LECTURE 2: REQUIREMENTS

Software Engineering

Mike Wooldridge

Lecture 2 Software Engineering

‘1.1 The Requirements Document

e Should specify only external behaviour.
(Avoid implementation bias.)

e Should specify constraints on
implementation.

¢ Should be easy to change.

e Should serve as a reference for system
maintainers.

e Should document the expected system
lifecycle.

o Should describe desired responses to
unexpected inputs.

Mike Wooldridge 2

Lecture 2 Software Engineering

|1 Requirements Analysis and Spec|

o Involves:
— feasibility study;
- requirements analysis;
— requirements definition;
— requirements validation;
— requirements specification.
e Aim: to establish derive a complete,

official statement of what developers are
required to do:

The software requirements document.

Mike Wooldridge

Lecture 2 Software Engineering

|2 Requirements Analysisl

The role of the analyst is:
o To elicit requirements.
e To resolve different views.
e To advise on what is feasible.
o To clarify requirements.
o To document requirements.

e To negotiate and gain user’s agreement for
the spec.

Mike Wooldridge 3

Lecture 2 Software Engineering

2.1 How to Get Requirements

e Talk to the user:

— listen to needs;
— ask for clarification;
— record the views.

o Clarify views:

— resolve inconsistencies;

- generate a consensus.

e Important to involve all the stakeholders.

Lecture 2 Software Engineering

|2.3 Requirements Deﬁnition|

e Requirements definition is:

High-level, customer-oriented statement of
what system is to do.

e Should be accessible to all stakeholders.

e Two types of requirements:

— functional:
services the system should provide,
how it should respond to inputs, how it
should behave, what it should not do;
“The system should then display all the
titles of books written by the specified
author.”

— non-functional:
constraints the system should operate
under;

“Should be implemented on a Pentium
450 with 64MB of RAM and 2GB hard

disk.”
Mike Wooldridge 4 Mike Wooldridge 6
Lecture 2 Software Engineering Lecture 2 Software Engineering
e Should be:
— complete:

‘2.2 Problems with Analysis|

o Stakeholders don’t know what they want.

e Stakeholders may have unrealistic
expectations.

o Stakeholders use their own language.

e Different stakeholders have different
requirements.

e Political factors affect requirements.

e Economic/business factors create a
dynamic environment.

Mike Wooldridge 5

document all services to be provided;
— consistent:
not be contradictory.
— structured:
not thrown together!
- systematic:
include evidence of organisation.
— free of implementation bias:
not mandate a solution.
o Use of natural language leads to 3 key
problems:
- lack of clarity;
- requirements confusion;
- requirements amalgamation.

Mike Wooldridge 7

Lecture 2 Software Engineering

2.4 Non-Functional Requirements

e Speed:

— transactions per second;
- user/event response time;

— screen refresh time.
e Size:
- KBytes;
— Number of RAM chips.
e Ease of use:
- required average training time;
— number of help screens.

Mike Wooldridge 8

Lecture 2 Software Engineering

2.5 Kinds of Requirements

e Physical environment:

— where is the equipment to function?
— is there one location or several?
- are there any environmental restrictions
(temperature, humidity ...)?
o Interfaces:
- is the input coming from one or more
other systems?

— is the input going fo one or more other
systems?
- is there a prescribed medium that data

comes in/goes out as (e.g., floppy disk,
CD ROM)?

Mike Wooldridge 10

Lecture 2 Software Engineering

o Reliability:
— mean time to failure;
— availability.
e Robustness:
— time to restart after failure;

— percentage of events causing failure;

- freedom from data corruption on
failure.

e Portability:

— percentage of target-dependent
statements;

— number of target systems.

Mike Wooldridge 9

Lecture 2 Software Engineering

e User and human interfaces:

- who will use the system?
— will there be several types of user?
— what is the skill level of each user?

— what training will be required for
users?

— how easy will it be for users to
use/misuse the system?
e Functionality:

- what will the system do?
- when will the system do it?

- are there any constraints on execution
speeds, response times, or throughput?

Mike Wooldridge 11

Lecture 2 Software Engineering

e Documentation:

— how much documentation is required?

— to what audience is the document
addressed?

— what help features must be provided?
e Data:

— what format should input/output data
have?

— how often will it be received or sent?

— how accurate must it be?

— to what degree of precision must
calculations be carried out to?

— how much data flows through the
system?

— must any data be retained?

Lecture 2 Software Engineering

|3 Requirements Specification Documets

IEEE Standard 830-1984 specifies three parts:
1. Introduction
2. General Description

3. Specific Requirements

Mike Wooldridge 12 Mike Wooldridge 14
Lecture 2 Software Engineering Lecture 2 Software Engineering
e Security:

— must access to the system be controlled?

— how will one user’s data be isolated
from another’s?

— how often will the system be backed
up?

— must backup copies be stored at a
separate location?

- should precautions be taken against fire
& theft?

® Quality assurance:

— what are the requirements for
reliability?

— what is the mean time between failure?

— what faults is the system required to
catch?

Mike Wooldridge 13

[3.1 Part 1: Introduction]

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, acronyms, abbreviations
1.4 References

1.5 Overview

Mike Wooldridge 15

Lecture 2 Software Engineering

‘3.2 Part 2: General Description|

2. General Description

2.1 Product perspective

2.2 Product functions

2.3 User characteristics

2.4 General constraints

2.5 Assumptions and dependencies

Lecture 2 Software Engineering

3.2 External interface requirements

3.2.1 User interfaces

3.2.2 Hardware interfaces

3.2.3 Software interfaces

3.2.4 Communications interfaces
3.3 Performance requirements

3.4 Design constraints

Mike Wooldridge 16 Mike Wooldridge 18
Lecture 2 Software Engineering Lecture 2 Software Engineering
3.3 Part 3: Specific Requirements
3. Specific Requirements 3.5 Attributes
3.1 Functional requirements 3.5.1 Security
3.1.1 Functional requirement 1 3.5.2 Maintainability

3.1.1.1 Introduction

3.1.1.2 Inputs

3.1.1.3 Processing

3.1.1.4 Outputs
3.1.2 Functional requirement 2
3.1.n Functional requirement n

Mike Wooldridge 17

3.6 Other requirements

Mike Wooldridge 19

Lecture 2 Software Engineering

‘4 Problems with Requirements

e Noise:
meaningless or irrelevant information.

o Silence:
missing elements.

o Querspecification/implementation bias:
telling the designer how to do their job.

o Contradiction:

when two descriptions of the same thing
differ.

o Unsatisfiability:
specifying something impossible.
o Ambiguity:
not being precise.
o Wishful thinking:
when unrealistic demands are made.

Mike Wooldridge 20

Lecture 2 Software Engineering

e Periodic requirements reviews are another
important technique.

e Requirements reviews checks for:
— Verifiability:
is the requirement realistically testable?
— Comprehensibility:
is the requirement understood by
procurers and end users?
— Traceability:

is the origin and rationale of a
requirement stated?

— Adaptability:
is it possible to change a requirement
without affecting other requirements?

Mike Wooldridge 22

Lecture 2 Software Engineering

‘5 Requirements Validation|

e The process of showing that requirements
define the systems the customer wants.

o Invalid requirements are very expensive!
e Need to check that requirements are:

— complete;
— correct.

e Prototyping is a valuable validation tool.
Particularly useful for GUI-based systems.

Mike Wooldridge 21

