
LECTURE 14: BAGS (MULTISETS)

Software Engineering

Mike Wooldridge

Lecture 14 Software Engineering

1 Bags

•We have seen that sets are unordered
collections of items, which do not contain
duplicates.

• A sequence is an ordered collection of
items, that may contain duplicates.

• A bag is an unordered collection of items
that may contain duplicates.

• Bags are sometimes called multisets.

Ordered? Duplicates?
Set N N
Sequence Y Y
Bag N Y

Mike Wooldridge 1

Lecture 14 Software Engineering

• Definition: The set of all bags over type T
is given by the expression

bag T.

• Like sets and sequences, bags may be
enumerated, by listing theeir contents
between Strachey brackets: [[]].

• EXAMPLE. Suppose

B : bag IN

then

B == [[1, 1, 2, 3]]

assigns to B the bag containing the value 1
twice, the value 2 once, and the value 3
once.
Note that this is not the same as the set

{1, 2, 3}.

However,

[[1, 1, 2, 3]] = [[1, 2, 3, 1]].

Mike Wooldridge 2

Lecture 14 Software Engineering

2 Bag Membership and Sub-bags

• The ‘equivalent’ of the set membership
predicate ∈ is ‘in’.
(This is sometime written ‘ ’.)

• Definition: If
B : bag T
x : T

then the predicate

x in B

is true iff x appears in B at least once.

• The ‘equivalent’ of the subset predicate ⊂
is v.

• Definition: If

B1,B2 : bag T

then the predicate

B1 v B2

is true iff each element that occurs in B1

occurs in B1 no more often than it occurs in
B2.

Mike Wooldridge 3

Lecture 14 Software Engineering

• Summary:

a in b a is a member of bag b
b v c b is a sub-bag of c

• EXAMPLES.
jan in [[mar,mar, feb]]

¬(apr in [[mar,mar, feb]])

[[jan, feb]] v [[jan,mar, feb, apr]]

[[jan, feb]] v [[jan, feb]]

• Some theorems about bag membership
and sub-bags.

[[]] v B
B v C ∧ C v B ⇔ B = C
B v C ∧ C v D ⇒ B v D

Mike Wooldridge 4

Lecture 14 Software Engineering

3 Counting Bags

• Suppose we want to know how many
times a value x occurs in bag B. We use #:

: bag T × T → IN

• EXAMPLE. If

storms == [[jan, jan, feb, dec]]

then
storms # jan = 2

storms # dec = 1

storms # apr = 0

• Definition: If
B : bag T
x : T

then the number of times x occurs in B (a
natural number) is given by the expression

B # x.

Mike Wooldridge 5

Lecture 14 Software Engineering

4 Scaling Bags

• Another common operation we want to do
is scale bags; that is, we want to ‘multiply’
their contents. We do this using the bag
scaling operator: ⊗.

• EXAMPLE. Let

storms == [[jan, jan, feb]]

then
2⊗ storms =

[[jan, jan, jan, jan, feb, feb]].

• Definition: If
B : bag T
n : IN

then

n⊗ B

is a bag which contains the same elements
as B, except that every element that occurs
m times in B occurs n ∗m times in n⊗ B.

Mike Wooldridge 6

Lecture 14 Software Engineering

• Some theorems about scaling. . .

n⊗ [[]] = [[]]

0⊗ B = [[]]

1⊗ B = B
(n ∗m)⊗ B = n⊗ (m⊗ B)

Mike Wooldridge 7

Lecture 14 Software Engineering

5 Bag Union

• Just as there is a set union operator, so
there is a bag union operator.

• EXAMPLE. Let

storms == [[jan, jan, feb]]

then

storms] [[mar]] = [[jan, jan, feb,mar]]

storms] [[jan]] = [[jan, jan, jan, feb]]

• Definition: If

B1,B2 : bag T

then

B1] B2

is bag that contains just those values that
occur in either B1 or B2, except that the
number of times a value x occurs in B1] B2

is equal to (B1#x) + (B2#x).

• There is a bag difference operator, ∪− . . .

Mike Wooldridge 8

Lecture 14 Software Engineering

6 Making Bags out of Sequences

• One last thing we often want to do is to
make a bag out of a sequence, by counting
up all number of times in a sequence. We
do this using items.
EXAMPLE.

items〈a, b, a, b, c〉 = [[a, a, b, b, c]]
items〈a, c, d, a, a〉 = [[a, a, a, c, d]]

• Definition: If

σ : seq T

then items(σ) is a bag over T such that a
value x occurs in items(σ) exactly as many
times as it appears in σ.

Mike Wooldridge 9

Lecture 14 Software Engineering

7 A Model for Bags

• In the previous lecture, we saw that
sequences are defined in terms of
functions.

〈a, b, c〉 = {1 7→ a, 2 7→ b, 3 7→ c}.

Bags are defined in a similar way:

bag T == T 7→ IN1

• So the bag

[[jan, feb, jan]]

is really the function

{jan 7→ 2, feb 7→ 1}.

• So we can use all the function manipuating
operations to manipulate bags.

• In particular:

dom[[a1, . . . , an]] = {a1, . . . , an}
and so

dom[[jan, jan, feb]] = {jan, feb}.

• Taking the range of a bag is not generally
as useful.

Mike Wooldridge 10

Lecture 14 Software Engineering

• QUESTION: If bags are defined in this
way, then how do we define all the
operations on them?

• The difficult one is #; given this, the others
are all more or less easy. . .

• First, ⊗:

a 7→ (n ∗m) ∈ (B⊗m)⇔ a 7→ n ∈ B

• Now, ‘in’:

x in B⇔ (B#x) > 0

• The v predicate is a bit more complicated.

∀B1,B2 : bag T •
B1 v B2 ⇔
∀x : T • B1#x ≤ B2#x

Mike Wooldridge 11

