The complexity of general-valued CSPs seen from the other side

Clement Carbonnel, Miguel Romero, Stanislav Zivny

University of Oxford

IEEE Symposium on Foundations of Computer Science
7 October 2018, Paris, France
General-valued Constraint Satisfaction Problem (VCSP)

A **signature** \(\sigma \) is a set of function symbols each of which has a fixed arity \(ar(f) \).

Valued structure \(\mathbb{A} \) over \(\sigma \):
- (finite) universe \(A \)
- interpretations \(f^A : A^{ar(f)} \to \mathbb{Q}_{\geq 0} \cup \{\infty\} \) for each \(f \in \sigma \)

For valued structures \(\mathbb{A} \) and \(\mathbb{B} \) over \(\sigma \), the **cost** of \(h : A \to B \) is:

\[
\text{cost}(h) = \sum_{f \in \sigma, \bar{x} \in A^{ar(f)}} f^A(\bar{x}) f^B(h(\bar{x}))
\]

VCSP

Instance: Valued structures \(\mathbb{A} \) and \(\mathbb{B} \) over the same signature \(\sigma \)

Goal: Compute \(\text{opt}(\mathbb{A}, \mathbb{B}) = \min_{h:A \to B} \text{cost}(h) \)
VCSP: particular cases

VCSP

Instance: Valued structures \mathbb{A} and \mathbb{B} over the same signature σ

Goal: Compute $\text{opt}(\mathbb{A}, \mathbb{B}) = \min_{h: A \rightarrow B} \text{cost}(h)$

\[
\text{CSP} = \text{satisfy all constraints simultaneously} \\
\quad = \text{is there a homomorphism from } \mathbb{A} \text{ to } \mathbb{B} \text{?} \\
\quad \quad \bullet \ \{0, \infty\}\text{-valued structures}
\]

\[
\text{MinCSP} = \text{minimise unsatisfied constraints} \\
\quad \bullet \ \{0, 1\}\text{-valued structures}
\]

\[
\text{Finite-valued CSP} = \mathbb{Q}_{\geq 0}\text{-valued structures}
\]
The complexity of VCSP

VCSP

Instance: Valued structures \mathbb{A} and \mathbb{B} over the same signature σ

Goal: Compute $\text{opt}(\mathbb{A}, \mathbb{B}) = \min_{h: \mathbb{A} \rightarrow \mathbb{B}} \text{cost}(h)$

VCSP is **NP-hard**

Tractable restrictions:

- **Non-uniform restrictions:** VCSP($-\), \{\mathbb{B}\})
 - Finite valued (Thapper, Zivny STOC’13)
 - CSP (Bulatov FOCS ’17; Zhuk FOCS’17)
 - VCSP (Ochremiak, Kozic ICALP’15; Kolmogorov, Krokhin, Rolinek FOCS’15)

- **Structural restrictions:** VCSP(\mathbb{C}, $-\)
 - CSP, bounded arity (Dalmau, Kolaitis, Vardi CP’02; Grohe FOCS’03)
 - CSP, unbounded arity: FPT classification (Marx STOC’10)
The complexity of VCSP

VCSP

Instance: Valued structures \mathbb{A} and \mathbb{B} over the same signature σ

Goal: Compute $\text{opt}(\mathbb{A}, \mathbb{B}) = \min_{h: \mathbb{A} \to \mathbb{B}} \text{cost}(h)$

VCSP is **NP-hard**

Tractable restrictions:

- **Non-uniform** restrictions: VCSP($-$, $\{\mathbb{B}\}$)
 - Finite valued (Thapper, Zivny STOC’13)
 - CSP (Bulatov FOCS ’17; Zhuk FOCS’17)
 - VCSP (Ochremiak, Kozic ICALP’15; Kolmogorov, Krokhin, Rolinek FOCS’15)

- **Structural** restrictions: VCSP(\mathcal{C}, $-$)
 - CSP, bounded arity (Dalmau, Kolaitis, Vardi CP’02; Grohe FOCS’03)

Main Question:
For which classes \mathcal{C} of bounded arity is VCSP(\mathcal{C}, $-$) tractable?
Contributions

• Characterisation of the tractable structural restrictions for VCSP
 (in the case of bounded arity)

• Characterisation of the power of Sherali-Adams relaxations for VCSP
Outline

The case of CSP and bounded arity

Tractable structural restrictions for VCSP

Power of Sherali-Adams relaxations

Open questions
Outline

The case of CSP and bounded arity

Tractable structural restrictions for VCSP

Power of Sherali-Adams relaxations

Open questions
The case of CSP and bounded arity

Theorem (Freuder AAAI ’90):
\[\text{CSP}(\mathcal{C}, -) \text{ is in PTIME if the treewidth of } \mathcal{C} \text{ is bounded} \]

\(A \) and \(A' \) are homomorphically equivalent
= there is homomorphism from \(A \) to \(A' \), and from \(A' \) to \(A \)

Treewidth modulo homomorphic equivalence of \(A \)
= minimum treewidth over all \(A' \) homo. equiv. to \(A \)
= treewidth of the **core** of \(A \)

Theorem (Dalmau, Kolaitis, Vardi CP’02):
\[\text{CSP}(\mathcal{C}, -) \text{ is in PTIME if the treewidth modulo homomorphic equivalence of } \mathcal{C} \text{ is bounded} \]
The case of CSP and bounded arity

Theorem (Grohe FOCS ’03)
Suppose \mathcal{C} is recursively enumerable and has bounded arity. If the treewidth modulo homo. equiv. of \mathcal{C} is unbounded, then p-CSP$(\mathcal{C}, -)$ is $W[1]$-hard

p-CSP$(\mathcal{C}, -)$: parameter $|A|$

Reduction from p-CLIQUES
The case of CSP and bounded arity

Complete classification:

Theorem (Dalmau, Kolaitis, Vardi CP ’02; Grohe FOCS ’03)
Assume $\text{FPT} \neq \text{W}[1]$. For every \mathcal{C} recursively enum. and of **bounded arity**, TFAE:
1. $\text{CSP}(\mathcal{C}, -)$ is in PTIME
2. $\text{p-CSP}(\mathcal{C}, -)$ is in FPT
3. The treewidth modulo homo. equiv. of \mathcal{C} is bounded
Outline

The case of CSP and bounded arity

Tractable structural restrictions for VCSP

Power of Sherali-Adams relaxations

Open questions
VCSP and treewidth

Theorem (Folklore):

$\text{VCSP}(C, -)$ is in PTIME if the treewidth of C is bounded

Treewidth of a valued structure $\mathfrak{A} = \text{treewidth of the positive part } \text{Pos}(\mathfrak{A})$
VCSP: example beyond treewidth

\[\sigma = \{ \phi(\cdot, \cdot), \mu(\cdot) \} \]
VCSP: example beyond treewidth

\[\sigma = \{ \phi(\cdot, \cdot), \mu(\cdot) \} \]

\[\mathbb{A}_3 \]

\[C = \{ \mathbb{A}_n \mid n \geq 2 \} \]

The treewidth of \(C \) is unbounded but VCSP(\(C, - \)) is in PTIME
The tractability frontier for VCSP(C, —)?

- Bounded treewidth modulo homomorphic equivalence (of the positive parts)
- W[1]-hard
- Bounded treewidth
- PTIME

????
Classification for VCSP(C,−)

\(\mathcal{A} \) and \(\mathcal{A}' \) over \(\sigma \) are valued equivalent if

\[
\text{opt}(\mathcal{A}, \mathcal{B}) = \text{opt}(\mathcal{A}', \mathcal{B}) \quad \text{for all valued structures } \mathcal{B} \text{ over } \sigma
\]

Theorem (Classification for VCSP(C,−))
Assume FPT \(\not\in \text{W}[1] \).
For every \(\mathcal{C} \) recursively enum. and of **bounded arity**, TFAE:
1. \(\text{VCSP}(\mathcal{C}, -) \) is in PTIME
2. \(\text{p-VCSP}(\mathcal{C}, -) \) is in FPT
3. The treewidth modulo valued equivalence of \(\mathcal{C} \) is bounded

(1) \(\Rightarrow \) (2) : trivial
(3) \(\Rightarrow \) (1) : Sherali-Adams relaxations
(2) \(\Rightarrow \) (3) : Grohe’s reduction from p-CLIQUE + new tools

- Characterisation of valued equivalence in terms of certain type of homomorphisms (inverse fractional homomorphisms)
- Notion of **valued core** of a valued structure
Theorem (Classification for VCSP(C,-))
Assume FPT \(\neq W[1] \).
For every \(\mathcal{C} \) recursively enum. and of bounded arity, TFAE:
1. VCSP(\(\mathcal{C}, - \)) is in PTIME
2. p-VCSP(\(\mathcal{C}, - \)) is in FPT
3. The treewidth modulo valued equivalence of \(\mathcal{C} \) is bounded

- Grohe's classification: \(\{0, \infty\} \)-valued structures
- Classification for finite-valued structures
The tractability frontier for VCSP($C, -$)

Bounded treewidth modulo homomorphic equivalence (of the positive parts) \[\text{W}[1]\text{-hard} \]

Bounded treewidth modulo valued equivalence \[\text{PTIME} \]

Bounded treewidth
Outline

The case of CSP and bounded arity

Tractable structural restrictions for VCSP

Power of Sherali-Adams relaxations

Open questions
Power of Sherali-Adams

Basic LP for an instance \((A, B)\):
- variables \(\lambda(x, d)\) for each \(x \in A\) and \(d \in B\)
- variables \(\phi(\tau)\) for each \(\tau : S \rightarrow B\) and scope \(S \subseteq A\)

k-th level of Sherali-Adams for \((A, B)\):
- variables \(\lambda(s)\) for each \(s : X \rightarrow B\) where \(|X| \leq k\)
- variables \(\phi(\tau)\) for each \(\tau : S \rightarrow B\) and scope \(S \subseteq A\)

Theorem (Folklore):
If the treewidth of \(A\) is at most \(k-1\), then the \(k\)-th level of Sherali-Adams is tight for \(A\)

For all \(B\), the \(k\)-th level is tight for \((A, B)\)
Power of Sherali-Adams

Theorem:
If the treewidth modulo valued equivalence of \mathbb{A} is at most $k-1$, then the k-th level of Sherali-Adams is tight for \mathbb{A}.

treewidth of the valued core

Theorem:
Fix $k \geq 1$. Let \mathbb{A} be a valued structure and \mathbb{A}' its valued core. Suppose that $r \leq k$, where r is the maximum arity of \mathbb{A}. TFAE:

1. The k-th level of Sherali Adams is tight for \mathbb{A}
2. The treewidth of \mathbb{A}' is at most $k-1$
Theorem (Power of Sherali-Adams):
Fix $k \geq 1$. Let \mathbb{A} be a valued structure and \mathbb{A}' its valued core. TFAE:

1. The k-th level of Sherali Adams is tight for \mathbb{A}
2. The treewidth modulo scopes of \mathbb{A} is at most $k-1$ and the overlap of \mathbb{A} is at most k

$$\text{tw mod scopes} \leq k - 1$$
$$\text{overlap} \leq k : |S \cap S'| \leq k$$
Theorem (Power of Sherali-Adams):
Fix \(k \geq 1 \). Let \(\mathbb{A} \) be a valued structure and \(\mathbb{A}' \) its valued core. TFAE:

1. The k-th level of Sherali Adams is tight for \(\mathbb{A} \)
2. The treewidth modulo scopes of \(\mathbb{A} \) is at most k-1 and the overlap of \(\mathbb{A} \) is at most k

(1) \(\Rightarrow \) (2):

Results on the power of k-consistency for CSP +

(Atserias, Bulatov, Dalmau ICALP’07)

Inverse fractional homomorphism and valued cores
Open problems

• Unbounded arity?
• MinCSP/MaxCSP ($\{0, 1\}$-valued structures)
• Classification for approximation of $\text{VCSP}(\mathcal{C}, -)$?

Thank you!