
Machine Learning
Nando de Freitas
February 5, 2015

Exercise Sheet 2

1 Collaborative Filtering for Movie Recommendation

This exercise is based on the Netflix Competition. The goal is to recommend movies to users
based on their votes. Here we will derive a key technique by the people who won the million
dollar prize. Note that although we are focusing on movies, we could use this technique for
recommending any items in a social network. The actual reference is:

Yifan Hu, Yehuda Koren and Chris Volinsky. Collaborative Filtering for Implicit Feed-
back Datasets. IEEE International Conference on Data Mining, pages 263–272, 2008.

We assume that user u has indicated preference for item i via the variable pui ∈ {0, 1},
where u = 1, . . . ,m and i = 1, . . . , n. For example, a 1 could mean that the user gave the item
a thumbs up. These votes are part of a matrix P ∈ Rm×n that has many missing entries. (The
machine learning method here will take care of filling in the missing entries!).

Yifan Hu and collaborators applied this technique to movies, where users provide ratings
rui in the form of stars. They convert these ratings to our preference variables as follows:

pui =

{
1 rui > 0
0 rui = 0,

and rui is the vote of user u for item i.
We also assume that we have an additional confidence signal cui that measures the extent

of the interaction (attraction, etc.) of user u to item i. For example if user u gives a movie i
a thumbs up and finishes watching it; or if the user is an expert in the genre of the movie, we
would use a large value of cui. Yifan Hu use cui as the “confidence” of user u on item i:

cui = 1 + αrui,

where α is a parameter, which is set to 40 in the original paper.
Given n movies, our first objective will be to learn a matrix of factors Y ∈ Rf×n for these

movies. That is, each movie will be described by a column vector yi ∈ Rf×1 of f factors
(features). Our second objective will be to learn a matrix of factors for the m users of the social
network X ∈ Rm×f . Each user will be described by a row vector of factors xu ∈ R1×f .

Since we have two unknowns, the method of solution will be alternating ridge regression.
That is, we first fix Y and solve for X, use this estimate of X and solve for Y, use the latest
estimate of Y and solve for X again, etc.

To compute the factors for each user, we assume the yi are given, and proceed to minimize
the following quadratic cost function:

J(xu) =

n∑
i=1

cui(pui − xuyi)
2 + λ‖xu‖22 for each user u.

Page 1

Machine Learning
Nando de Freitas
February 5, 2015

This is known as a weighted ridge regression problem.

1. For each user, assume we construct the diagonal matrix Cu ∈ Rn×n with diagonal entries
cui. Let pu ∈ R1×n denote the vector of preferences for user u. Show that the above
weighted ridge regression objective can be re-written in matrix format as follows:

J(xu) = (pu − xuY)Cu(pu − xuY)T + λxux
T
u

2. Derive the solution x̂u to the above objective using the matrix differentiation rules dis-
cussed in the lectures.

2 Variant of collaborative filtering to deal with missing votes

Assume that user u has indicated preference for item i via the variable

Pui =

+1 if user u liked (thumbed up) item i

0 if user u did not rate item i
−1 if user u disliked (thumbed down) item i.

We have m users and n items so that u = 1, . . . ,m and i = 1, . . . , n.
Given n movies, our first objective will be to learn a matrix of factors Y ∈ Rf×n for these

movies. That is, each movie will be described by a column vector yi ∈ Rf×1 of f factors
(features). Our second objective will be to learn a matrix of factors for the m users of the social
network X ∈ Rm×f . Each user will be described by a row vector of factors xu ∈ R1×f .

Since we have two unknowns, the method of solution will be alternating ridge regression.
That is, we first fix Y and solve for X, use this estimate of X and solve for Y, use the latest
estimate of Y and solve for X again, etc. In effect, we are estimating an approximation of P
as follows: P̂ = X̂Ŷ.

In addition, we will introduce a matrix of weights cui, defined as follows:

cui = |pui|.

To compute the factors for each user, we assume the yi are given and proceed to minimize the
following quadratic cost function:

J(xu) =
n∑

i=1

cui(pui − xuyi)
2 + λ‖xu‖22 for each user u.

This is known as a weighted ridge regression problem.
For each user, assume we construct the diagonal matrix Cu ∈ Rn×n with diagonal entries

cui. Let pu ∈ R1×n denote the vector of preferences for user u. As shown in your last homework,
the weighted ridge regression objectives can be re-written in matrix format as follows:

J(xu) = (pu − xuY)Cu(pu − xuY)T + λxux
T
u

J(yi) = (pi −Xyi)
TCi(pi −Xyi) + λyT

i yi,

Page 2

Machine Learning
Nando de Freitas
February 5, 2015

with solutions:

xT
u =

(
YCuY

T + λI
)−1

YCup
T
u

yi =
(
XTCiX + λI

)−1
XTCipi.

In the above, P ∈ Rm×n, X ∈ Rm×f , Y ∈ Rf×n, Cu ∈ Rn×n, Ci ∈ Rm×m, xu and pu are
the uth rows of X and P, respectively, and finally, yi and pi are the ith column of Y and P,
respectively.

1. Explain why the above choice of cui makes sense.

2. Advanced/optional: Implement the alternating weighted ridge regression method in
Torch. To help you, I’ve provided the code below, but it is written in Python.

from __future__ import division

import numpy as np

import pdb

MOVIES: Legally Blond; Matrix; Bourne Identity; You’ve Got Mail;

The Devil Wears Prada; The Dark Knight; The Lord of the Rings.

P = [[0,0,-1,0,-1,1,1], # User 1

[-1,1,1,-1,0,1,1], # User 2

[0,1,1,0,0,-1,1], # User 3

[-1,1,1,0,0,1,1], # User 4

[0,1,1,0,0,1,1], # User 5

[1,-1,1,1,1,-1,0], # User 6

[-1,1,-1,0,-1,0,1], # User 7

[0,-1,0,1,1,-1,-1], # User 8

[0,0,-1,1,1,0,-1]] # User 9

P = np.array(P)

Parameters

reg = 0.1 # regularization parameter

f = 2 # number of factors

m,n = P.shape

Random Initialization

X is (m x f)

Y is (f x n)

X = 1 - 2*np.random.rand(m,f)

Y = 1 - 2*np.random.rand(f,n)

X *= 0.1

Y *= 0.1

Page 3

Machine Learning
Nando de Freitas
February 5, 2015

Alternating Weighted Ridge Regression

C = np.abs(P) # Will be 0 only when P[i,j] == 0.

for _ in xrange(100):

Solve for X keeping Y fixed

Each user u has a different set of weights Cu

for u,Cu in enumerate(C):

X[u] = np.linalg.solve(

np.dot(Y * Cu, Y.T) + reg * np.eye(f),

np.dot(Y * Cu, P[u])

)

Solve for X keeping Y fixed

for i,Ci in enumerate(C.T):

Y[:,i] = np.linalg.solve(

np.dot(X.T * Ci, X) + reg * np.eye(f),

np.dot(X.T * Ci, P[:,i].T)

)

print ’Alternating Weighted Ridge Regression:’

print np.dot(X,Y)

3. Which movie would you recommend for each user?

Page 4

	Collaborative Filtering for Movie Recommendation
	Variant of collaborative filtering to deal with missing votes

