LECTURE 12: Z SPECIFICATIONS &
THE SCHEMA CALCULUS

Software Engineering

Mike Wooldridge

Lecture 12 Software Engineering

1 The Truth About Schema Inclusion

e We saw last week how, a schema could be
included by just listing its name in the
declarations part of a schema. We now
look at what this actually means.

e Suppose we had the following definition:

and later on

S
S (* schema inclusion *)
03 T3

Ps

Mike Wooldridge 1

Lecture 12 Software Engineering

e Then this would have been equivalent to:

-5

Mike Wooldridge 2

Lecture 12 Software Engineering

e We now need to introduce schema
decoration.

e Suppose we had the following declaration:

S5
51
P,

then this declaration would have been
equivalent to

53
U’l : T1
U’Q) T2

P;| with all references to vy, 05
P, | changed to v}, v,.
P,

e Remember that the decorated form of a variable
means “the variable after the operation has
been performed”; the undecorated version
means “the variable before the operation has
been performed”.

Mike Wooldridge 3

Lecture 12 Software Engineering

e [.et’'s now consider the A notation.

e Suppose we had:

Y
AS,

Ps

e This would have been equivalent to

S,
Sl (* include 51 *)
S| (* include S’ *)
Ps

Mike Wooldridge 4

Lecture 12 Software Engineering

e The = notation means something similar.
Suppose we had the schema:

S5
=S,
Ps

then this would expand to

55
51
51

e So when we use the = notation before a
schema, it means “include the decorated
and undecorated version of this schema,
with the postcondition that all the
variables remain unchanged.”

Mike Wooldridge 5

Lecture 12 Software Engineering

2 The Schema Calculus

e One of the nice things about Z is that it
allows us some sort of modular
construction; we can build things in little
pieces and put them together to make big
pieces.

e The way we do this is by using the schema
calculus.

e First we need to introduce horizontal form
schemas (as opposed to the vertical form
schemas we have been looking at so far).

Mike Wooldridge 6

Lecture 12 Software Engineering

e Definition: The following vertical-form
schema

S
Declarations

P
P,

Py

may be defined in the following horizontal
form

S = |Declarations | Py; Py; -« - Py

e The symbol = is for schema definition; it
may be read ‘is defined to be’.

e Using =, we can make one schema an alias
for another:

NewPhoneBook = PhoneBooks

e On the RHS of the = symbol can be any
valid schema calculus expression.

Mike Wooldridge 7

Lecture 12 Software Engineering

e Such an expression may be a schema
definition (as above); but we can also
make new schemas using the
propositional connectives A, V, =, =,
Although these symbols are the same as in
propositional logic, they have a different
(but related) meaning.

e Definition: Two schemas are said to be
type compatible if every variable common
to both has the same type in both.

e We can use the connectives to make new
schemas out of old ones only if they are
type compatible. Let o be an arbitrary
unary connective, 3 be an arbitrary binary
connective, and S and T be the two
schemas

S=[Dyi -+: Dy | Py; ---; P
T =[Duny1; -+ Dy | Puy1; o Pn+q]

a S is the following schema

Dy; --+; Dy | a(Py A -+ A Py
If Sand T are type compatible, then S 5 T
is the following schema

D1; - Dintp |

(PyA -+ APp)B(Pryi A -+ A Pryg))

Mike Wooldridge 8

Lecture 12 Software Engineering

Mike Wooldridge 9

Lecture 12 Software Engineering

e EXAMPLE: Specification of a robust ‘Find’
operation (i.e. one whose behaviour is
defined even when the input name is not
known).

e First define a schema which assigns the
string ‘okay’ to a variable. This schema
will be used to signify that an operation
has been successful.

_ Success
rep! : REPORT
rep! = ‘okay’

Mike Wooldridge 10

Lecture 12 Software Engineering

e Then define a schema to capture the
situation where a phone number is not in
the database. Note that the schema causes
an error message to be assigned to the
report variable rep!.

~ NotKnown
=PhoneBook

name? : NAME
rep! : REPORT

name? & known
rep! = ‘name not known'’

Mike Wooldridge 1

Lecture 12 Software Engineering

e The robust 'Find” operation is

DoFindQOp
= (Find N Success) V NotKnown

the full expansion of which is:

~ DoFindOp
known : IP NAME
known' : P NAME
tel : NAME +— PHONE
tel - NAME - PHONE
name? : PHONE
phone! : PHONE
rep! : REPORT

((dom tel = known N dom tel’ = known
N known' = known A tel' = tel

N\ name? € known

A phone! = tel(name?))

A rep! = ‘okay’)

V

(dom tel = known N dom tel' = known
N known' = known A tel’ = tel

A name? & known

A rep! = ‘name not known')

Mike Wooldridge 12

Lecture 12 Software Engineering

o After logical simplification, the expanded
schema becomes:

~DoFindOp
known : IP NAME
known' : P NAME
tel : NAME +— PHONE
tel : NAME - PHONE
name? : PHONE
phone! : PHONE
rep! : REPORT

dom tel = known
A known' = known A tel’ = tel
A ((name? € known

A phone! = tel(name?)

A rep! = ‘okay’)

V

(name? ¢ known

A rep! = ‘name not known'))

Mike Wooldridge 13

Lecture 12 Software Engineering

Things to Note

e The use of abstraction: The derived
version of DoFindOp is easier to read and
understand than the expanded version!

e The behaviour of the system is now
rigorously specified. For instance, we
could prove that, when the precondition of
the find operation is satisfied, then a
phone number is found.

e Notice that the value of the variable phone!
is undefined when the operation fails.

Mike Wooldridge 14

