LECTURE 10: FIRST-ORDER LOGIC

Software Engineering

Mike Wooldridge

Lecture 10 Software Engineering

e Consider the following argument:

all monitors are ready
X12 is a monitor
therefore X12 is ready

o Intuitively, we can see that this argument
is sound: if we accept that the two premises
(i.e., the statements above the line) are
true, then we must accept that the
conclusion is true also.

(Later, we shall see how we can do this
kind of reasoning formally.)

e The only way we could represent these
statements in propositional logic would
be:

— let p be all monitors ready;
—letgbe...

And the sense of the argument would be
lost; in fact, if we represented the three
statement in propositional logic, then we
could not derive the conclusion.

Mike Wooldridge 2

Lecture 10 Software Engineering

|1 Why not Propositional Logic?'

o Consider the following statements:

— all monitors are ready;
— X12 is a monitor.

e We saw in an earlier lecture that these
statements are propositions: their meaning
is either true or false.

e Propositional logic is the most abstract
level at which we can study logic.

o As we shall say, it is too coarse grained to
allow us to represent and reason about the
kind of statement we need to write in
formal specification.

Mike Wooldridge 1

Lecture 10 Software Engineering

‘2 First-Order Logic: Syntaxl

e We shall now introduce a generalisation of
propositional logic called first-order logic
(FOL). This new logic affords us much
greater expressive power.

o First, we shall look at how the language of
first-order logic is put together.

Mike Wooldridge 3

Lecture 10 Software Engineering

e The basic components of FOL are called
terms.

o Essentially, a term is an object that denotes
some object other than true or false.

e The simplest kind of term is a constant.

e A value such as 8 is a constant; the
denotation of this term is the number 8 — a
value that is contained in the sets IN and Z.

o We often use constants in maths; we
introduce them by writing things like

Let S be the set {1, 2, 3}.

In this case, we have introduced a constant
and made its denotation clear; we have
given it an interpretation.

e We can have constants that stand for any
kind of object; for example, we could have
a constant that stood for (denoted) the
individual ‘Michael Wooldridge’.

Mike Wooldridge 4

Lecture 10 Software Engineering

e We can now introduce a more complex
class of terms — functions.

e The idea of functional terms in logic is
similar to the idea of a function in
programming: recall that in programming,
a function is a procedure that takes some
arguments, and returns a value.

In Modula-2:
PROCEDURE f(al:T1; ... an:Tn) : T;

this function takes n arguments; the first is
of type T1, the second is of type T2, and so
on. The function returns a value of type T.

¢ In FOL, we have a set of function symbols;
each symbol corresponds to a particular
function. (It denotes some function.)

e Each function symbol is associated with a
natural number called its arity. This is just
the number of arguments it takes.

Mike Wooldridge 6

Lecture 10 Software Engineering

e The second simplest kind of term is a
variable.

e A variable can stand for anything in a set
of objects.

e That is, a variable of type IN could stand
for any of the natural numbers.

e Lets just formalise this before going any
further.

e Definition: A constant of type T is a name
that denotes some particular object in the
set T.

o Definition: A variable of type T is a name
that can denote any value in the set T.

Mike Wooldridge 5

Lecture 10 Software Engineering

e Each function symbol has a return-type
associated with it. ..

e ... and each function symbol has an
argument type associated with it.

o A functional term is then built up by
applying a function symbol to the
appropriate number of terms, of the

appropriate type.
e Formally ...

Definition: Let f be an arbitrary function
symbol of type T, with arity n € IN, taking
arguments of type T1, . .., T, respectively.
Also, let 7y, ..., T, be terms of type

Ty, ..., Ty respectively. Then

JAG T)

is a functional term.

Mike Wooldridge 7

Lecture 10 Software Engineering

o All this sounds complicated, but isn't.
Consider a function plus, which takes just
two arguments, each of which is a natural
number, and returns the first number
added to the second.

Then:

- plus(2,3) is an acceptable functional

term;

- plus(0,1) is acceptable;

— plus(plus(1,2),4) is acceptable;

- plus(plus(plus(0, 1), 2),4) is acceptable;
but

- plus(—1,0) isn’t;

- and neither is plus(0.1, 2).

Mike Wooldridge 8

Lecture 10 Software Engineering

2.2 Predicates]

e In addition to having terms, FOL has
relational operators, which capture
relationships between objects.

o The language of FOL contains a stock of
predicate symbols.

e These symbols stand for relationships
between objects.

e Again, each predicate symbol has an
associated arity. ..

e ... and each argument has a type.

o Definition: Let P be a predicate symbol of
arity n € IN, which takes arguments of

types T1,...,Ty,. Thenif 7y,.. ., 7, are terms
of type T, .., T, respectively, then
P(riy ...,)

is a predicate, which will either be true or
false under some interpretation.

Mike Wooldridge 10

Lecture 10 Software Engineering

¢ In maths, we have many functions; the
obvious ones are

+ =/ *x sincos...
e The fact that we write
2+3
instead of something like
plus(2,3)

is merely a matter of convention, and is
not relevant from the point of view of
logic; all these are functions in exactly the
way we have defined.

e Using functions, constants, and variables,
we can build up expressions, e.g.:

(x +3) *sin90
(which might just as well be written
times(plus(x, 3), sin(90))

for all it matters.)

Mike Wooldridge 9

Lecture 10 Software Engineering

e EXAMPLE. Let gt be a predicate symbol
with the intended interpretation ‘greater
than’. It takes two arguments, each of
which is a natural number.

Then:
- gt(4, 3) is a predicate, which evaluates
to true;
- gt(3,4) is a predicate, which evaluates
to false.
but
- gt(—1,2) isn’t a predicate.

e The following are standard mathematical
predicate symbols:

><=><#eCC...

e Once again, the fact that we are normally
write x > y instead of gt(x, y) is just
convention.

o We can build up more complex predicates
using the connectives of propositional
logic:

2>3)A6=T7)V(Vi=2)

Mike Wooldridge 11

Lecture 10 Software Engineering

e So a predicate just expresses a relationship
between some values.

e What happens if a predicate contains
variables: can we tell if it is true or false?
Not usually; we need to know an
interpretation for the variables.

e A predicate that contains no variables is a
proposition.

e Predicates of arity 1 are called properties.

e EXAMPLE. The follolwing are properties:

Man(x)
Mortal(x)
Malfunctioning(x).

o Predicate that have arity O (i.e., take no
arguments) are called primitive propositions.

Mike Wooldridge 12

Lecture 10 Software Engineering

e In Z, we shall use three quantifers:
V — the universal quantifier;
is read ‘for all...’

3 — the existential quantifier;
is read ‘there exists. ..’

3, — the unique quantifier;
is read ‘there exists a unique...’

Mike Wooldridge 14

Lecture 10 Software Engineering

3 Quantifiers

e We now come to the central part of first
order logic: quantification.

o Consider trying to represent the following
statements:

— all men have a mother;
— every natural number has a prime factor.

e We can’t represent these using the
apparatus we’ve got so far; we need
quantifiers.

Mike Wooldridge 13

Lecture 10 Software Engineering

e The simplest form of quantified formula in
Zis as follows:

quantifier signature o predicate
where

— quantifier is one of V, 3, 3y;
— signature is of the form

variable : type

— and predicate is a predicate.

Mike Wooldridge 15

Lecture 10 Software Engineering

¢ EXAMPLES.

- Vx : Man e Mortal(x)

‘For all x of type Man, x is mortal.”
(i.e. all men are mortal)

- Vx : Man e 31y : Woman e MotherOf (x,y)
‘For all x of type Man, there exists a
unique y of type Woman, such that y is
the mother of x.’

— Jm : Monitor e MonitorState(m, ready)
‘There exists a monitor that is in a ready
state.”

— Vr : Reactor e 31t : 100 .. 1000 e Temp(r) =
t

‘Every reactor will have a temperature
in the range 100 to 1000.”

Mike Wooldridge 16

Lecture 10 Software Engineering

e Note that universal quantification is
similar to conjunction:

Vn : {2,4,6} e Even(n)
is the same as

Even(2) A Even(4) A Even(6).

e In the same way, existential quantification
is the same as disjunction:

In: {7,8,9} e Prime(n)
is the same as

Prime(7) V Prime(8) V Prime(9).

Mike Wooldridge 18

Lecture 10 Software Engineering

® More examples:

—In:Nen=(nxn)
‘Some natural number is equal to its
own square.’
— Jc : EC o Borders(c, Albania)
‘Some EC country borders Albania.’
—Vm,n : Person e =Superior(m,n)
‘No person is superior to another.’
—Vm : Person @ —3n : Person e
Superior(m,n)
Ditto.

Mike Wooldridge 17

Lecture 10 Software Engineering

e The universal and existential quantifiers
are in fact duals of each other:

Vx:TeP(x) & —3x:T e —P(x)
Saying that everything has some property is
the same as saying that there is nothing that
does not have the property.

dx:TeP(x) & —Vx:T e —P(x)

Saying that there is something that has the
property is the same as saying that its not the
case that everything doesn’t have the property.

Mike Wooldridge 19

Lecture 10 Software Engineering

|5 Decidability|

e In propositional logic, we saw that some
formulae were tautologies — they had the
property of being true under all
interpretations.

o We also saw that there was a procedure
which could be used to tell whether any
formula was a tautology — this procedure
was the truth-table method.

e A formula of FOL that is true under all
interpretations is said to be valid.

e Now we can’t use truth tables to tell us
whether a formula of FOL is valid.

o Is there any other procedure that we can
use, that will be guaranteed to tell us, in a
finite amount of time, whether a FOL
formula is, or is not, valid?

e The answer is no.
e FOL is for this reason said to be

undecidable.

Mike Wooldridge 20

