
LECTURE 17: LIBRARY CASE STUDY

Software Engineering

Mike Wooldridge

Lecture 17 Software Engineering

1 A Library Management System

• In this lecture, we specify a simple library
system.

• Operations:

– check out a book;
– return a book;
– add a book to library;
– remove book from library;
– get list of books by author or subject

area;
– get list of books checked out by

particular borrower;

Mike Wooldridge 1

Lecture 17 Software Engineering

• All books must either be checked out or
available for check out.

• No book may be simultaneously checked
out and available.

• There is an upper limit to number of books
that may be checked out.

Mike Wooldridge 2

Lecture 17 Software Engineering

1.1 Types

•We need sets for:

– all possible books;
– all possible copies of books;
– all possible people;
– all possible authors;
– all possible subjects;
– the various reports that may be

produced.

• So parachute in:

[BOOK,COPY,PERSON,AUTHOR,
SUBJECT,REPORT]

Mike Wooldridge 3

Lecture 17 Software Engineering

1.2 State Space

• The state space is describes in several
steps. First, a schema containing
information relating to books in the
library.

ParaLibrary
instance of : COPY 7→ BOOK
written by : BOOK 7→ IP AUTHOR
about : BOOK 7→ IP SUBJECT
dom written by ⊆ ran instance of
dom about ⊆ ran instance of

Mike Wooldridge 4

Lecture 17 Software Engineering

• instance of tells us what book a copy is an
instance of;

• the set

ran instance of

is the set of all books in the library;

• written by tells us who a book is written
by; there may be more than one author,
hence the powerset operation; there may
be no authors;

• about tells us the subjects a book is about;
there may be no subjects;

• first invariant tells us that we only know
who wrote books in the library;

• second invariant tells us that we only
know subjects of books in the library.

Mike Wooldridge 5

Lecture 17 Software Engineering

• The database part of the schema is as
follows:

LibraryDB
borrower, staff : IP PERSON
available, out : IP COPY
borrowed by : COPY 7→ PERSON
borrower ∩ staff = ∅
available ∩ out = ∅
dom borrowed by = out
ran borrowed by ⊆ borrower
∀p : borrower • #borrowed by∼(|{p}|)
≤MaxCopies

Mike Wooldridge 6

Lecture 17 Software Engineering

• borrower is the set of all borrowers known
to the system;

• staff is the set of all staff known to the
system;

• available is the set of all available books;

• out is the set of borrowed books (i.e., ones
that have been checked out);

• borrowed by tells us who borrowed the
books out on loan.

Mike Wooldridge 7

Lecture 17 Software Engineering

• 1st invariant tells us that a person cannot
be both a borrower and a staff;

• 2nd invariant tells us that books cannot be
both available and checked out;

• 3rd invariant tells us that the only books
appear have been borrowed by someone
are those that are out;

• 4th invariant tells us that books can only
be borrowed by borrowers;

• 5th invariant tells us that a borrower can
only have out up to the maximum number
of books.

Mike Wooldridge 8

Lecture 17 Software Engineering

• The library state space is then as follows:

Library
ParaLibrary
LibraryDB
dom instance of = available ∪ out

• the only invariant in this schema tells us
that the library does not know anything
about books which are not in stock.

Mike Wooldridge 9

Lecture 17 Software Engineering

1.3 The Operations

•We assume initialisation operations; these
are trivial.

• First we look at checking out books. . .

• Inputs: person name (n?) and copy (c?).

CheckOut
∆Library
n? : PERSON
c? : COPY
n? ∈ borrower
c? ∈ available
#borrowed by∼(|{n?}|)
< MaxCopies

available′ = available \ {c?}
out′ = out ∪ {c?}
borrowed by′ = borrowed by∪
{c? 7→ n?}

Mike Wooldridge 10

Lecture 17 Software Engineering

• (Note that f∼ is the inverse of f .)

• 1st precondition is that the person trying
to borrow must be a known borrower;

• 2nd precondition is that the book must be
available;

• 3rd precondition is that the person trying
to borrow must have out fewer than the
maximum number of books available;

• the postconditions define the changes
made to available, out and borrowed by.

Mike Wooldridge 11

Lecture 17 Software Engineering

1.4 Returning a Book

• One input: the copy to be returned.

Return
∆Library
c? : COPY
c? ∈ out
available′ = available ∪ {c?}
out′ = out \ {c?}
borrowed by = {c?} −� borrowed by

Mike Wooldridge 12

Lecture 17 Software Engineering

• precondition states that the book can only
be returned if it is out;

• 1st post-condition says that the book is
available after the operation;

• 2nd post-condition says that the book is no
longer out;

• 3rd post-condition uses domain
subtraction to remove the correct record
from the borrowed by function.

• For example,

borrowed by = {b01 7→ mjw, b02 7→ en,
b03 7→ mjw}
{b01} −� borrowed by = {b02 7→ en,

b03 7→ mjw}

Mike Wooldridge 13

Lecture 17 Software Engineering

1.5 Adding Books to the Library

• There are two cases to consider:

– where the book is completely new to
the library;

– where the book is another copy of a
book that is already in the library.

•We have two schemas to capture these two
situations:

– AddNewBook;
– AddAnotherCopy.

Mike Wooldridge 14

Lecture 17 Software Engineering

AddNewBook
∆Library
c? : COPY
b? : BOOK
a? : IP AUTHOR
s? : IP SUBJECT
b? 6∈ ran instance of
c? 6∈ available ∪ out
available′ = available ∪ {c?}
instance of ′ = instance of ∪ {c? 7→ b?}
written by′ = written by ∪ {b? 7→ a?}
about′ = about ∪ {b? 7→ s?}

Mike Wooldridge 15

Lecture 17 Software Engineering

AddAnotherCopy
∆Library
c? : COPY
b? : BOOK
c? 6∈ available ∪ out
b? ∈ ran instance of
available′ = available ∪ {c?}
instance of ′ = instance of ∪ {c? 7→ b?}

Mike Wooldridge 16

Lecture 17 Software Engineering

1.6 Removing Books

• Removing a books from the library is
similarly complicated; once again there are
2 possibilities to consider. . .

– removing a book that is the only copy;
– removing one copy of a book leaving

several other copies behind.

• Two schemas:

– RemoveOther to remove one of several
copies;

– RemoveLast to remove the last copy.

Mike Wooldridge 17

Lecture 17 Software Engineering

RemoveOther
∆Library
c? : COPY
c? ∈ available
#(instance of∼(|{instance of (c?)}|)) > 1

available′ = available \ {c?}

• Note that there is no need to alter any
variables in ParaLibrary; we only change
available, to indicate that the book is no
longer available.

Mike Wooldridge 18

Lecture 17 Software Engineering

RemoveLast
∆Library
c? : COPY
c? ∈ available
#(instance of∼(|{instance of (c?)}|)) = 1

available′ = available \ {c?}
instance of ′ = {c?} −� instance of
written by′ = {instance of (c?)}−�

instance of
about′ = {instance of (c?)} −� about

Mike Wooldridge 19

Lecture 17 Software Engineering

1.7 Interrogating the Database

• Two options:

– search by author;
– search by subject;
– find out what copies someone has

borrowed.

Mike Wooldridge 20

Lecture 17 Software Engineering

• ByAuthor takes an author name and
produces the set of all books that the
author appeared in the ‘author’ list of.

ByAuthor
ΞLibrary
a? : AUTHOR
out! : IP BOOK
out! = {b : BOOK | a? ∈ written by(x)}

• BySubject takes a set of subjects and
produces a list of all the books which have
these subjects in their ‘about’ list.

BySubject
ΞLibrary
s? : IP SUBJECT
out! : IP BOOK
out! = {b : BOOK | s? ⊆ about(b)}

Mike Wooldridge 21

Lecture 17 Software Engineering

• Finally, finding out who has borrowed
what. . .

BooksBorrowedBy
ΞLibrary
n? : PERSON
out! : IP COPY
n? ∈ borrower
out! = borrowed by∼(|{n?}|)

Mike Wooldridge 22

