
LECTURE 18: UML

Software Engineering

Mike Wooldridge

Lecture 18 Software Engineering

1 What is UML?

• In the mid 1980s, a number of techniques
began to emerge for object-oriented-analysis
and design.

• Examples:

– Coad & Yourdon;
– Booch;
– Rumbaugh (the OMT technique);
– Coleman (FUSION).

• All used similar techniques, but differed
on details of notation, etc.

•Mid 1990s: a move towards
standardisation, driven by the Object
Management Group (OMG):

The Unified Modelling Language (UML).

• UML is essentially a notation, and not a
technique.
Notation can be used in many different
ways: we show one.

Mike Wooldridge 1

Lecture 18 Software Engineering

2 UML Models

• UML provides a rich graphical notation
for developing a series of system models.

• These models become increasingly less
abstract, and more detailed.

• The models we discuss are
Analysis:

– use cases;
– conceptual model;

Design:

– class model;
– interaction and collaboration model;

Mike Wooldridge 2

Lecture 18 Software Engineering

3 Use Cases

• Use cases are a narrative + graphical
document that describes the sequence of
events of an actor using a system to
achieve some particular goal.

• Use cases document system behaviour
from the actor’s point of view.

• By “actor” we mean either person
interacting with system, or some other
system.

• Use cases are useful in requirements
capture and validation.

Mike Wooldridge 3

Lecture 18 Software Engineering

3.1 Schema for Use Cases

• Use case:
[name of use case]

• Actors:
[list of actors that can participate, naming
the initiator, and indicating key player]

• Purpose:
[one-line summary of purpose of the
activity]

• Overview:
[short summary of the use case]

• Type:
[primary or secondary, essential or
optional]

• Cross references:
[references to requirements document]

• Course of events:
[narrative summary of use case]

Mike Wooldridge 4

Lecture 18 Software Engineering

3.2 Example Use Case 1

• Use case:
Buy items with cash.

• Actors:
Customer (initiator), cashier

• Purpose:
Capture a sale and its cash payment

• Overview:
Customer arrives at checkout with items
to purchase in cash. Cashier records the
items and takes cash payment. On
completion, customer leaves with items.

• Type:
Essential, primary.

• Cross references:
Buy items with credit card, buy items with
cheque.

Mike Wooldridge 5

Lecture 18 Software Engineering

• Course of events:

1. Customer arrives at checkout with items.

2. Cashier records identifier of each item.

3. As each item is recorded, system
responds with running total of cost of
items.

4. Cashier indicates to system that there are
no more items.

5. System responds with overall total cost of
items.

6. Cashier takes cash payment from
customer for total cost, and indicates this
to system.

7. System prints receipt for amount
tendered.

Mike Wooldridge 6

Lecture 18 Software Engineering

•We use use case diagrams to document the
participants in use cases:

Mike Wooldridge 7

Lecture 18 Software Engineering

•We capture a number of use cases in a
single use case diagram:

Mike Wooldridge 8

Lecture 18 Software Engineering

• Identifying use cases:

– identify the actors involved in a system
or organisation;

– for each actor, identify the processes
they initiate or act in;

– refine processes into use cases;

• Common mistakes with use cases:

– making them too small;
– identifying parts of activities, rather

then entire activities.

Mike Wooldridge 9

Lecture 18 Software Engineering

4 Conceptual Models

• The next stage in UML development
involves identifying the key concepts in the
system, and documenting the
relationships between these concepts.
The resulting conceptual model will evolve
into the object model.

• A conceptual model documents:

– the concepts in a system;
– relationships between concepts;
– attributes of concepts.

• Conceptual models are not design models.
So avoid such concepts as:

– “database”;
– “GUI” or “window”;

• Key distinguishing feature of OO
development:

Understanding system in terms of
concepts rather than functions.

Mike Wooldridge 10

Lecture 18 Software Engineering

•What are candidates for concepts?

– physical or tangible things
e.g., receipt, plane

– specifications, designs, or descriptions
of things;
e.g., product specification

– places
e.g., airport, point of sale terminal

– transactions
e.g., deposit, withdrawal

– roles of people
e.g., casher, customer

– containers of things
e.g., plane, store room

– things in a container
e.g., passenger

Mike Wooldridge 11

Lecture 18 Software Engineering

– other systems
e.g., www site

– abstract noun concepts
e.g., hunger

– organisations
e.g., sales department

– events
e.g., robbery, death

– processes (sometimes)
e.g., deposit

– rules and policies
e.g., refund policy

– catalogues
e.g., parts catalogues

– contracts & legal documents

Mike Wooldridge 12

Lecture 18 Software Engineering

4.1 Relationships

• In addition to recording the concepts, we
must record the relationships between
concepts.

• For example, the concepts student and
course may be related by is registered on,
i.e., a student is registered on a course.

• Generalisation is a special type of
relationships where one class is a subclass
of another.

Mike Wooldridge 13

Lecture 18 Software Engineering

Common types of relationship:

• is a physical part of;
e.g., wing-plane

• is a logical part of
e.g., module-course

• is physically contained in
e.g., passenger-plane

• is logically contained in
e.g., flight-flight schedule

• is a description for
e.g., flight description-flight

• is reported/recorded in
e.g., reservation-flight manifest

Mike Wooldridge 14

Lecture 18 Software Engineering

• is a member of
e.g., pilot-airline

• is an organisational subunit of
e.g., department-store

• uses or manages
e.g., pilot-plane

• communicates with
e.g., customer-cashier

• is related to a transaction
e.g., passenger-ticket

• is owned by
e.g., plane-airline

Mike Wooldridge 15

Lecture 18 Software Engineering

4.2 Concept Diagrams

• Concepts and the relationships between
them are documented in a concept diagram.

• Basic notation for concepts:

Name of concept
Attribute 1
· · ·

Attribute n

Mike Wooldridge 16

Lecture 18 Software Engineering

• Example:

• Concepts:
student, course, module

• Relationships:
registered-on, has

• Thus:

– students are registered on a course;
– a course has modules.

Mike Wooldridge 17

Lecture 18 Software Engineering

4.3 Annotating Concepts

•We can annotate concepts to make
relationships more precise.

• Involves stating multiplicities.

• Thus:

– many students are registered on one course;
– one course has many modules.

Mike Wooldridge 18

Lecture 18 Software Engineering

• Possible annotations:

1 one

n exactly n

m..n between m and n

∗ zero or more

m,n either m or n

• Note that identifying concepts is much
more important than relationships or
multiplicities;

Mike Wooldridge 19

Lecture 18 Software Engineering

4.4 Concept Attributes

• Attributes should correspond to simple
data types.

• Common attributes:

– address;
– colour;
– phone number;
– serial number;
– universal product code/barcode;
– postal or ZIP code;

• Attributes should not be composite!

• Bad attributes:

– URL
is composed of three things

– flight destination
is an airport — a separate concept
altogether;

Mike Wooldridge 20

Lecture 18 Software Engineering

4.5 Generalisations

• UML includes a special symbol for
generalisations.

• Thus:

– rectangle is a generalisation of square;
– shape is a generalisation of rectangle.

Mike Wooldridge 21

Lecture 18 Software Engineering

• The generalisation relationship is actually
the subclass relationship.

• Thus rectangle is a subclass of shape, and
square is a subclass of rectangle.

• A subclass inherits all the attributes of its
superclass.

• The generalisation relation is transitive:
thus square is also a subclass of shape.

• Generalisation can prevent proliferation of
similar classes . . . but use it sparingly!

Mike Wooldridge 22

Lecture 18 Software Engineering

4.6 Finding Concepts

•We find concepts by looking for nouns:
The library contains books and journals. It
may have several copies of a book. Books
are written by authors. Some books are for
short term loan only. All other books may
be borrowed by any library member for
up to three weeks. Members of the library
can normally borrow up to 6 items at a
time, but members of staff may borrow up
to 12 items at a time.

• Avoid concepts that are:

– trivial (attributes);
– redundant (duplicated concepts);
– vague;
– part of the meta-language;
– outside the scope of the system;

Mike Wooldridge 23

Lecture 18 Software Engineering

• The library conceptual model:

•Missing concepts?

Mike Wooldridge 24

Lecture 18 Software Engineering

5 Collaboration Diagrams

• The conceptual model of a system will
evolve into an object model, which captures
the static aspects of a system.

• To capture the dynamics of a system, we
need a collaboration diagram.

• A collaboration is:

– a collection of linked objects;
– which work together to achieve a task;
– by invoking methods on each other.

• A collaboration captures stereotypical
control flows (method invocations) between
collaborating objects.

• NB: At least one collaboration diagram for
each use case.

Mike Wooldridge 25

Lecture 18 Software Engineering

5.1 Example Collaboration Diagram

Mike Wooldridge 26

Lecture 18 Software Engineering

Intuition:

1. Person (borrower) begins by asking to
borrow a copy of a book.
This corresponds to a method
borrow(theCopy) being invoked on the
corresponding libraryMember object.

2. The library member object then asks itself
whether it is allowed to borrow a book.

3. The LibraryMember object then invokes
the borrow() method on the Copy
object corresponding to the copy of the
book that the user requests.

Mike Wooldridge 27

Lecture 18 Software Engineering

Note that:

• Boxes correspond to objects.

• Names inside boxes are the class of the
object.

• Arrows correspond to method invocations.

• The numbers that label method
invocations indicate the order of events.

• If an object is invoked by invocation
number x then its method invocations will
be numbered x.1 , x.2 , and so on.

Mike Wooldridge 28

Lecture 18 Software Engineering

• An object cannot “spontaneously” invoke
a method: it can only invoke methods in
response to methods being invoked on it.

• In order for an object o1 to invoke a
method on another object o2 , it must have
a handle on it:

– o1 may have o2 as an instance variable;
– o1 may have been passed o2 as an

argument.

There are clear implications for the
implementation of objects.

Mike Wooldridge 29

Lecture 18 Software Engineering

5.2 Object Creation

• How to indicate creation of an object:

Mike Wooldridge 30

Lecture 18 Software Engineering

• Equivalent of following Java code:

class Library extends Object {

...

void newLibraryMember(details : Details) {

LibraryMember newLibraryMember =
new LibraryMember(details);

addNewMember(newLibraryMember);

}

...

}

Mike Wooldridge 31

Lecture 18 Software Engineering

5.3 Multiple Invokations

•We can indicate that a method is invoked
on an object multiple times by the “*”
operator:

indicates that method() is invoked on a
ClassB object multiple times.

•We also have a for loop like notation:

indicates the invocation of method(1) ,
then method(2) , up to method(10) on
ClassB object.

Mike Wooldridge 32

Lecture 18 Software Engineering

5.4 Conditional Branching

•We can also indicate conditional
branching:

• Condition goes in square brackets

• Sequence numbers a, b etc indicate the
possible actions corresponding to
conditions.

• Thus: if the condition isStaff is true, we
create a StaffMember object, otherwise
we create a LibraryMember object.

Mike Wooldridge 33

Lecture 18 Software Engineering

6 Sequence Diagrams (Swimlanes)

• An alternative to collaboration diagrams is
sequence diagrams:

Mike Wooldridge 34

Lecture 18 Software Engineering

• The y axis is time;

• Dotted line indicates the lifeline of an
object

• Horizontal arrows indicate method
invocation;

• Vertical blocks indicate periods of object
activity.

Mike Wooldridge 35

Lecture 18 Software Engineering

7 Statecharts

• Statecharts, or state diagrams, illustrate
the behaviour of an object — its lifecycle.

• UML uses a finite state machine-like
model of statecharts:

– directed graph;
– nodes correspond to states of the

system;
– arcs correspond to events that cause

state changes;
– start state:
– end state:

Mike Wooldridge 36

Lecture 18 Software Engineering

Mike Wooldridge 37

Lecture 18 Software Engineering

•We can associate guards with transitions;
these are conditions that must be true if
the state transition is to occur.

Mike Wooldridge 38

Lecture 18 Software Engineering

8 Class Diagrams

• The final UML model we look at is the
class diagram or object model.

• This model is an elaboration of the
conceptual model.

• How to construct a class diagram:

1. using concept model and
collaboration diagrams, identify the
classes in your system;

2. using collaboration diagrams, name
the methods;
(if you invoke mon an object o of class
C, then Cmust provide method m)

3. determine visibility of methods;
4. determine navigability.

Mike Wooldridge 39

Lecture 18 Software Engineering

• An example class diagram.

Mike Wooldridge 40

Lecture 18 Software Engineering

• The third compartment in concept boxes
contains methods that the class
corresponding to the concept must
perform.

• These methods are derived by studying
the messages that are sent to the class in
concept diagrams.

• These methods are annotated as follows:

+ means public;
- means private;
means protected.

Mike Wooldridge 41

Lecture 18 Software Engineering

8.1 Generating Code

• The transformation of class diagrams is
now straightforward:
From class diagrams. . .

– attributes become instance variables;
– methods become methods!

• One final step involves determining
navigability.

• If there is a relationship between C1 and
C2, then C1 may need an instance variable
corresponding to record this.

• Example: Book class has relationship to
Author .
So may want instance variable Author in
Book class.

Mike Wooldridge 42

