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Outline of the lecture

In this lecture, we formulate the problem of linear prediction using
probabilities. We also introduce the maximum likelihood estimate and
show that it coincides with the least squares estimate. The goal of the
lecture is for you to learn:

 Gaussian distributions
 How to formulate the likelihood for linear regression
 Computing the maximum likelihood estimates for linear
regression.
 Entropy and its relation to loss, probability and learning.



Univariate Gaussian distribution



Sampling from a Gaussian distribution



Covariance, correlation and multivariate Gaussians



Covariance, correlation and multivariate Gaussians



Covariance, correlation and multivariate Gaussians



Bivariate Gaussian distribution example

Assume we have two independent univariate Gaussian variables

x1 = N ( m1 , s 2 ) and x2 = N ( m2 , s 2 )

Their joint distribution p( x1, x2 ) is:



We have n=3 data points y1 = 1, y2 = 0.5, y3 = 1.5, which are
independent and Gaussian with unknown mean q and variance 1:

yi ~ N ( q , 1 ) = q + N ( 0 , 1 )

with likelihood P( y1 y2 y3 |q ) = P( y1 |q ) P( y1 |q ) P( y3 |q ) . Consider
two guesses of q, 1 and 2.5. Which has higher likelihood (probability of
generating the three observations)?

Finding the q that maximizes the likelihood is equivalent to moving the
Gaussian until the product of 3 green bars (likelihood) is maximized.



The likelihood for linear regression

Let us assume that each label yi is Gaussian distributed with mean xi
Tq

and variance s 2, which in short we write as:

yi = N ( xi
Tq , s 2 ) = xi

Tq + N ( 0, s 2 )
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Maximum likelihood



The ML estimate of q is:



The ML estimate of s is:



Making predictions
The ML plugin prediction, given the training data D=( X , y ), for a new
input x* and known s 2 is given by:

P(y| x* ,D, s 2 ) = N (y| x*
T q ML , s 2 )



Confidence in the predictions



Bernoulli: a model for coins

A Bernoulli random variable r.v. X takes values in {0,1}

q if x=1
p(x|q ) =

1- q if x=0

Where q 2 (0,1). We can write this probability more succinctly as
follows:



Entropy

In information theory, entropy H is a measure of the uncertainty
associated with a random variable. It is defined as:

H(X) = - p(x|q ) log p(x|q )

Example: For a Bernoulli variable X, the entropy is:
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Entropy of a Gaussian in D dimensions



MLE - properties
For independent and identically distributed (i.i.d.) data from p(xjµ0),
the MLE minimizes the Kullback-Leibler divergence:
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MLE - properties
i=1

j

arg min
µ

log
p(xijµ0)

p(xijµ)
p(xjµ0)dx



Next lecture

In the next lecture, we introduce ridge regression, bases functions and
look at the issue of controlling complexity.


