LECTURE 2: REQUIREMENTS

Software Engineering
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‘1.1 The Requirements Document

e Should specify only external behaviour.
(Avoid implementation bias.)

e Should specify constraints on
implementation.

¢ Should be easy to change.

e Should serve as a reference for system
maintainers.

e Should document the expected system
lifecycle.

o Should describe desired responses to
unexpected inputs.

Mike Wooldridge 2

Lecture 2 Software Engineering

|1 Requirements Analysis and Spec|

o Involves:
— feasibility study;
- requirements analysis;
— requirements definition;
— requirements validation;
— requirements specification.
e Aim: to establish derive a complete,

official statement of what developers are
required to do:

The software requirements document.

Mike Wooldridge

Lecture 2 Software Engineering

|2 Requirements Analysisl

The role of the analyst is:
o To elicit requirements.
e To resolve different views.
e To advise on what is feasible.
o To clarify requirements.
o To document requirements.

e To negotiate and gain user’s agreement for
the spec.
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2.1 How to Get Requirements

e Talk to the user:

— listen to needs;
— ask for clarification;
— record the views.

o Clarify views:

— resolve inconsistencies;

- generate a consensus.

e Important to involve all the stakeholders.
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|2.3 Requirements Deﬁnition|

e Requirements definition is:

High-level, customer-oriented statement of
what system is to do.

e Should be accessible to all stakeholders.

e Two types of requirements:

— functional:
services the system should provide,
how it should respond to inputs, how it
should behave, what it should not do;
“The system should then display all the
titles of books written by the specified
author.”

— non-functional:
constraints the system should operate
under;

“Should be implemented on a Pentium
450 with 64MB of RAM and 2GB hard

disk.”
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e Should be:
— complete:

‘2.2 Problems with Analysis|

o Stakeholders don’t know what they want.

e Stakeholders may have unrealistic
expectations.

o Stakeholders use their own language.

e Different stakeholders have different
requirements.

e Political factors affect requirements.

e Economic/business factors create a
dynamic environment.

Mike Wooldridge 5

document all services to be provided;
— consistent:
not be contradictory.
— structured:
not thrown together!
- systematic:
include evidence of organisation.
— free of implementation bias:
not mandate a solution.
o Use of natural language leads to 3 key
problems:
- lack of clarity;
- requirements confusion;
- requirements amalgamation.
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2.4 Non-Functional Requirements

e Speed:

— transactions per second;
- user/event response time;

— screen refresh time.
e Size:
- KBytes;
— Number of RAM chips.
e Ease of use:
- required average training time;
— number of help screens.
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2.5 Kinds of Requirements

e Physical environment:

— where is the equipment to function?
— is there one location or several?
- are there any environmental restrictions
(temperature, humidity ...)?
o Interfaces:
- is the input coming from one or more
other systems?

— is the input going fo one or more other
systems?
- is there a prescribed medium that data

comes in/goes out as (e.g., floppy disk,
CD ROM)?
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o Reliability:
— mean time to failure;
— availability.
e Robustness:
— time to restart after failure;

— percentage of events causing failure;

- freedom from data corruption on
failure.

e Portability:

— percentage of target-dependent
statements;

— number of target systems.
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e User and human interfaces:

- who will use the system?
— will there be several types of user?
— what is the skill level of each user?

— what training will be required for
users?

— how easy will it be for users to
use/misuse the system?
e Functionality:

- what will the system do?
- when will the system do it?

- are there any constraints on execution
speeds, response times, or throughput?
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e Documentation:

— how much documentation is required?

— to what audience is the document
addressed?

— what help features must be provided?
e Data:

— what format should input/output data
have?

— how often will it be received or sent?

— how accurate must it be?

— to what degree of precision must
calculations be carried out to?

— how much data flows through the
system?

— must any data be retained?

Lecture 2 Software Engineering

|3 Requirements Specification Documets

IEEE Standard 830-1984 specifies three parts:
1. Introduction
2. General Description

3. Specific Requirements
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e Security:

— must access to the system be controlled?

— how will one user’s data be isolated
from another’s?

— how often will the system be backed
up?

— must backup copies be stored at a
separate location?

- should precautions be taken against fire
& theft?

® Quality assurance:

— what are the requirements for
reliability?

— what is the mean time between failure?

— what faults is the system required to
catch?
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[3.1 Part 1: Introduction]

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, acronyms, abbreviations
1.4 References

1.5 Overview
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‘3.2 Part 2: General Description|

2. General Description

2.1 Product perspective

2.2 Product functions

2.3 User characteristics

2.4 General constraints

2.5 Assumptions and dependencies
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3.2 External interface requirements

3.2.1 User interfaces

3.2.2 Hardware interfaces

3.2.3 Software interfaces

3.2.4 Communications interfaces
3.3 Performance requirements

3.4 Design constraints
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3.3 Part 3: Specific Requirements
3. Specific Requirements 3.5 Attributes
3.1 Functional requirements 3.5.1 Security
3.1.1 Functional requirement 1 3.5.2 Maintainability

3.1.1.1 Introduction

3.1.1.2 Inputs

3.1.1.3 Processing

3.1.1.4 Outputs
3.1.2 Functional requirement 2
3.1.n Functional requirement n
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3.6 Other requirements
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‘4 Problems with Requirements

e Noise:
meaningless or irrelevant information.

o Silence:
missing elements.

o Querspecification/implementation bias:
telling the designer how to do their job.

o Contradiction:

when two descriptions of the same thing
differ.

o Unsatisfiability:
specifying something impossible.
o Ambiguity:
not being precise.
o Wishful thinking:
when unrealistic demands are made.
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e Periodic requirements reviews are another
important technique.

e Requirements reviews checks for:
— Verifiability:
is the requirement realistically testable?
— Comprehensibility:
is the requirement understood by
procurers and end users?
— Traceability:

is the origin and rationale of a
requirement stated?

— Adaptability:
is it possible to change a requirement
without affecting other requirements?
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‘5 Requirements Validation|

e The process of showing that requirements
define the systems the customer wants.

o Invalid requirements are very expensive!
e Need to check that requirements are:

— complete;
— correct.

e Prototyping is a valuable validation tool.
Particularly useful for GUI-based systems.
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