
LECTURE 4: TESTING

Software Engineering

Mike Wooldridge



Lecture 4 Software Engineering

1 Testing

• Testing is critically important for quality
software:

• Industry averages:

– 30-85 errors per 1000 lines of code;
– 0.5-3 errors per 1000 lines of code not

detected before delivery.

• The ability to test a system depends on a
thorough, competent requirements
document.

Mike Wooldridge 1



Lecture 4 Software Engineering

1.1 Bugs

• Errors of all kinds are known as “bugs”.

• Bugs come in two main types:

– compile-time (e.g., syntax errors)
which are cheap to fix

– run-time (usually logical errors)
which are expensive to fix.

Mike Wooldridge 2



Lecture 4 Software Engineering

1.2 Testing Strategies

• Never possible for designer to anticipate
every possible use of system.

• Systematic testing therefore essential.

• Offline strategies:

1. syntax checking & “lint” testers;
2. walkthroughs (“dry runs”);
3. inspections

• Online strategies:

1. black box testing;
2. white box testing.

Mike Wooldridge 3



Lecture 4 Software Engineering

1.3 Syntax Checking

• Detecting errors at compile time is preferable
to having them occur at run time!

• Syntax checking will simply determine
whether a program “looks” acceptable —
but completely dumb exercise.

• “lint” programs try to do deeper tests on
program code:

– will detect “this line will never be
executed”

– “this variable may not be initialised”

(The Java compiler does a lot of this in the
form of “warnings”.)

Mike Wooldridge 4



Lecture 4 Software Engineering

1.4 Inspections

• Formal procedure, where a team of
programmers read through code,
explaining what it does.

• Inspectors play “devils advocate”, trying
to find bugs.

• Time consuming process!

• Can be divisive/lead to interpersonal
problems.

• Often used only for safety/time critical
systems.

Mike Wooldridge 5



Lecture 4 Software Engineering

1.5 Walkthroughs/Dry Runs

• Similar to inspections, except that
inspectors “mentally execute” the code
using simple test data.

• Expensive in terms of human resources.

• Impossible for many systems.

• Usually used as discussion aid.

Mike Wooldridge 6



Lecture 4 Software Engineering

1.6 Black Box Testing

• In black box testing, we ignore the internals
of the system, and focus on relationship
between inputs and outputs.

• Exhaustive testing would mean examining
output of system for every conceivable
input.
Clearly not practical for any real system!

• Instead, we use equivalence partitioning and
boundary analysis to identify characteristic
inputs.

Mike Wooldridge 7



Lecture 4 Software Engineering

Equivalence Partitioning

• Suppose system asks for “a number
between 100 and 999 inclusive”.

• This gives three equivalence classes of input:

– less that 100
– 100 to 999
– greater than 999

•We thus test the system against
characteristic values from each
equivalence class.
Example: 50 (invalid), 500 (valid), 1500
(invalid).

Mike Wooldridge 8



Lecture 4 Software Engineering

Boundary Analysis

• Arises from the fact that most program fail
at input boundaries.

• Suppose system asks for “a number
between 100 and 999 inclusive”.

• The boundaries are 100 and 999.

•We therefore test for values:

99 100 101︸ ︷︷ ︸
lower boundary

998 999 1000︸ ︷︷ ︸
upper boundary

Mike Wooldridge 9



Lecture 4 Software Engineering

1.7 White Box Testing

• In white box testing, we use knowledge of
the internal structure of systems to guide
development of tests.

• The ideal: examine every possible run of a
system.
Not possible in practice!

• Instead: aim to test every statement at
least once!

• EXAMPLE.

if (x > 5) {
System.out.println(‘‘hello’’);

} else {
System.out.println(‘‘bye’’);

}

There are two possible paths through this
code, corresponding to x > 5 and x ≤ 5.
Aim to cause each one to be executed.

Mike Wooldridge 10



Lecture 4 Software Engineering

2 Testing Plans

• Testing must be taken seriously, and
rigorous test plans or test scripts developed.

• These are generated from requirements
analysis document (for black box) and
program code (for white box).

• Distinguish between:

1. unit tests;
2. integration tests;
3. system tests.

Mike Wooldridge 11



Lecture 4 Software Engineering

3 Alpha and Beta Testing

• In-house testing is usually called alpha
testing.

• For software products, there is usually an
additional stage of testing, called beta
testing.

• Involves distributing tested code to “beta
test sites” (usually prospective customers)
for evaluation and use.

• Typically involves a formal procedure for
reporting bugs.

• Delivering buggy beta test code is
embarrassing!

Mike Wooldridge 12


