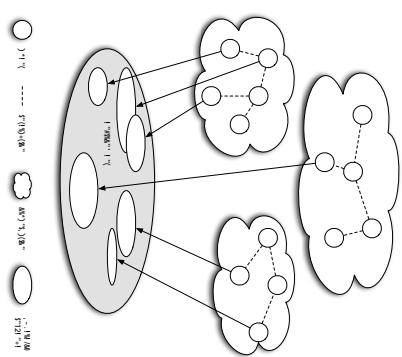


CHAPTER 11: MULTIAGENT INTERACTIONS

An Introduction to Multiagent Systems

<http://www.csc.liv.ac.uk/~mjw/pubs/imas/>

1 What are Multiagent Systems?



Thus a multiagent system contains a number of agents

- ...
 - ... which interact through communication ...
 - ... are able to act in an environment ...
 - ... have different “spheres of influence” (which may coincide) ...
 - ... will be linked by other (organisational) relationships.

2 Utilities and Preferences

- Assume we have just two agents: $Ag = \{i, j\}$.
- Agents are assumed to be **self-interested**: they *have preferences over how the environment is*.
- Assume $\Omega = \{\omega_1, \omega_2, \dots\}$ is the set of “outcomes” that agents have preferences over.
- We capture preferences by *utility functions*:

$$\begin{aligned} u_i : \Omega &\rightarrow \mathbb{R} \\ u_j : \Omega &\rightarrow \mathbb{R} \end{aligned}$$

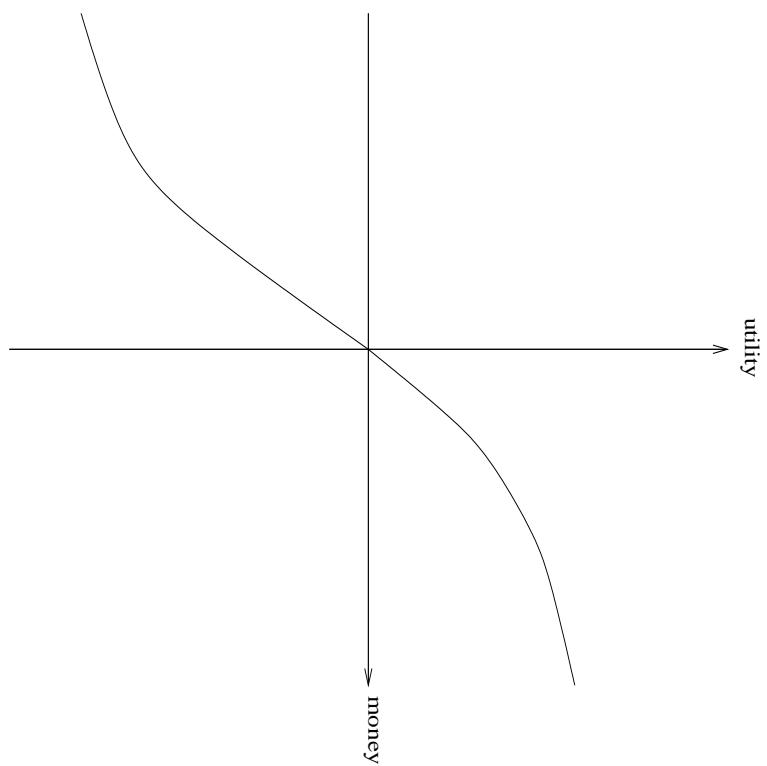
- Utility functions lead to *preference orderings* over outcomes:

$\omega \succeq_i \omega'$ means $u_i(\omega) \geq u_i(\omega')$

$\omega \succ_i \omega'$ means $u_i(\omega) > u_i(\omega')$

What is Utility?

- Utility is *not* money (but it is a useful analogy).
- Typical relationship between utility & money:



3 Multiagent Encounters

- We need a model of the environment in which these agents will act. . .
 - agents simultaneously choose an action to perform, and as a result of the actions they select, an outcome in Ω will result;
 - the *actual* outcome depends on the *combination* of actions;
 - assume each agent has just two possible actions that it can perform C (“cooperate”) and “ D ” (“defect”).

- Environment behaviour given by *state transformer function*:

$$\tau : \underbrace{A^C} \times \underbrace{A^C} \rightarrow \Omega$$

agent i 's action agent j 's action

- Here is a state transformer function:

$$\tau(D, D) = \omega_1 \quad \tau(D, C) = \omega_2 \quad \tau(C, D) = \omega_3 \quad \tau(C, C) = \omega_4$$

(This environment is sensitive to actions of both agents.)

- Here is another:

$$\tau(D, D) = \omega_1 \quad \tau(D, C) = \omega_1 \quad \tau(C, D) = \omega_1 \quad \tau(C, C) = \omega_1$$

(Neither agent has any influence in this environment.)

- And here is another:

$$\tau(D, D) = \omega_1 \quad \tau(D, C) = \omega_2 \quad \tau(C, D) = \omega_1 \quad \tau(C, C) = \omega_2$$

(This environment is controlled by j .)

Rational Action

- Suppose we have the case where *both* agents can influence the outcome, and they have utility functions as follows:

$$\begin{array}{llll} u_i(\omega_1) = 1 & u_i(\omega_2) = 1 & u_i(\omega_3) = 4 & u_i(\omega_4) = 4 \\ u_j(\omega_1) = 1 & u_j(\omega_2) = 4 & u_j(\omega_3) = 1 & u_j(\omega_4) = 4 \end{array}$$

- With a bit of abuse of notation:

$$\begin{array}{llll} u_i(D, D) = 1 & u_i(D, C) = 1 & u_i(C, D) = 4 & u_i(C, C) = 4 \\ u_j(D, D) = 1 & u_j(D, C) = 4 & u_j(C, D) = 1 & u_j(C, C) = 4 \end{array}$$

- Then agent i 's preferences are:

$$C, C \succeq_i C, D \succ_i D, C \succeq_i D, D$$

- “ C ” is the *rational choice* for i .

(Because i prefers all outcomes that arise through C over all outcomes that arise through D .)

Payoff Matrices

- We can characterise the previous scenario in a *payoff matrix*

		i	
		defect	coop
j	defect	1	4
	coop	1	4

- Agent i is the *column player*.
- Agent j is the *row player*.

Solution Concepts

- How will a rational agent will behave in any given scenario?
- Answered in *solution concepts*:
 - dominant strategy;
 - Nash equilibrium strategy;
 - Pareto optimal strategies;
 - strategies that maximise social welfare.

Dominant Strategies

- We will say that a strategy s_i is *dominant* for player i if no matter what strategy s_j agent j chooses, i will do at least as well playing s_i as it would doing anything else.
- Unfortunately, there isn't always a dominant strategy.

(Pure Strategy) Nash Equilibrium

- In general, we will say that two strategies s_1 and s_2 are in Nash equilibrium if:
 1. under the assumption that agent i plays s_1 , agent j can do no better than play s_2 ; and
 2. under the assumption that agent j plays s_2 , agent i can do no better than play s_1 .
- *Neither agent has any incentive to deviate from a Nash equilibrium.*
- Unfortunately:

1. *Not every interaction scenario has a Nash equilibrium.*
2. *Some interaction scenarios have more than one Nash equilibrium.*

Matching Pennies

Players i and j simultaneously choose the face of a coin, either “heads” or “tails”.

If they show the same face, then i wins, while if they show different faces, then j wins.

Matching Pennies: The Payoff Matrix

		i heads	i tails
		1	-1
j heads	-1	1	
	-1		1
j tails	1		-1

Mixed Strategies for Matching Pennies

- NO pair of strategies forms a pure strategy NE:
whatever pair of strategies is chosen, somebody will
wish they had done something else.
- The solution is to allow *mixed strategies*:
 - play “heads” with probability 0.5
 - play “tails” with probability 0.5.
- This is a NE strategy.

Mixed Strategies

- A mixed strategy has the form
 - play α_1 with probability p_1
 - play α_2 with probability p_2
 - ...
 - play α_k with probability p_k .such that $p_1 + p_2 + \dots + p_k = 1$.
- Nash proved that *every finite game has a Nash equilibrium in mixed strategies.*

Nash's Theorem

- Nash proved that *every finite game has a Nash equilibrium in mixed strategies.* (Unlike the case for *pure strategies.*)
- So this result overcomes the lack of solutions; but there still may be more than one Nash equilibrium. . .

Pareto Optimality

- An outcome is said to be *Pareto optimal* (or *Pareto efficient*) if there is no other outcome that makes one agent *better off* without making another agent *worse off*.
- If an outcome is Pareto optimal, then at least one agent will be reluctant to move away from it (because this agent will be worse off).

- If an outcome ω is *not* Pareto optimal, then there is another outcome ω' that makes *everyone* as happy, if not happier, than ω .

“Reasonable” agents would agree to move to ω' in this case. (Even if I don’t directly benefit from ω' , you can benefit without me suffering.)

Social Welfare

- The social welfare of an outcome ω is the sum of the utilities that each agent gets from ω :

$$\sum_{i \in A_g} u_i(\omega)$$

- Think of it as the “total amount of money in the system”.
- As a solution concept, may be appropriate when the whole system (all agents) has a single owner (then overall benefit of the system is important, not individuals).

Competitive and Zero-Sum Interactions

- Where preferences of agents are diametrically opposed we have *strictly competitive* scenarios.
- Zero-sum encounters are those where utilities sum to zero:

$$u_i(\omega) + u_j(\omega) = 0 \quad \text{for all } \omega \in \Omega.$$

- Zero sum encounters are bad news: for me to get +ve utility *you have to get negative utility!* The best outcome for me is the *worst* for you!

- Zero sum encounters in real life are very rare . . . but people frequently act as if they were in a zero sum game.

4 The Prisoner's Dilemma

Two men are collectively charged with a crime and held in separate cells, with no way of meeting or communicating.

They are told that:

- if one confesses and the other does not, the confessor will be freed, and the other will be jailed for three years;
- if both confess, then each will be jailed for two years.

Both prisoners know that if neither confesses, then they will each be jailed for one year.

- Payoff matrix for prisoner's dilemma:

		<i>i</i>	
		defect	coop
<i>j</i>	defect	2	1
	coop	4	3

- Top left: If both defect, then both get punishment for mutual defection.
- Top right: If *i* cooperates and *j* defects, *i* gets sucker's payoff of 1, while *j* gets 4.

- Bottom left: If j cooperates and i defects, j gets sucker's payoff of 1, while i gets 4.
- Bottom right: Reward for mutual cooperation.

What Should You Do?

- The *individual rational* action is *defect*.
This guarantees a payoff of no worse than 2, whereas cooperating guarantees a payoff of at most 1.
- So defection is the best response to all possible strategies: both agents defect, and get payoff = 2.
- But *intuition* says this is *not* the best outcome:
Surely they should both cooperate and each get payoff of 3!

Solution Concepts

- D is a dominant strategy.
- (D, D) is the only Nash equilibrium.
- All outcomes *except* (D, D) are Pareto optimal.
- (C, C) maximises social welfare.

- This apparent paradox is *the fundamental problem of multi-agent interactions*.
It appears to imply that *cooperation will not occur in societies of self-interested agents*.
- Real world examples:
 - nuclear arms reduction (“why don’t I keep mine. . . ”)
 - free rider systems — public transport;
 - in the UK — television licenses.
- The prisoner’s dilemma is *ubiquitous*.
- Can we recover cooperation?

Arguments for Recovering Cooperation

- Conclusions that some have drawn from this analysis:
 - the game theory notion of rational action is wrong!
 - somehow the dilemma is being formulated wrongly
- Arguments to recover cooperation:
 - We are not all machiavelli!
 - The other prisoner is my twin!
 - Program equilibria and mediators
 - The shadow of the future...

4.1 Program Equilibria

- The strategy you *really* want to play in the prisoner's dilemma is:

I'll cooperate if he will

- Program equilibria provide one way of enabling this.
- Each agent submits a *program strategy* to a *mediator* which *jointly executes* the strategies.

Crucially, strategies can be *conditioned on the strategies of the others*.

4.2 Program Equilibria

- Consider the following program:

```
IF HisProgram == ThisProgram THEN
  DO (C);
ELSE
  DO (D);
END-IF.
```

Here == is *textual comparison*.

- The best response to this program is *to submit the same program*, giving an outcome of (C, C) !

- You *can't* get the sucker's payoff by submitting this program.

4.3 The Iterated Prisoner's Dilemma

- One answer: *play the game more than once*.
If you know you will be meeting your opponent again, then the incentive to defect appears to evaporate.
- *Cooperation is the rational choice in the infinitely repeated prisoner's dilemma.*
(Hurrah!)

4.4 Backwards Induction

- But . . . suppose you both know that you will play the game exactly n times.
On round $n - 1$, you have an incentive to defect, to gain that extra bit of payoff. . .
But this makes round $n - 2$ the last “real”, and so you have an incentive to defect there, too.
This is the *backwards induction* problem.
- Playing the prisoner’s dilemma with a fixed, finite, pre-determined, commonly known number of rounds, defection is the best strategy.

4.5 Axelrod's Tournament

- Suppose you play iterated prisoner's dilemma against a *range* of opponents . . .
What strategy should you choose, so as to maximise your overall payoff?
- Axelrod (1984) investigated this problem, with a computer tournament for programs playing the prisoner's dilemma.

Strategies in Axelrod's Tournament

- ALLD:
“Always defect” — the *hawk* strategy;
- TIT-FOR-TAT:
 1. On round $u = 0$, cooperate.
 2. On round $u > 0$, do what your opponent did on round $u - 1$.
- TESTER:
On 1st round, defect. If the opponent retaliated, then play TIT-FOR-TAT. Otherwise intersperse cooperation & defection.

- JOSS:
AS TIT-FOR-TAT, except periodically defect.

Recipes for Success in Axelrod's Tournament

Axelrod suggests the following rules for succeeding in his tournament:

- *Don't be envious*:
Don't play as if it were zero sum!
- *Be nice*:
Start by cooperating, and reciprocate cooperation.
- *Retaliate appropriately*:
Always punish defection immediately, but use "measured" force — don't overdo it.

- *Don't hold grudges:*

Always reciprocate cooperation immediately.

5 Game of Chicken

- Consider another type of encounter — the *game of chicken*:

i

		<i>i</i>	
		defect	coop
<i>j</i>	defect	1	2
	coop	4	3

(Think of James Dean in *Rebel without a Cause*: swerving = coop, driving straight = defect.)

- Difference to prisoner's dilemma:

Mutual defection is most feared outcome.

(Whereas sucker's payoff is most feared in prisoner's dilemma.)

Solution Concepts

- There is no dominant strategy (in our sense).
- Strategy pairs (C, D) and (D, C) are Nash equilibria.
- All outcomes except (D, D) are Pareto optimal.
- All outcomes except (D, D) maximise social welfare.

6 Other Symmetric 2×2 Games

- Given the 4 possible outcomes of (symmetric) cooperate/defect games, there are 24 possible orderings on outcomes.

– $CC \succ_i CD \succ_i DC \succ_i DD$

Cooperation dominates.

– $DC \succ_i DD \succ_i CC \succ_i CD$

Deadlock. You will always do best by defecting.

– $DC \succ_i CC \succ_i DD \succ_i CD$

Prisoner's dilemma.

– $DC \succ_i CC \succ_i CD \succ_i DD$

Chicken.

$- CC \succ_i DC \succ_i DD \succ_i CD$

Stag hunt.