pubs/imas/

43




Chapter 9 An Introduction to Multiagent Systems 2e

e some agent languages (e.g., TELESCRIPT) provide
limits on the amount of e.g., memory & processor time
that an agent can access,;

® secure co-processors are a solution — have a
physically separate processor on which the agent is
run, such that the processor is in ‘guarantine’
(‘padded cell’).

Some agent languages allow security properties of an
agent to be verified on recelipt.

Hosts must handle crashed programs cleanly — what
do you tell an owner when their agent crashes?
Trusted agents?

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 44




Chapter 9 An Introduction to Multiagent Systems 2e

Security for Agents
e Agents have a right to privacy!

* \We often do not want to send out our programs, as to
do so: might enable the recipient to determine its
purpose, and hence our intent.

e The agent might be modified (sabotaged!) in some
way, without its owners knowledge or approval.

e An agent can be protected in transit by using
conventional encryption techniques (e.g., PGP).

® |n order to ensure that an agent is not tampered with,
It Is possible to use digital watermarks — rather like
check digits.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 45




Chapter 9 An Introduction to Multiagent Systems 2e

Heterogeneity of Hosts

e Unless we are happy for our agents to be executed on
just one type of machine (Mac, PC, SPARC, ...), then
we must provide facilities for executing the same
agent on many different types of machine.

e This implies:

— Interpreted language:
compiled languages imply reduction to machine
code, which is clearly system dependent —
reduced efficiency; (perhaps use virtual machine

technology);

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 46




Chapter 9

An Introduction to Multiagent Systems 2e

— dynamic linking:

libraries that access local resources must provide a
common interface to different environments.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 47




Chapter 9 An Introduction to Multiagent Systems 2e

A Typology for Mobile Agents

e \We can divide mobile agents into at least three types:

— autonomous;
— on-demand,;
— ‘active malil’-type

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 48




Chapter 9 An Introduction to Multiagent Systems 2e

Autonomous Mobile Agents

e By autonomous mobile, we mean agents that are able
to decide for themselves where to go, when, and what
to do when they get there (subject to certain resource
constraints, e.g., how much ‘emoney’ they can spend.

e Such agents are generally programmed in a special
language that provides a go instruction... best
known example is TELESCRIPT.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 49




Chapter 9 An Introduction to Multiagent Systems 2e

On-Demand Mobility

e The idea here is that a host is only required to execute
an agent when it explicitly demands the agent.

® The best known example of such functionality is that
provided by the JavA language, as embedded within
html.

e A user with a JAvA-compatible browser (e.g.,
NETSCAPE 2.0) can request html pages that contain
applets — small programs implemented in the Java
language.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 50




Chapter 9 An Introduction to Multiagent Systems 2e

e These applets are downloaded along with all other
Images, text, forms, etc., on the page, and, once
downloaded, are executed on the user’'s machine.

® JAVA itself is a general purpose, C/C++ like
programming language, (that does not have pointers!)

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 51




Chapter 9 An Introduction to Multiagent Systems 2e

‘Active-Mall’ Agents

e The idea here is to ‘piggy-back’ agent programs onto
mail.

® The best-known example of this work is the mime
extension to email, allowing Safe-Tcl scripts to be
sent.

e When emaill is received, the ‘agent’ is unpacked, and
the script executed. .. hence the email is no longer
passive, but active.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 52




Chapter 9 An Introduction to Multiagent Systems 2e

2.1 Telescript

® TELESCRIPT was a language-based environment for
constructing mobile agent systems.

® TELESCRIPT technology is the name given by General
Magic to a family of concepts and technigues they
have developed to underpin their products.

® There are two key concepts in TELESCRIPT
technology:

— places; and
—agents.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 53




Chapter 9 An Introduction to Multiagent Systems 2e

e Places are virtual locations occupied by agents. A
place may correspond to a single machine, or a family
of machines.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 54




Chapter 9 An Introduction to Multiagent Systems 2e

e Agents are the providers and consumers of goods in
the electronic marketplace applications that
TELESCRIPT was developed to support.

e Agents are interpreted programs, rather like TCL.

e Agents are mobile — they are able to move from one
place to another, in which case their program and
state are encoded and transmitted across a network
to another place, where execution recommences.

e |n order to travel across the network, an agent uses a
ticket, which specifies the parameters of its journey:

— destination:

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 55




Chapter 9

— completion time.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/

An Introduction to Multiagent Systems 2e

56




Chapter 9 An Introduction to Multiagent Systems 2e

e Agents can communicate with one-another:

— if they occupy different places, then they can
connect across a network;

— if they occupy the same location, then they can
meet one another.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 57




Chapter 9 An Introduction to Multiagent Systems 2e

® TELESCRIPT agents have an associated permit, which
specifies:
—what the agent can do (e.g., limitations on travel);
— what resources the agent can use.

e The most important resources are:

—‘money’, measured in ‘teleclicks’ (which correspond
to real money);

— lifetime (measured in seconds);
— size (measured in bytes).

e Agents and places are executed by an engine.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 58




Chapter 9 An Introduction to Multiagent Systems 2e

® An engine is a kind of agent operating system —
agents correspond to operating system processes.

¢ Just as operating systems can limit the access
provided to a process (e.g., in UNIX, via access
rights), so an engine limits the way an agent can
access its environment.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 59




Chapter 9 An Introduction to Multiagent Systems 2e

e Engines continually monitor agent’s resource
consumption, and kill agents that exceed thei limit.

e Engines provide (C/C++) links to other applications
via application program interfaces (APIs).

e Agents and places are programmed using the
TELESCRIPT language:

— pure object oriented language — everything is an
object — apparently based on SMALLTALK;

— interpreted,;

—two levels — high (the ‘visible’ language), and low
(a semi-compiled language for efficient execution);

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 60




Chapter 9 An Introduction to Multiagent Systems 2e

—a ‘process’ class, of which ‘agent’ and ‘place’ are
sub-classes;

— persistent;

e General Magic claim that the sophisticated built in
communications services make TELESCRIPT ideal for
agent applications!

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 61




Chapter 9 An Introduction to Multiagent Systems 2e

e Summary:

—a rich set of primitives for building distributed
applications, with a fairly powerful notion of agency;

— agents are ultimately interpreted programs;
— no notion of strong agency!

— likely to have a significant impact (support from
Apple, AT&T, Motorola, Philips, Sony).

— not heard of anyone who has yet actually used it!

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 62




Chapter 9 An Introduction to Multiagent Systems 2e

2.2 TCL/TK and Scripting Languages

e The (free) Tool Control Language (TCL — pronounced
‘tickle’) and its companion TK, are now often
mentioned in connection with agent based systems.

e TCL was primarily intended as a standard command
language — lots of applications provide such
languages, (databases, spreadsheets, ...), but every
time a new application is developed, a new command
language must be as well.

TCL provides the facilities to easily implement your
own command language.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 63




Chapter 9 An Introduction to Multiagent Systems 2e

e TK is an X window based widget toolkit — it provides
facilities for making GUI features such as buttons,
labels, text and graphic windows (much like other X
widget sets).

TK also provides powerful facilities for interprocess
communication, via the exchange of TCL scripts.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 64




Chapter 9 An Introduction to Multiagent Systems 2e

e TCL/TK combined, make an attractive and simple to
use GUI development tool; however, they have
features that make them much more interesting:

— TCL it is an interpreted language,;

— TCL is extendable — it provides a core set of
primitives, implemented in C/C++, and allows the
user to build on these as required,

— TCL/TK can be embedded — the interpreter itself is
available as C++ code, which can be embedded in
an application, and can itself be extended.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 65




Chapter 9 An Introduction to Multiagent Systems 2e

e TCL programs are called scripts.

e TCL scripts have many of the properties that UNIX
shell scripts have:

—they are plain text programs, that contain control
structures (iteration, sequence, selection) and data
structures (e.g., variables, lists, and arrays) just like
a normal programming language;

—they can be executed by a shell program (tclsh or
wish);

—they can call up various other programs and obtain
results from these programs (cf. procedure calls).

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 66




Chapter 9 An Introduction to Multiagent Systems 2e

e As TCL programs are interpreted, they are very much
easier to prototype and debug than compiled
languages like C/C++ — they also provide more
powerful control constructs. ..

— ... but this power comes at the expense of speed.

— Also, the structuring constructs provided by TCL
leave something to be desired.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 67




Chapter 9 An Introduction to Multiagent Systems 2e

e So where does the idea of an agent come Iin?
It is easy to build applications where TCL scripts are
exchanged across a network, and executed on remote
machines.

Thus TCL scripts become sort of agents.

e A key issue is safety. You don’t want to provide
someone elses script with the full access to your
computer that an ordinary scripting language (e.g.,
csh) provides.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 68




Chapter 9 An Introduction to Multiagent Systems 2e

e This led to Safe TCL, which provides mechanisms for
limiting the access provided to a script.
Example: Safe TCL control the access that a script
has to the Ul, by placing limits on the number of times
a window can be modified by a script.

e But the safety issue has not yet been fully resolved in
TCL. This limits its attractiveness as an agent
programming environment.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 69




Chapter 9 An Introduction to Multiagent Systems 2e

e Summary:

— TCL/TK provide a rich environment for building
language-based applications, particularly
GUI-based ones.

— But they are not/were not intended as agent
programming environments.

— The core primitives may be used for building agent
programming environments — the source code is
free, stable, well-designed, and easily modified.

http://www.csc. liv.ac.uk/“mjw/pubs/imas/ 70




