Recurrent nets and LSTM

Nando de Freitas
Outline of the lecture

This lecture introduces you sequence models. The goal is for you to learn about:

- Recurrent neural networks
- The vanishing and exploding gradients problem
- Long-short term memory (LSTM) networks
- Applications of LSTM networks
 - Language models
 - Translation
 - Caption generation
 - Program execution
A simple recurrent neural network

\[h_t = \theta \phi(h_{t-1}) + \theta_x x_t \]

\[y_t = \theta_y \phi(h_t) \]
Vanishing gradient problem

\[
\begin{align*}
\mathbf{h}_t &= \underbrace{\theta \phi(\mathbf{h}_{t-1})} + \theta_x \mathbf{x}_t \\
\mathbf{y}_t &= \theta_y \phi(\mathbf{h}_t)
\end{align*}
\]

\[
\frac{\partial E}{\partial \theta} = \sum_{t=1}^{S} \frac{\partial E_t}{\partial \theta}
\]

\[
\frac{\partial E_t}{\partial \theta} = \sum_{k=1}^{t} \frac{\partial E_t}{\partial \mathbf{y}_t} \frac{\partial \mathbf{y}_t}{\partial \mathbf{h}_t} \frac{\partial \mathbf{h}_t}{\partial \mathbf{h}_k} \frac{\partial \mathbf{h}_k}{\partial \theta}
\]

[Yoshua Bengio et al]
Vanishing gradient problem

\[
\frac{\partial E_t}{\partial \theta} = \sum_{k=1}^{t} \frac{\partial E_t}{\partial y_t} \frac{\partial y_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial h_k}{\partial \theta}
\]

\[
\frac{\partial h_t}{\partial h_k} = \prod_{i=k+1}^{t} \frac{\partial h_i}{\partial h_{i-1}} = \prod_{i=k+1}^{t} \theta^T \text{diag}[\phi'(h_{i-1})]
\]

\[
\left\| \frac{\partial h_i}{\partial h_{i-1}} \right\| \leq \left\| \theta^T \right\| \left\| \text{diag}[\phi'(h_{i-1})] \right\| \leq \gamma \theta \gamma \phi
\]

\[
\left\| \frac{\partial h_t}{\partial h_k} \right\| \leq (\gamma \theta \gamma \phi)^{t-k}
\]
Simple solution

\[c_t = \Theta \cdot c_{t-1} + \Theta_s \cdot g_t \]

\[h_t = \text{Tanh} (c_t) \]
LSTM

Input gate: scales input to cell (write)
Output gate: scales output from cell (read)
Forget gate: scales old cell value (reset)

[Alex Graves]
LSTM

\[i_t = \text{Sigm}(\theta_{xi}x_t + \theta_{hi}h_{t-1} + b_i) \]

\[f_t = \text{Sigm}(\theta_{xf}x_t + \theta_{hf}h_{t-1} + b_f) \]

\[o_t = \text{Sigm}(\theta_{xo}x_t + \theta_{ho}h_{t-1} + b_o) \]

\[g_t = \text{Tanh}(\theta_{xg}x_t + \theta_{hg}h_{t-1} + b_g) \]

\[c_t = f_t \odot c_{t-1} + i_t \odot g_t \]

\[h_t = o_t \odot \text{Tanh}(c_t) \]
Entry-wise multiplication layer

\[z = f(x_1, x_2) = x_1 \odot x_2 \]

\[\frac{\partial E}{\partial x_1} = \left(\frac{\partial E}{\partial z} \right) \frac{\partial z}{\partial x_1} = \frac{\partial E}{\partial z} \odot x_2 \]

\[z_i = f(x_{1i}, x_{2i}) = x_{1i} x_{2i} \]

\[\frac{\partial E}{\partial x_{1i}} = \sum_j \frac{\partial E}{\partial z_j} \frac{\partial z_j}{\partial x_{1i}} = \frac{\partial E}{\partial z_i} x_{2i} \]
LSTM cell in Torch

```plaintext
local function make_lstm_step(opt, input, prev_h, prev_c)
local function new_input_sum()
    local x_to_h = nn.Linear(opt.rnn_size, opt.rnn_size)
    local h_to_h = nn.Linear(opt.rnn_size, opt.rnn_size)
    return nn.CAddTable()({ x_to_h(input), h_to_h(prev_h) })
end

local in_gate = nn.Sigmoid()(new_input_sum())
local forget_gate = nn.Sigmoid()(new_input_sum())
local cell_gate = nn.Tanh()(new_input_sum())
local next_c = nn.CAddTable()({
    nn.CMulTable()({{forget_gate, prev_c}},
    nn.CMulTable()({{in_gate, cell_gate}})})
local out_gate = nn.Sigmoid()(new_input_sum())
local next_h = nn.CMulTable()({out_gate, nn.Tanh()(next_c)})
return next_h, next_c
end
```
LSTM column in Torch

```python
local function make_lstm_network(opt)
    local n_layers = opt.n_layers or 1

    local x = nn.Identity()
    local prev_s = nn.Identity()
    local splitted_s = {prev_s:split(2 * n_layers)}
    local next_s = {}
    local inputs = {[0] = x}
    for i = 1, n_layers do
        local prev_h = splitted_s[2 * i - 1]
        local prev_c = splitted_s[2 * i]
        local next_h, next_c = make_lstm_step(opt, inputs[i - 1], prev_h, prev_c)
        next_s[#next_s + 1] = next_h
        next_s[#next_s + 1] = next_c
        inputs[i] = next_h
    end
    local module = nn.gModule({x, prev_s}, {inputs[n_layers], nn.Identity() (next_s)})
    module:getParameters():uniform(-0.08, 0.08)
    module = cuda(module)
    return module
end
```
LSTMs for sequence to sequence prediction

[Ilya Sutskever et al]
LSTMs for sequence to sequence prediction

80k softmax by 1000 dims
This is very big!

1000 LSTM cells
2000 dims per timestep

2000 x 4 = 8k dims per sentence

160k vocab in input language
Learning to parse

John has a dog. →
[S NP VP NP NNP VBZ NP DT NN]$_{NP}$ VP .]$_{VP}$ S

John has a dog. →
(S (NP NNP)$_{NP}$ (VP VBZ (NP DT NN)$_{NP}$)$_{VP}$.)$_{S}$
Learning to execute

Input:

```python
j = 8584
for x in range(8):
    j += 920
b = (1500 + j)
print((b + 7567))
```

Target: 25011.

[Wojciech Zaremba and Ilya Sutskever]
Video prediction

Real

Generated

Karol Gregor, Ivo Danihelka, Andriy Mnih, Daan Wierstra…

Google DeepMind
Hand-writing recognition and synthesis

Which is Real?

from his travels it might have been

[Alex Graves]
Neural Turing Machine (NTM)

External Input

Controller

Read Heads

Write Heads

Memory

External Output

[Alex Graves, Greg Wayne, Ivo Danihelka]
Neural Turing Machine (NTM)

\[r_t \leftarrow \sum_i w_t^k(i) M_t(i) \quad \text{Read} \]

\[\tilde{M}_t(i) \leftarrow M_{t-1}(i) \left[1 - w_t^w(i) e_t \right] \quad \text{Erase} \]

\[M_t(i) \leftarrow \tilde{M}_t(i) + w_t^w(i) a_t \quad \text{Write} \]
Neural Turing Machine (NTM)
Translation with alignment (Bahdanau et al)

\[p(y_i | y_1, \ldots, y_{i-1}, x) = g(y_{i-1}, s_i, c_i) \]

\[s_i = f(s_{i-1}, y_{i-1}, c_i) \]

context vector \[c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j \]

\[\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_x} \exp(e_{ik})} \]

\[e_{ij} = a(s_{i-1}, h_j) \]
Show, attend and tell

1. Input Image
2. Convolutional Feature Extraction
3. RNN with attention over the image
4. Word by word generation

[Kelvin Xu et al, 2015]
Show, attend and tell

\[a = \{ a_1, \ldots, a_L \}, \quad a_i \in \mathbb{R}^D \]

\[\hat{z}_t = \phi (\{ a_i \}, \{ \alpha_i \}) = \sum_{i=1}^{L} \alpha_i a_i \]

\[e_{ti} = f_{\text{att}}(a_i, h_{t-1}) \]

\[\alpha_{ti} = \frac{\exp(e_{ti})}{\sum_{k=1}^{L} \exp(e_{tk})} \]

\[y = \{ y_1, \ldots, y_C \}, \quad y_i \in \mathbb{R}^K \]
In the next lecture, we will look techniques for unsupervised learning known as autoencoders. We will also learn about sampling and variational methods.

I **strongly recommend** reading Kevin Murphy’s variational inference book chapter prior to the lecture.