LECTURE 16: VENDING MACHINE
CASE STUDY

Software Engineering

Mike Wooldridge




Lecture 16 Software Engineering

1 Specification of a Vending Machine

e In this lecture, we will give a complete
specification of a vending machine — the
sort you buy cans of coke or cigarettes
from.

e First, we need to introduce some types; the
first one will be COIN, representing all the
coins that are accepted by the machine.

COIN == {100, 50, 20, 10, 5,2, 1}
e That is, there are coins in denominations
of 100, 50, 20, 10, 5, 2, and 1 pence.

e We will also need a type for system
messages

— this is parachuted in:

[REPORT]

Mike Wooldridge 1




Lecture 16 Software Engineering

e Next, we need a type PROD, representing
all the products that the machine can sell.

[PROD)]

e We can define the state space of the
vending machine thus:

~ VendingMachine
cost : PROD -+ IN
stock : bag PROD
float : bag COIN

dom stock C dom cost

Mike Wooldridge 2




Lecture 16 Software Engineering

e The function cost return the cost of a
product in pence. For example,

cost(MarsBar) = 25
cost(Penguin) = 15

e The bag stock tells us how many items of
each type are in stock. For example,

stock = {Penguin — 2}

means that there are just 2 penguins in the
machine.

e The bag float records the coins that are
currently in the machine; for example

float = {100 — 2,50 +— 8,5 +— 20}

means that there are 2 x £1 coins, 8 x 50p
coins and 20 x 5p coins.

e QUESTION: Why are stock and float bags
and not sets or sequences?

e The invariant dom stock C dom cost says
that everything in the machine (i.e. in
stock) must have a cost associated with it.

Mike Wooldridge 3




Lecture 16

Operations

Software Engineering

Here are the operations we shall specity:

e initialising the machine;

e pricing goods;

e restocking;

e buying goods.

Mike Wooldridge




Lecture 16 Software Engineering

Initialisation

_InitVendingMachine
- AVendingMachine

cost' = {}
stock’ = |]

float” = ]

e So initially, the machine does not know the
cost of anything, contains nothing, and has
no float.

Mike Wooldridge 5




Lecture 16 Software Engineering

Pricing Goods|

e This simply means changing the price of
an item in stock, or pricing an item that is
going to be stocked.

e The inputs are the item and a price.

_ Price
AVendingMachine
item? : PROD
price? : IN

cost’ = cost @ {item? — price?}
stock’ = stock

float" = float

Mike Wooldridge 6




Lecture 16 Software Engineering

Restocking

e The next operation to specify is that of
restocking the machine with more goods.

e The only input is a new bag of products.

e The precondition dom new? C dom cost is
implied by the invariant of
VendingMachine'.

~ Restock
AVendingMachine
new? : bag PROD

stock! = stock 'd new?

float' = float

cost’ = cost

¢ (Note that W is the ‘bag union” operator.)

Mike Wooldridge 7




Lecture 16 Software Engineering

e We shall now make the operation robust.
The Restock operation fails when an
attempt is made to add goods which are
not priced. We need a schema to identify
this situation.

~ GoodsNotPriced
=VendingMachine
new? : bag PROD
rep! : REPORT

—(dom new? C dom cost)
rep! = ‘Some goods are not priced’

Mike Wooldridge 8




Lecture 16 Software Engineering

e We need an operation to report success...

~ Success
rep! : REPORT
rep! = ‘Okay’

e Now, we simply use the schema calculus
to specify a robust version of the Restock
operation, called RestockOp:

RestockOP = (Restock N\ Success)
V' GoodsNotPriced

Mike Wooldridge 9




Lecture 16 Software Engineering

e This schema expands to ...

~ RestockOp
AVendingMachine
new? : bag PROG
rep! : REPORT

cost’ = cost
float” = float
(stock’ = stock & new? A
rep! = ‘Okay’)
V
(=(dom new? C dom cost) A
stock’ = stock N
rep! = ‘Some goods are not priced’)

Mike Wooldridge 10




Lecture 16 Software Engineering

Buying

e The buying operation is a somewhat more
complex operation ...

e The inputs are the chosen item and some
money.

e We have to check that the item is in stock,
and that the user has entered enough
money to buy it.

e We may also have to figure out what
change to give ...

Mike Wooldridge 1




Lecture 16 Software Engineering

e We assume that a function
sum : bag COIN — IN

is available, which takes a bag of coins and
calculates how much is in the bag. For
example, given a bag containing 7 x 2p,
and 3 x 5p coins,

sum{2+— 7,5+— 3} =(2x7)+ (5 x 3)
=14+ 15
= 29pence

Mike Wooldridge 12




Lecture 16 Software Engineering

e The basic Buy operation is as follows:

~ Buy
AVendingMachine
in?, out! : bag COIN
item? : PROD

item? in stock
sum(in?) > cost(item?)
out! C float
sum(in?) = sum(out!) + cost(item?)
stock’ W {item? — 1} = stock
float" d out? = float W in?
cost’ = cost

Mike Wooldridge 13




Lecture 16 Software Engineering

e in? represents the coins entered; out!
represents the change;

e item? is the item dispensed to the user;

e the 1st condition says that the item must
be in stock;

e the 2nd condition says that the amount of
money entered must be greater than or
equal to the cost of the item;

e the 3rd condition says that the change
given must have been part of the float;

o the 4th condition says that the the money
entered must equal the change given plus
the cost of the item;

e the 5th condition says that the stock before
must be equal to the stock after, to which
is added the dispensed item;

e the 6th condition says that the float after,
together with the change dispensed must
equal the float before plus the amount
entered (i.e. no money disappears)

Mike Wooldridge 14




