LECTURE 17: LIBRARY CASE STUDY

Software Engineering Mike Wooldridge

1 A Library Management System

- In this lecture, we specify a simple library system.
- Operations:
 - check out a book;
 - return a book;
 - add a book to library;
 - remove book from library;
 - get list of books by author or subject area;
 - get list of books checked out by particular borrower;

1.1 Types

- We need sets for:
 - all possible books;
 - all possible copies of books;
 - all possible people;
 - all possible authors;
 - all possible subjects;
 - the various reports that may be produced.
- So parachute in:

```
[BOOK, COPY, PERSON, AUTHOR, SUBJECT, REPORT]
```

Lecture 17	Software Engineering
1.2 State Space	
• The state space is describes ir	n several
steps. First, a schema contain	ing
information relating to books	in the
library.	
ParaLibrary	
$\begin{array}{ccc} \text{Instance_of} & \text{COPY} \rightarrow \text{BOOK} \\ \text{zumitton} & \text{but } \text{POOK} \rightarrow \text{IDAUT} \end{array}$	
$about \cdot BOOK \rightarrow \mathbb{P} SIIBIFCT$	IIUK
dom $written_by \subseteq ran instance$	2_0f
$dom \ ubout \subseteq ran \ instance_oj$	
Mike Wooldridge	4

٦.

Г

- *instance_of* tells us what book a copy is an instance of;
- the set

ran *instance_of*

is the set of all books in the library;

- *written_by* tells us who a book is written by; there may be more than one author, hence the powerset operation; there may be no authors;
- *about* tells us the subjects a book is about; there may be no subjects;
- first invariant tells us that we only know who wrote books in the library;
- second invariant tells us that we only know subjects of books in the library.

Lecture 17	Software Engineering
• The database part of the scher follows: • LibraryDB borrower, staff : ℙ PERSON available, out : ℙ COPY borrowed_by : COPY ++ PERSO borrower ∩ staff = Ø available ∩ out = Ø dom borrowed_by = out ran borrowed_by = out ran borrowed_by ⊆ borrower $\forall p$: borrower • #borrowed_by~($\leq MaxCopies$	Software Engineering na is as ON ({p})
Mike Wooldridge	6

Software Engineering

Lecture 17 Software Engineering • 1st invariant tells us that a person cannot be both a borrower and a staff; • 2nd invariant tells us that books cannot be both available and checked out; • 3rd invariant tells us that the only books appear have been borrowed by someone are those that are out; • 4th invariant tells us that books can only be borrowed by borrowers; • 5th invariant tells us that a borrower can only have out up to the maximum number of books.

	0
• The library state space is then as follows:	
_Library	
ParaLibrary	
LibraryDB	
dom <i>instance_of</i> = <i>available</i> \cup <i>out</i>	
 the only invariant in this schema tells us that the library does not know anything about books which are not in stock. 	
Mike Wooldridge	9

Software Engineering
norations
perations
sation operations; these
ecking out books
ne $(n?)$ and copy $(c?)$.
?}))
$e \setminus \{c?\}$
owed_by∪
5

Mike Wooldridge

Ъ

- (Note that f^{\sim} is the inverse of f.)
- 1st precondition is that the person trying to borrow must be a known borrower;
- 2nd precondition is that the book must be available;
- 3rd precondition is that the person trying to borrow must have out fewer than the maximum number of books available;
- the postconditions define the changes made to *available, out* and *borrowed_by*.

Lecture 17 Software Engineering • precondition states that the book can only be returned if it is out; • 1st post-condition says that the book is available after the operation; 2nd post-condition says that the book is no longer out; 3rd post-condition uses domain subtraction to remove the correct record from the *borrowed_by* function. • For example, *borrowed_by* = { $b01 \mapsto mjw, b02 \mapsto en,$ $b03 \mapsto mjw$ } $\{b01\} \triangleleft borrowed_by = \{b02 \mapsto en,$ $b03 \mapsto mjw$

Lecture 17 Software Engineering AddNewBook $\Delta Library$ c?: COPY*b*? : *BOOK a*? : **P**AUTHOR $s?: \mathbb{P} SUBJECT$ *b*? \notin ran *instance_of* $c? \notin available \cup out$ available' = available $\cup \{c?\}$ *instance_of* $' = instance_of \cup \{c? \mapsto b?\}$ written_by' = written_by $\cup \{b? \mapsto a?\}$ $about' = about \cup \{b? \mapsto s?\}$ Mike Wooldridge 15

Lecture 17	Software Engineering
_AddAnotherCopy	
$\Delta Library$	
b?: BOOK	
$c? \not\in available \cup out$	
$b? \in \operatorname{ran}$ instance_of	
available' = available $\cup \{c?\}$ instance of' = instance of $\cup \{c\}$	$p_{i}^{\gamma} \mapsto h^{\gamma}$

Software Engineering


```
Lecture 17
     RemoveOther _____
     \Delta Library
     c?: COPY
     c? \in available
     #(instance_of \sim (\{instance_of(c?)\})) > 1
     available' = available \setminus \{c?\}
   • Note that there is no need to alter any
     variables in ParaLibrary; we only change
```

available, to indicate that the book is no

longer available.

```
Lecture 17
      RemoveLast
      \Delta Library
     c? : COPY
     c? \in available
      \#(instance\_of^{\sim}(\{instance\_of(c?)\})) = 1
     available' = available \setminus \{c?\}
      instance_of  = \{c?\} \triangleleft instance_of 
      written_by' = {instance_of(c?)}\triangleleft
         instance_of
     about' = \{instance\_of(c?)\} \triangleleft about
```

Lecture 17	Software Engineering
1.7 Interrogat	ing the Database
• Two options:	
– search by auth	lor;
– search by subj	ect;
– find out what	copies someone has
bonowed.	
Mike Wooldridge	20

• *ByAuthor* takes an author name and produces the set of all books that the author appeared in the 'author' list of.

$$ByAuthor _$$

$$\Xi Library$$

$$a? : AUTHOR$$

$$out! : \mathbb{P} BOOK$$

$$out! = \{b : BOOK \mid a? \in written_by(x)\}$$

• *BySubject* takes a set of subjects and produces a list of all the books which have these subjects in their 'about' list.

 $BySubject _$ $\Xi Library$ $s? : \mathbb{P} SUBJECT$ $out! : \mathbb{P} BOOK$ $out! = \{b : BOOK \mid s? \subseteq about(b)\}$

 Finally, finding out who has borrowed what BooksBorrowedBy	Lecture 17 Software Engir	neering
 Finally, finding out who has borrowed what BooksBorrowedBy		
 Finally, finding out who has borrowed what BooksBorrowedBy		
 Finally, finding out who has borrowed what BooksBorrowedBy		
 Finally, finding out who has borrowed what BooksBorrowedBy		
 Finally, finding out who has borrowed what BooksBorrowedBy		
 Finally, finding out who has borrowed what BooksBorrowedBy		
 Finally, finding out who has borrowed what BooksBorrowedBy		
 Finally, finding out who has borrowed what BooksBorrowedBy		
 Finally, finding out who has borrowed what BooksBorrowedBy		
what BooksBorrowedBy $\equiv Library$ n? : PERSON $out! : \mathbb{P} COPY$ $n? \in borrower$ $out! = borrowed_by~(\{n?\})$	• Finally, finding out who has borrowed	
BooksBorrowedBy $\exists Library$ n? : PERSON $out! : \mathbb{P} COPY$ $n? \in borrower$ $out! = borrowed_by~(\{n?\})$	what	
BooksBorrowedBy $\exists Library$ n? : PERSON $out! : \mathbb{P} COPY$ $n? \in borrower$ $out! = borrowed_by~(\{n?\})$		
ELibrary n? : PERSON $out! : \mathbb{P} COPY$ $n? \in borrower$ $out! = borrowed_by~(\{n?\})$	_BooksBorrowedBy	_
n? : PERSON $out! : \mathbb{P} COPY$ $n? \in borrower$ $out! = borrowed_by~(\{n?\})$	ΞLibrary	
out! : \mathbb{P} COPY $n? \in borrower$ $out! = borrowed_by~(\{n?\})$	n?: PERSON	
$n? \in borrower$ $out! = borrowed_by~(\{n?\})$	$out!: \mathbb{P}COPY$	
$out! = borrowed_by~(\{n?\})$	$n? \in borrower$	
	out! = borrowed by $\sim (\{n, ?\})$	
		_
Mike Wooldridge 22	Mike Wooldridge	22
0	0	_=